Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 396
Filter
Add more filters

Publication year range
1.
Cell ; 172(6): 1173-1177, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29522739

ABSTRACT

The evolutionary fate of humans is intimately linked with that of our microbiome. Medical and technological advances have caused large-scale changes in the composition and maturation of human-associated microbial communities, increasing our susceptibility to infectious and developmental diseases. Restoration of the human microbiome must become a priority for biomedicine.


Subject(s)
Biology/methods , Gastrointestinal Tract/microbiology , Host Microbial Interactions , Metagenome/genetics , Microbiota/physiology , Animals , Anti-Bacterial Agents/administration & dosage , Biology/trends , Drug Resistance, Bacterial/genetics , Gastrointestinal Tract/embryology , Gastrointestinal Tract/growth & development , Genetic Variation , Humans
2.
Cell ; 159(4): 829-43, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417159

ABSTRACT

Aging of immune organs, termed as immunosenescence, is suspected to promote systemic inflammation and age-associated disease. The cause of immunosenescence and how it promotes disease, however, has remained unclear. We report that the Drosophila fat body, a major immune organ, undergoes immunosenescence and mounts strong systemic inflammation that leads to deregulation of immune deficiency (IMD) signaling in the midgut of old animals. Inflamed old fat bodies secrete circulating peptidoglycan recognition proteins that repress IMD activity in the midgut, thereby promoting gut hyperplasia. Further, fat body immunosenecence is caused by age-associated lamin-B reduction specifically in fat body cells, which then contributes to heterochromatin loss and derepression of genes involved in immune responses. As lamin-associated heterochromatin domains are enriched for genes involved in immune response in both Drosophila and mammalian cells, our findings may provide insights into the cause and consequence of immunosenescence during mammalian aging. PAPERFLICK:


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Fat Body/immunology , Lamin Type B/metabolism , Aging , Animals , Cell Proliferation , Drosophila melanogaster/chemistry , Drosophila melanogaster/immunology , Fat Body/growth & development , Fat Body/metabolism , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Heterochromatin , Inflammation/immunology , Mammals/immunology , Models, Animal , Signal Transduction
3.
Development ; 148(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34758081

ABSTRACT

The developmental programs that build and sustain animal forms also encode the capacity to sense and adapt to the microbial world within which they evolved. This is abundantly apparent in the development of the digestive tract, which typically harbors the densest microbial communities of the body. Here, we review studies in human, mouse, zebrafish and Drosophila that are revealing how the microbiota impacts the development of the gut and its communication with the nervous system, highlighting important implications for human and animal health.


Subject(s)
Brain-Gut Axis/physiology , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/growth & development , Animals , Cell Lineage , Enteric Nervous System/cytology , Enteric Nervous System/growth & development , Enteric Nervous System/physiology , Gastrointestinal Motility , Gastrointestinal Tract/innervation , Gastrointestinal Tract/microbiology , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/growth & development , Neurons/cytology , Neurons/physiology
4.
Exp Cell Res ; 402(2): 112574, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33794264

ABSTRACT

Congenital anorectal malformations (ARMs) are among the most prominent deformities of the gastrointestinal tract; however, their precise aetiology remains obscure. Immunohistochemistry demonstrated that, in the ARM group, the PPPDE1-positive cells were widely distributed in the hindgut epithelial tissue from GD13 to GD16. Immunofluorescence revealed that most TUNEL-, Bax-, and Cytochrome C (Cyt C)-positive cells overlapped with PPPDE1-positive cells in the urorectal septum (URS). Western blotting and quantitative real-time RT-PCR revealed that PPPDE1 levels were significantly higher in the ARM group from GD13 to GD14 (p < 0.05). IEC-6 cells were transfected with PPPDE1 overexpression plasmid/NC (negative control) or si-PPPDE1/si-NC. Flow cytometry analysis and CCK-8 assay (used to detect apoptosis and proliferation, respectively), as well as western blotting, showed that the levels of PPPDE1 were positively correlated with the pro-apoptotic molecules Bax and Cyt C. Accordingly, aberrantly high expression of PPPDE1 caused a spatiotemporal imbalance in foetal rats with ARMs during hindgut development. Therefore, the upregulation of PPPDE1 may promote epithelial apoptosis and reduce proliferation in the hindgut via the mitochondrial apoptotic pathway. This could affect the fusion of the URS and cloacal membrane, ultimately inhibiting the hindgut development and resulting in ARMs.


Subject(s)
Anorectal Malformations/genetics , Carbon-Nitrogen Lyases/genetics , Gastrointestinal Tract/metabolism , bcl-2-Associated X Protein/genetics , Animals , Anorectal Malformations/pathology , Apoptosis/genetics , Cell Proliferation/genetics , Cytochromes c/genetics , Embryo, Mammalian , Fetal Development/genetics , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/pathology , Humans , Mitochondria/genetics , Rats , Signal Transduction/genetics , Transcriptional Activation/genetics
5.
Cell Mol Life Sci ; 79(1): 46, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34936034

ABSTRACT

Gastrointestinal (GI) problems and microbiota alterations have been frequently reported in autism spectrum disorders (ASD). In addition, abnormal perinatal trace metal levels have been found in ASD. Accordingly, mice exposed to prenatal zinc deficiency display features of ASD-like behavior. Here, we model GI development using 3D intestinal organoids grown under zinc-restricted conditions. We found significant morphological alterations. Using proteomic approaches, we identified biological processes affected by zinc deficiency that regulate barrier permeability and pro-inflammatory pathways. We confirmed our results in vivo through proteomics studies and investigating GI development in zinc-deficient mice. These show altered GI physiology and pro-inflammatory signaling, resulting in chronic systemic and neuroinflammation, and gut microbiota composition similar to that reported in human ASD cases. Thus, low zinc status during development is sufficient to compromise intestinal barrier integrity and activate pro-inflammatory signaling, resulting in changes in microbiota composition that may aggravate inflammation, altogether mimicking the co-morbidities frequently observed in ASD.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Diseases , Neuroinflammatory Diseases , Zinc/deficiency , Animals , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/microbiology , Female , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/microbiology , Gastrointestinal Microbiome , Gastrointestinal Tract/growth & development , Male , Mice , Mice, Inbred C57BL , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/microbiology , Organoids , Proteomics
6.
Article in English | MEDLINE | ID: mdl-34737157

ABSTRACT

Prominent ontogenetic changes of the gastrointestinal tract (GIT) should occur in mammals whose neonatal diet of milk differs from that of adults, and especially in herbivores (as vegetation is particularly distinct from milk), and even more so in foregut fermenters, whose forestomach only becomes functionally relevant with vegetation intake. Due to the protracted lactation in marsupials, ontogenetic differences can be particularly well investigated in this group. Here, we report body mass (BM) scaling relationships of wet GIT content mass in 28 in-pouch young (50 g to 3 kg) and 15 adult (16-70 kg) western grey kangaroos Macropus fuliginosus melanops. Apart from the small intestinal contents, in-pouch young and adults did not differ in the scaling exponents ('slope' in log-log plots) but did differ in the scaling factor ('intercept'), with an implied substantial increase in wet GIT content mass during the out-of-pouch juvenile period. In contrast to forestomach contents, caecum contents were elevated in juveniles still in the pouch, suggestive of fermentative digestion of milk and intestinal secretion residues, particularly in the caecum. The substantial increase in GIT contents (from less than 1 to 10-20% of BM) was associated mainly with the increase in forestomach contents (from 25 to 80% of total GIT contents) and a concomitant decrease in small intestine contents (from 50 to 8%), emphasizing the shifting relevance of auto-enzymatic and allo-enzymatic (microbial) digestion. There was a concomitant increase in the contents-to-tissue ratio of the fermentation chambers (forestomach and caecum), but this ratio generally did not change for the small intestine. Our study not only documents significant ontogenetic changes in digestive morpho-physiology, but also exemplifies the usefulness of intraspecific allometric analyses for quantifying these changes.


Subject(s)
Gastrointestinal Contents/chemistry , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/physiology , Macropodidae/growth & development , Macropodidae/physiology , Animals , Digestive System Physiological Phenomena , Female , Fermentation/physiology , Male , Models, Biological
7.
Lett Appl Microbiol ; 73(1): 20-25, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33386625

ABSTRACT

Sialic acid (N-acetylneuraminic acid), a 9-carbon monosaccharide, has been widely studied in immunology, oncology and neurology. However, the effects of sialic acid on organ and intestinal development, liver function and gut microbiota were rarely studied. In this study, we found that oral sialic acid tended to increase the relative weight of liver and decreased the serum aspartate aminotransferase (GPT) activity. In addition, sialic acid treatment markedly reduced gut villus length, depth, the ratio of villus length/depth (L/D), areas, width and the number of goblet cells. Furthermore, gut microbes were changed in response to oral sialic acid, such as Staphylococcus lentus, Corynebacterium stationis, Corynebacterium urealyticum, Jeotgalibaca sp_PTS2502, Ignatzschineria indica, Sporosarcina pasteurii, Sporosarcina sp_HW10C2, Facklamia tabacinasalis, Oblitimonas alkaliphila, Erysipelatoclostridium ramosum, Blautia sp_YL58, Bacteroids thetaiotaomicron, Morganella morganii, Clostridioides difficile, Helicobacter tryphlonius, Clostridium sp_Clone47, Alistipes finegoldii, [pseudomonas]_geniculata and Pseudomonas parafulva at the species level. In conclusion, oral sialic acid altered the intestinal pathological state and microbial compositions, and the effect of sialic acid on host health should be further studied.


Subject(s)
Biodiversity , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/drug effects , Liver/drug effects , N-Acetylneuraminic Acid/pharmacology , Administration, Oral , Animals , Aspartate Aminotransferases/blood , Enzyme Activation/drug effects , Gastrointestinal Tract/growth & development , Mice , N-Acetylneuraminic Acid/administration & dosage
8.
Int J Mol Sci ; 22(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477687

ABSTRACT

Parasympathetic signalling via muscarinic acetylcholine receptors (mAChRs) regulates gastrointestinal smooth muscle function. In most instances, the mAChR population in smooth muscle consists mainly of M2 and M3 subtypes in a roughly 80% to 20% mixture. Stimulation of these mAChRs triggers a complex array of biochemical and electrical events in the cell via associated G proteins, leading to smooth muscle contraction and facilitating gastrointestinal motility. Major signalling events induced by mAChRs include adenylyl cyclase inhibition, phosphoinositide hydrolysis, intracellular Ca2+ mobilisation, myofilament Ca2+ sensitisation, generation of non-selective cationic and chloride currents, K+ current modulation, inhibition or potentiation of voltage-dependent Ca2+ currents and membrane depolarisation. A lack of ligands with a high degree of receptor subtype selectivity and the frequent contribution of multiple receptor subtypes to responses in the same cell type have hampered studies on the signal transduction mechanisms and functions of individual mAChR subtypes. Therefore, novel strategies such as genetic manipulation are required to elucidate both the contributions of specific AChR subtypes to smooth muscle function and the underlying molecular mechanisms. In this article, we review recent studies on muscarinic function in gastrointestinal smooth muscle using mAChR subtype-knockout mice.


Subject(s)
Gastrointestinal Tract/metabolism , Muscle, Smooth/metabolism , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M3/genetics , Animals , GTP-Binding Proteins/genetics , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/pathology , Mice, Knockout/genetics , Muscle Contraction/genetics , Muscle, Smooth/growth & development , Signal Transduction/genetics
9.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G375-G381, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32658619

ABSTRACT

Gastrointestinal organoids are an exciting new tool for modeling human development, physiology, and disease in human tissue. Derived from pluripotent stem cells, gastrointestinal organoids consist of epithelial and mesenchymal cells organized in an intricate, three-dimensional structure that recapitulates the physiology and microscopic anatomy of the human gastrointestinal (GI) tract. In vitro derivation of gastrointestinal organoids from definitive endoderm has permitted an exploration of the complex signaling pathways required for the initial maturation of each individual gastrointestinal organ. Further maturation beyond an early fetal state currently requires transplantation into an immunocompromised host. Transplantation-induced maturation provides an opportunity to functionally interrogate the key mechanisms underlying development of the human GI tract. Gastrointestinal organoids can also be used to model human diseases and ultimately may serve as the basis for developing novel, personalized therapies for human intestinal diseases.


Subject(s)
Gastrointestinal Tract/growth & development , Gastrointestinal Tract/physiology , Stem Cells/physiology , Animals , Gastrointestinal Diseases/physiopathology , Humans , Organoids
10.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G382-G390, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32755308

ABSTRACT

The early stages of the metagenomics era produced countless observational studies linking various human diseases to alterations in the gut microbiota. Only recently have we begun to decipher the causal roles that gut microbes play in many of these conditions. Despite an incomplete understanding of how gut microbes influence pathophysiology, clinical trials have tested empirically numerous microbiota-targeting therapies to prevent or treat disease. Unsurprisingly, these trials have yielded mixed results. Nonetheless, the consumer market for probiotics, prebiotics, and synbiotics continues to grow. This theme paper highlights recent discoveries of mechanisms underlying diet-microbial-host interactions as they pertain to growth and metabolism and discusses current and future applications of microbiota-targeting therapies in the context of child malnutrition as well as obesity and its metabolic comorbidities, including nonalcoholic fatty liver disease and cardiovascular disease. We also highlight current challenges and identify future directions to facilitate a more efficient and direct path to clinical impact.


Subject(s)
Digestive System Physiological Phenomena/genetics , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/physiology , Prebiotics , Probiotics/therapeutic use , Synbiotics , Gastrointestinal Diseases/prevention & control , Gastrointestinal Tract/growth & development , Genomics , Humans
11.
J Nutr ; 150(5): 1196-1207, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32069355

ABSTRACT

BACKGROUND: Extrauterine growth restriction (EUGR) in preterm infants is associated with higher morbidity and impaired neurodevelopment. Early nutrition support may prevent EUGR in preterm infants, but it is not known if this improves organ development and brain function in the short and long term. OBJECTIVE: Using pigs as models for infants, we hypothesized that diet-induced EUGR impairs gut, immunity, and brain development in preterm neonates during the first weeks after birth. METHODS: Forty-four preterm caesarean-delivered pigs (Danish Landrace × Large White × Duroc, birth weight 975 ± 235 g, male:female ratio 23:21) from 2 sows were fed increasing volumes [32-180 mL/(kg·d)] of dilute bovine milk (EUGR group) or the same diet fortified with powdered bovine colostrum for 19 d (CONT group, 50-100% higher protein and energy intake than the EUGR group). RESULTS: The EUGR pigs showed reduced body growth (-39%, P < 0.01), lower plasma albumin, phosphate, and creatine kinase concentrations (-35 to 14%, P < 0.05), increased cortisol and free iron concentrations (+130 to 700%, P < 0.05), and reduced relative weights of the intestine, liver, and spleen (-38 to 19%, all P < 0.05). The effects of EUGR on gut structure, function, microbiota, and systemic immunity were marginal, although EUGR temporarily increased type 1 helper T cell (Th1) activity (e.g. more blood T cells and higher Th1-related cytokine concentrations on day 8) and reduced colon nutrient fermentation (lower SCFA concentration; -45%, P < 0.01). Further, EUGR pigs showed increased relative brain weights (+19%, P < 0.01), however, memory and learning, as tested in a spatial T-maze, were not affected. CONCLUSION: Most of the measured organ growth, and digestive, immune, and brain functions showed limited effects of diet-induced EUGR in preterm pigs during the first weeks after birth. Likewise, preterm infants may show remarkable physiological adaptation to deficient nutrient supply during the first weeks of life although early life malnutrition may exert negative consequences later.


Subject(s)
Animals, Newborn/growth & development , Brain/growth & development , Gastrointestinal Tract/growth & development , Immunity/physiology , Nutritional Requirements , Sus scrofa/growth & development , Animals , Colostrum , Female , Gastrointestinal Microbiome , Gastrointestinal Tract/anatomy & histology , Gestational Age , Humans , Infant Nutritional Physiological Phenomena , Infant, Newborn , Infant, Premature/growth & development , Male , Milk , Models, Animal , Nutritional Support , Nutritive Value
12.
J Appl Microbiol ; 128(2): 355-365, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31618501

ABSTRACT

AIM: This study was carried out to investigate the effects of dietary calcium pyruvate supplementation on growth performance and intestinal health of weaned piglets fed low-protein diets. METHODS AND RESULTS: After a 7-day adaptation period, 60 individually housed piglets (Duroc × Yorkshire-Landrace) weaned at 28 days of age were randomly assigned to receive one of three treatments (20 pigs/treatment) for 28 days: control diet (20·0% crude protein [CP]), low-protein diet (15·5% CP), and experimental (15·5% CP + 1·8% calcium pyruvate). At the end of the experiment, six piglets from each diet group were slaughtered and blood and tissue samples were collected. Compared with the control group, feeding piglets with 15·5% CP decreased the daily body weight gain; lengths of the duodenum, jejunum and ileum; and weights of the stomach, duodenum, jejunum and ileum (P < 0·05), while 15·5% CP + 1·8% calcium pyruvate supplementation removed those differences (P > 0·05). Compared with the control group, the diarrhoea incidence and relative richness of Firmicutes in the colon contents of piglets in both the 15·5% CP and 15·5% CP + 1·8% calcium pyruvate groups was decreased. The relative richness of Bacteriodetes in the colon contents of piglets was higher in the 15·5% CP + 1·8% calcium pyruvate group than in the control and 15·5% CP groups (P < 0·05). CONCLUSION: Calcium pyruvate supplementation for four weeks removed the negative effects of a low-protein diet on the gastrointestinal tract development and daily body weight gain of weaned piglets. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that supplementing a low-protein diet with calcium pyruvate, an effective alternative metabolic fuel to amino acids, was beneficial in improving the intestinal health and maximizing the growth of newly weaned piglets.


Subject(s)
Calcium, Dietary/metabolism , Diet, Protein-Restricted/veterinary , Gastrointestinal Tract/growth & development , Pyruvic Acid/metabolism , Swine/growth & development , Amino Acids/metabolism , Animal Feed/analysis , Animals , Dietary Supplements , Female , Gastrointestinal Tract/metabolism , Intestines/growth & development , Male , Swine/metabolism , Weaning , Weight Gain
13.
Arch Insect Biochem Physiol ; 103(1): e21631, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31587381

ABSTRACT

Soybean is one of most consumed and produced grains in the world, and Anticarsia gemmatalis is a pest that causes great damage to this crop due to severe defoliation during its larval phase. Plants have mechanisms that lead to the inhibition of proteases in the intestine of these herbivores, hampering their development. Understanding this complex protease inhibitor is important for pest control. The objective of this study was to evaluate the enzymatic profiles of the intestinal proteases of the soybean caterpillar at different instars. For this, the proteolytic profile of the gut in the third, fourth, and fifth instars were analyzed. Irreversible inhibitors of proteases were separately incubated with A. gemmatalis enzyme extracts at the third, fourth, and fifth instar to assess the contribution of these proteases to total proteolytic activity. The enzymatic extracts were also evaluated with specific substrates to confirm changes in the specific activities of trypsin-like, chymotrypsin-like, and cysteine proteases at different instars. The results showed that the protease profile of A. gemmatalis gut changes throughout its larval development. The activity of cysteine proteases was more intense in the first instar. On the contrary, the serine proteases showed major activities in the late stages of the larval phase. Zymogram analysis and protein identification by liquid chromatography-mass spectrometry indicated serine protease as the main protease class expressed in the fifth instar. These results may shift the focus from the rational development of the protease inhibitor to A. gemmatalis and other Lepidoptera, as the expression of major proteases is not constant.


Subject(s)
Moths/enzymology , Peptide Hydrolases/chemistry , Animals , Gastrointestinal Tract/enzymology , Gastrointestinal Tract/growth & development , Larva/enzymology , Larva/growth & development , Moths/growth & development , Peptide Hydrolases/classification
14.
J Dairy Sci ; 103(6): 5102-5117, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32253042

ABSTRACT

The objective of this study was to investigate the effects of an enzymatically hydrolyzed cottonseed protein (HCSP) as a peptide source on performance, blood metabolites, gastrointestinal development, and intestinal microbes. Forty-eight newborn Holstein calves were randomly assigned to 1 of the 4 dietary treatments including 0, 2, 4, and 6% of HCSP (dry matter basis). All calves received the same amount of pasteurized whole milk, weaned on d 56 of the experiment, and the study was concluded on d 70. Data were analyzed using PROC MIXED in SAS (SAS Institute Inc., Cary, NC) as a randomized complete block design with linear and quadratic contrasts. Results showed that increased amount of HCSP linearly decreased the starter intake during the postweaning (d 57 to 70) and overall period (d 1 to 70). In addition, when dietary HCSP increased during the overall period, average daily gain tended to linearly decrease. All skeletal growth variables also linearly decreased as dietary HCSP increased at the end of the study, except for body length, which did not differ among the treatments. Serum cortisol concentration was higher in calves supplemented with 6% of HCSP at weaning and at the end of the study. This indicates that these calves may have experienced a stressful condition compared with calves in other treatments. Total antioxidant capacity was quadratically affected by HCSP supplementation; calves fed 2 and 4% of HCSP diets had the highest total antioxidant capacity, whereas calves fed 0 and 6% HCSP diets had lower total antioxidant capacity at weaning and at end of the study. Calves supplemented with 6% HCSP had lower empty reticulo-rumen and omasum weights and rumen wall thickness compared with calves in other treatments at the end of the study. In conclusion, supplementation of HCSP at the rate of 2% of starter diet enhanced antioxidant status without any detrimental effects on the performance and metabolic status of calves, whereas greater inclusion rates impaired starter intake and growth of calves, and exposed them to a stressful status.


Subject(s)
Animal Feed , Cattle/growth & development , Cottonseed Oil , Gastrointestinal Tract/growth & development , Animals , Body Weight , Cattle/blood , Cottonseed Oil/metabolism , Diet/veterinary , Dietary Supplements , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Male , Rumen/metabolism , Weaning
15.
J Dairy Sci ; 103(9): 7998-8019, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32622603

ABSTRACT

The objectives of this study were to assess the effect of using heat-treated canola meal (CM) and glycerol inclusion in starter mixtures on starter intake, growth, and gastrointestinal tract development in Holstein bull calves. In the first study, a protocol for the heat treatment of CM was evaluated by comparing commercial CM that was exposed to 0, 100, 110, or 120°C of heat treatment for 10 min. Following heat treatment, in situ crude protein (CP) ruminal degradability and estimated intestinal CP digestibility were assessed. It was observed that the degradable fractions of dry matter and CP in CM decreased linearly with increasing temperature of heat treatment. The estimated intestinal CP digestibility was greatest when CM was heated to 110°C. In the second study, 28 bull calves were used in a randomized complete block design. Calves were fed pelleted starters containing CM or CM that was heat-treated to 110°C for 10 min. Diets also contained 0 or 5% glycerol on a dry matter basis. The study lasted 51 d, ending on the first day of weaning. Starter intake, average daily gain (ADG), ruminal short-chain fatty acid concentrations, morphology of the rumen and small intestine, gene expression (MCT1, GPR41, GPR43, UTB, AQP3, PEPT1, PEPT2, ATB0+, and EAAC1) in the ruminal, jejunal, and ileal epithelium, and brush border enzyme activities in the duodenum, jejunum, and ileum were investigated. Few interactions between heat-treated CM and glycerol inclusion were observed. Feeding heat-treated CM did not affect starter intake. However, feeding heat-treated CM to calves tended to reduce ADG and decreased the weight of ruminal and jejunal tissue. Heat treatment did not affect gene expression or brush border enzyme activities in the small intestine. Glycerol inclusion tended to increase cumulative starter intake and increased cumulative body weight gain. Use of glycerol reduced ruminal pH and increased the concentration of ruminal short-chain fatty acids. Additionally, glycerol inclusion increased abomasal, duodenal, jejunal, and cecal digesta weights and tended to increase the weight of the jejunal tissue. Glycerol supplementation tended to downregulate the expression of MCT1 in the ruminal epithelium, and upregulated the expression of MCT1 in the epithelium of proximal jejunum. In conclusion, heat treatment of CM may negatively affect calf growth and gastrointestinal tract development. Glycerol inclusion may increase starter intake, ADG, ruminal fermentation, and intestinal development in calves when CM is used as a main source of protein in pelleted starter mixture.


Subject(s)
Animal Feed , Brassica napus/metabolism , Cattle/metabolism , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/metabolism , Glycerol/pharmacology , Abomasum/metabolism , Animal Feed/analysis , Animals , Body Weight , Cattle/growth & development , Diet/veterinary , Digestion , Fatty Acids, Volatile/metabolism , Fermentation , Food Handling , Glycerol/metabolism , Male , Rumen/metabolism , Weaning
16.
Zygote ; 28(3): 208-216, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32077403

ABSTRACT

In the present study, the morphological development of the Brycon amazonicus digestive tract is described to provide basic knowledge for nutritional studies and, therefore, increase the survival of this species during larviculture. Samples were collected from hatching up to 25 days of age, measured, processed and observed under a stereomicroscope and light microscopy. Newly hatched larvae presented their digestive tract as a straight tube, dorsal to the yolk sac, lined with a single layer of undifferentiated cells. At 24 h post-hatching (hPH), the buccopharyngeal cavity was open, but the posterior region of the digestive tube remained closed. At 25 hPH, the digestive tube was completely open and could be divided into buccopharyngeal cavity, oesophagus and intestine. At 35 hPH, the intestine presented a dilatation in the proximal region, which had the function of storing food. Differentiation of the stomach started at 83 hPH, and mucous cells were observed in the epithelium. These cells are important in the production of mucus, whose function is to protect the organ against acidity, although the gastric glands began developing only from 171 hPH, when three stomach regions were observed: cardiac, fundic and pyloric. The gastric glands were observed in the cardiac region, indicating that this organ already had digestive functionality. From 243 hPH, the absorption and assimilation of nutrients were already possible but, only from 412 hPH, the digestive tract was completely developed and functional.


Subject(s)
Characiformes/growth & development , Gastrointestinal Tract/growth & development , Animals , Branchial Region/cytology , Branchial Region/embryology , Branchial Region/growth & development , Characiformes/anatomy & histology , Characiformes/embryology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Embryonic Development/physiology , Gastric Mucosa/cytology , Gastric Mucosa/embryology , Gastric Mucosa/growth & development , Gastrointestinal Tract/cytology , Gastrointestinal Tract/embryology , Larva/cytology , Larva/growth & development , Mouth Mucosa/cytology , Mouth Mucosa/embryology , Mouth Mucosa/growth & development , Time Factors
17.
Dev Dyn ; 248(8): 688-701, 2019 08.
Article in English | MEDLINE | ID: mdl-30938886

ABSTRACT

BACKGROUND: The evolution of organ asymmetries is less explored than the field of organ morphology and coiling. The digestive tract of elasmobranchs provides a fascinating model for studying the evolution of morphological asymmetries. Unique to elasmobranchs and all basal fishes is the spiral intestine, which may represent an intermediate morphology in evolution from the straight gut of lamprey to the elongated coils of higher vertebrates. The short spiral allows for a large absorptive surface area that can fit into a restrictive abdominal space. RESULTS: Using histology and high resolution microCT, we provide the first 3D morphometric analysis of the spiral intestine during development in the little skate, Leucoraja erinacea. Spiral formation is initiated by asymmetric growth in the mesenchyme, causing a bulging fold that protrudes into the lumen of the gut. As development proceeds, the fold elongates and spirals into a right-handed helix. Spiraling progresses along the anterior-posterior axis and is likely the result of mechanical forces driven by the asymmetric growth of surrounding tissues. After initial asymmetric growth, radial constraints from within the gut tube create constrictive forces further propagating spiraling. CONCLUSION: We propose a model for potential biophysical mechanisms that direct the morphogenesis of the spiral intestine.


Subject(s)
Gastrointestinal Tract/growth & development , Morphogenesis , Skates, Fish/anatomy & histology , X-Ray Microtomography/methods , Animals , Body Patterning , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/diagnostic imaging , Mesoderm/growth & development , Models, Biological
18.
Arch Anim Nutr ; 74(6): 496-511, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32967440

ABSTRACT

The use of natural antioxidants, in particular polyphenols such as dihydroquercetin (DHQ), in animal nutrition has recently increased in popularity. This may partly be due to the risk of increased incidences of heat stress associated with raising livestock in warmer ambient temperatures, facilitated by global warming, reducing antioxidant capacity. The current research demonstrates the effect of dietary DHQ, vitaminEand standard or high ambient temperatures on growth performance, energy and nutrient metabolism, gastrointestinal tract (GIT) development, jejunal villus morphometry and antioxidant status in broiler chickens. Each of the four experimental diets was fed to 16 pens of five birds, which were allocated to four rooms (four pens in each room). The temperature in two rooms was maintained at aconstant 35°C (high temperature; HT), and the temperature in the other two rooms was gradually reduced from 27°C at 7 dof age to 22°C at 20 dof age (standard temperature; ST). Rearing birds at HT reduced feed intake, weight gain, weight of small intestine, total GIT, liver, spleen, heart, villus height, villus surface area and lowered blood glutationperoxidase (GSH-Px). Dietary DHQ increased blood GSH-Px and total antioxidant status, increased heart weight and reduced caecal size. When fed separately, DHQ and vitamin E improved hepatic vitamin E concentration. Feeding vitamin Eincreased spleen and liver weights. When fed together, DHQ and vitamin Ereduced villus height, villus height to crypt depth ratio and villus surface area. Temperature and antioxidants did not affect energy and nutrient metabolism. There were no effects of dietary antioxidants on growth performance of broiler chickens and there were no mortalities. At present, it is unclear if feeding antioxidants (in particular DHQ) at different levels, using different dietary formulations, and rearing birds under arange of environmental conditions may be effective at enhancing production performance and bird health in hot ambient climates.


Subject(s)
Antioxidants/metabolism , Chickens/metabolism , Gastrointestinal Tract/growth & development , Jejunum/anatomy & histology , Quercetin/analogs & derivatives , Vitamin E/metabolism , Vitamins/metabolism , Animal Feed/analysis , Animals , Antioxidants/administration & dosage , Chickens/growth & development , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Gastrointestinal Tract/drug effects , Jejunum/drug effects , Male , Organ Size/drug effects , Quercetin/administration & dosage , Quercetin/metabolism , Random Allocation , Temperature , Vitamin E/administration & dosage , Vitamins/administration & dosage
19.
Semin Cell Dev Biol ; 66: 94-106, 2017 06.
Article in English | MEDLINE | ID: mdl-28087321

ABSTRACT

The enteric nervous system (ENS) is comprised of a network of neurons and glial cells that are responsible for coordinating many aspects of gastrointestinal (GI) function. These cells arise from the neural crest, migrate to the gut, and then continue their journey to colonize the entire length of the GI tract. Our understanding of the molecular and cellular events that regulate these processes has advanced significantly over the past several decades, in large part facilitated by the use of rodents, avians, and zebrafish as model systems to dissect the signals and pathways involved. These studies have highlighted the highly dynamic nature of ENS development and the importance of carefully balancing migration, proliferation, and differentiation of enteric neural crest-derived cells (ENCCs). Proliferation, in particular, is critically important as it drives cell density and speed of migration, both of which are important for ensuring complete colonization of the gut. However, proliferation must be tempered by differentiation among cells that have reached their final destination and are ready to send axonal extensions, connect to effector cells, and begin to produce neurotransmitters or other signals. Abnormalities in the normal processes guiding ENCC development can lead to failure of ENS formation, as occurs in Hirschsprung disease, in which the distal intestine remains aganglionic. This review summarizes our current understanding of the factors involved in early development of the ENS and discusses areas in need of further investigation.


Subject(s)
Enteric Nervous System/growth & development , Gastrointestinal Tract/growth & development , Humans
20.
Cell Tissue Res ; 377(3): 415-443, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31270611

ABSTRACT

The digestive system of the malacostracan crustaceans, namely the decapods, isopods, amphipods and mysids, is among the most complex organ systems of the animal kingdom serving multiple functions such as food processing, absorption and storage of nutrients, synthesis of digestive enzymes and blood proteins, detoxification of xenobiotics and osmoregulation. It is rather well investigated compared to other invertebrates because the Malacostraca include many ecological keystone species and food items for humans. The Decapoda and Peracarida share food processing with chewing and filtering structures of the stomach but differ with respect to morphology and ultrastructure of the digestive glands. In the Peracarida, the digestive glands are composed of few, relatively large lateral caeca, whereas in the Decapoda, hundreds to thousands of blindly ending tubules form a voluminous hepatopancreas. Morphogenesis and onset of functionality of the digestive system strongly depend on the mode of development. The digestive system is early developed in species with feeding planktonic larvae and appears late in species with direct lecithotrophic development. Some structures of the digestive system like the stomach ossicles are rather constant in higher taxa and are of taxonomic value, whereas others like the chewing structures are to some degree adapted to the feeding strategy. The nutrient absorbing and storing cells of the digestive glands show considerable ultrastructural variation during moult cycle, vitellogenesis and starvation. Some of the various functions of the digestive system are already assigned to specific sections of the digestive tract and cell types, but others still await precise localization.


Subject(s)
Crustacea/anatomy & histology , Crustacea/physiology , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/growth & development , Animals , Morphogenesis
SELECTION OF CITATIONS
SEARCH DETAIL