Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Anal Chem ; 96(3): 1102-1111, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38179931

ABSTRACT

Extracellular matrix (ECM) stiffness modulates a variety of cellular processes, including ferroptosis, a process with significant potential implications for hepatocellular carcinoma (HCC) fibrosis and cirrhosis. However, the exact relationship between ECM stiffness and HCC ferroptosis is yet unclarified, partially due to the lack of in situ information on key parameters of the ferroptosis process of living HCC cells. This study pioneers the use of in vitro mechanical microenvironment models of HCC and the scanning electrochemical microscopy (SECM) technique for understanding this interplay. We first cultured HuH7 cells on 4.0, 18.0, and 44.0 kPa polyacrylamide (PA) gels to simulate early, intermediate, and advanced HCC ECM stiffness, respectively. Then, we used SECM to in situ monitor changes in cell membrane permeability, respiratory activity, and reactive oxygen species (ROS) levels of erastin-induced HuH7 cells on PA gels, finding that increasing ECM stiffness potentiates ferroptosis, including increased membrane permeabilization and H2O2 release as well as reduced respiratory activity. Through further transcriptome sequencing and molecular biology measurements, we identified a critical role for focal adhesion kinase (FAK)-mediated yes-associated protein (YAP) in regulating the ferroptosis process dependent on ECM stiffness, which provides novel insights into the mechanical regulation of ferroptosis in HCC cells and may pave the way for innovative therapeutic strategies.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Hydrogen Peroxide/metabolism , Microscopy, Electrochemical, Scanning , Extracellular Matrix/metabolism , Fibrosis , Gels/metabolism , Tumor Microenvironment
2.
Biochem Biophys Res Commun ; 708: 149791, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38518719

ABSTRACT

Pulmonary alveoli are functional units in gas exchange in the lung, and their dysfunctions in lung diseases such as interstitial pneumonia are accompanied by fibrotic changes in structure, elevating the stiffness of extracellular matrix components. The present study aimed to test the hypothesis that such changes in alveoli stiffness induce functional alteration of epithelial cell functions, exacerbating lung diseases. For this, we have developed a novel method of culturing alveolar epithelial cells on polyacrylamide gel with different elastic modulus at an air-liquid interface. It was demonstrated that A549 cells on soft gels, mimicking the modulus of a healthy lung, upregulated mRNA expression and protein synthesis of surfactant protein C (SFTPC). By contrast, the cells on stiff gels, mimicking the modulus of the fibrotic lung, exhibited upregulation of SFTPC gene expression but not at the protein level. Cell morphology, as well as cell nucleus volume, were also different between the two types of gels.


Subject(s)
Alveolar Epithelial Cells , Pulmonary Fibrosis , Humans , Alveolar Epithelial Cells/metabolism , Lung/metabolism , Pulmonary Alveoli , Pulmonary Fibrosis/metabolism , Epithelial Cells/metabolism , Gels/metabolism
3.
Protein Sci ; 33(4): e4941, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501490

ABSTRACT

Tardigrades are microscopic animals that survive desiccation by inducing biostasis. To survive drying tardigrades rely on intrinsically disordered CAHS proteins, which also function to prevent perturbations induced by drying in vitro and in heterologous systems. CAHS proteins have been shown to form gels both in vitro and in vivo, which has been speculated to be linked to their protective capacity. However, the sequence features and mechanisms underlying gel formation and the necessity of gelation for protection have not been demonstrated. Here we report a mechanism of fibrillization and gelation for CAHS D similar to that of intermediate filament assembly. We show that in vitro, gelation restricts molecular motion, immobilizing and protecting labile material from the harmful effects of drying. In vivo, we observe that CAHS D forms fibrillar networks during osmotic stress. Fibrillar networking of CAHS D improves survival of osmotically shocked cells. We observe two emergent properties associated with fibrillization; (i) prevention of cell volume change and (ii) reduction of metabolic activity during osmotic shock. We find that there is no significant correlation between maintenance of cell volume and survival, while there is a significant correlation between reduced metabolism and survival. Importantly, CAHS D's fibrillar network formation is reversible and metabolic rates return to control levels after CAHS fibers are resolved. This work provides insights into how tardigrades induce reversible biostasis through the self-assembly of labile CAHS gels.


Subject(s)
Intrinsically Disordered Proteins , Tardigrada , Animals , Desiccation , Tardigrada/metabolism , Intrinsically Disordered Proteins/metabolism , Gels/metabolism
4.
Int J Pharm ; 652: 123819, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38242256

ABSTRACT

In-situ gel technology is a promising drug delivery strategy that undergoes a 'sol to gel' transition upon administration, providing controlled and prolonged drug release. These gels are composed of cross-linked 3D networks of polymers, with hydrogels being a specific type of absorbing water while retaining their shape. Gelation can be triggered by various stimuli, such as temperature, pH, ions, and light. They offer several advantages like improved patient compliance, extended drug residence time, localized drug delivery, etc, but also have some disadvantages like drug degradation and limited mechanical strength. In-situ gel falls into three categories: temperature-sensitive, ion-sensitive, and pH-sensitive, but multi-responsive gels that respond to multiple stimuli have better drug release characteristics. The mechanism of in-situ gel formation involves physical and chemical mechanisms. There are various applications of in-situ gel, like ocular drug delivery, nose-to-brain delivery, etc. In this review, we have discussed the types, and mechanisms of in-situ gel & use of in-situ gel in the treatment of different diseases through various routes like buccal, vaginal, ocular, nasal, etc., along with its use in targeted drug delivery.


Subject(s)
Drug Delivery Systems , Hydrogels , Female , Humans , Gels/metabolism , Hydrogels/metabolism , Eye/metabolism , Polymers/metabolism
5.
J Cosmet Dermatol ; 23(3): 1015-1028, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38268219

ABSTRACT

BACKGROUND: Tocopherols are well-known antioxidant and moisturizing agent. Tocopherol succinate (TS) are widely used in many skin products especially used in anti-aging and skin whitening product formulation. AIM: We previously reported the successful synthesis and preliminary characterizations of stable TS ethosomal gels (TSEG) (DOI: 10.1111/jocd.14907). Herein, we develop and further characterize TSEG to enhance the stability of the developed formulation with increased permeation through skin. METHODS: Cold method technique was used to prepare TS ethosomes. The developed ethosomal vesicle size was 250 nm, which allowed TS to penetrate through the stratum corneum layer and act on melanocytes. For stability study was assessed by thermogravimetric analysis (TGA) by placing TSEG and unloaded/control ethosomal gel (CEG) at various temperature conditions, that is, 8°C, 25°C, 40°C, and 40°C ± 75% RH for 3 months. Organoleptic evaluation was done in terms of color, odor, and phase separation. Transmission electron microscopy (TEM), Fourier Transform infrared spectroscopy (FTIR), x-ray diffraction spectroscopy (XRD), zeta potential (ZP) and particle size (PS) was used for TSEG physical characterizations. In vitro dissolution and ex-vivo permeation studies (using Franz diffusion cell) were performed for both TSEG and CEG formulations. Human women (N = 34) were used to evaluate in vivo biophysical parameters including erythema, melanin, moisture content, sebum level, and skin elasticity. RESULTS: Developed formulation was highly thermostable during the 3 months. Erythema, melanin, and sebum level decreased while marked improvement (p < 0.05) in moisture content and elasticity have been observed for the developed TSEG. CONCLUSION: The developed TSEG formulation was found to be efficient, safe (no adverse effects observed), stable (at least for 3 months), and easy to use for topical application with improved skin complexation and skin integrity.


Subject(s)
Skin Absorption , alpha-Tocopherol , Humans , Female , alpha-Tocopherol/metabolism , Administration, Cutaneous , Melanins/metabolism , Liposomes/metabolism , Skin/metabolism , Erythema , Gels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL