Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 789
Filter
Add more filters

Publication year range
1.
Cell ; 187(4): 981-998.e25, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38325365

ABSTRACT

The female reproductive tract (FRT) undergoes extensive remodeling during reproductive cycling. This recurrent remodeling and how it shapes organ-specific aging remains poorly explored. Using single-cell and spatial transcriptomics, we systematically characterized morphological and gene expression changes occurring in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrous cycle, during decidualization, and into aging. These analyses reveal that fibroblasts play central-and highly organ-specific-roles in FRT remodeling by orchestrating extracellular matrix (ECM) reorganization and inflammation. Our results suggest a model wherein recurrent FRT remodeling over reproductive lifespan drives the gradual, age-related development of fibrosis and chronic inflammation. This hypothesis was directly tested using chemical ablation of cycling, which reduced fibrotic accumulation during aging. Our atlas provides extensive detail into how estrus, pregnancy, and aging shape the organs of the female reproductive tract and reveals the unexpected cost of the recurrent remodeling required for reproduction.


Subject(s)
Aging , Genitalia, Female , Animals , Female , Mice , Pregnancy , Genitalia, Female/cytology , Genitalia, Female/metabolism , Inflammation/metabolism , Uterus/cytology , Vagina/cytology , Single-Cell Analysis
2.
Mol Microbiol ; 120(2): 258-275, 2023 08.
Article in English | MEDLINE | ID: mdl-37357823

ABSTRACT

Type VIIb secretion systems (T7SSb) in Gram-positive bacteria facilitate physiology, interbacterial competition, and/or virulence via EssC ATPase-driven secretion of small ɑ-helical proteins and toxins. Recently, we characterized T7SSb in group B Streptococcus (GBS), a leading cause of infection in newborns and immunocompromised adults. GBS T7SS comprises four subtypes based on variation in the C-terminus of EssC and the repertoire of downstream effectors; however, the intraspecies diversity of GBS T7SS and impact on GBS-host interactions remains unknown. Bioinformatic analysis indicates that GBS T7SS loci encode subtype-specific putative effectors, which have low interspecies and inter-subtype homology but contain similar domains/motifs and therefore may serve similar functions. We further identify orphaned GBS WXG100 proteins. Functionally, we show that GBS T7SS subtype I and III strains secrete EsxA in vitro and that in subtype I strain CJB111, esxA1 appears to be differentially transcribed from the T7SS operon. Furthermore, we observe subtype-specific effects of GBS T7SS on host colonization, as CJB111 subtype I but not CNCTC 10/84 subtype III T7SS promotes GBS vaginal colonization. Finally, we observe that T7SS subtypes I and II are the predominant subtypes in clinical GBS isolates. This study highlights the potential impact of T7SS heterogeneity on host-GBS interactions.


Subject(s)
Streptococcal Infections , Type VII Secretion Systems , Infant, Newborn , Female , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Type VII Secretion Systems/genetics , Virulence , Operon/genetics , Genitalia, Female/metabolism , Streptococcal Infections/microbiology , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism , Vagina/metabolism , Vagina/microbiology
3.
Mod Pathol ; 37(3): 100418, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158126

ABSTRACT

Desmoplastic small round cell tumor (DSRCT) is a high-grade, primitive round cell sarcoma classically associated with prominent desmoplastic stroma, coexpression of keratin and desmin, and a characteristic EWSR1::WT1 gene fusion. DSRCT typically arises in the abdominopelvic cavity of young males with diffuse peritoneal spread and poor overall survival. Although originally considered to be pathognomonic for DSRCT, EWSR1::WT1 gene fusions have recently been detected in rare tumors lacking the characteristic morphologic and immunohistochemical features of DSRCT. Here, we report 3 additional cases of neoplasms other than conventional DSCRCT with EWSR1::WT1 gene fusions that occurred outside the female genital tract. Two occurred in the abdominopelvic cavities of a 27-year-old man and a 12-year-old girl, whereas the third arose in the axillary soft tissue of an 85-year-old man. All cases lacked prominent desmoplastic stroma and were instead solid and cystic with peripheral fibrous pseudocapsules and occasional intervening fibrous septa. Necrosis was either absent (1/3) or rare (2/3), and mitotic activity was low (<1 to 3 per 10 hpf). In immunohistochemical studies, there was expression of smooth muscle actin (3/3) and desmin (3/3), rare to focal reactivity for EMA (2/3), and variable expression of CK AE1/AE3 (1/3). Myogenin and MyoD1 were negative, and C-terminus-specific WT1 was positive in both cases tested (2/2). All 3 tumors followed a more indolent clinical course with 2 cases demonstrating no evidence of disease at 20 and 44 months after resection. The patient from case 3 died of other causes at 14 months with no evidence of recurrence. DNA methylation profiling showed that the 3 cases clustered with DSRCT; however, they demonstrated fewer copy number variations with 2 cases having a flat profile (0% copy number variation). Differential methylation analysis with hierarchical clustering further showed variation between the 3 cases and conventional DSRCT. Although further study is needed, our results, in addition to previous reports, suggest that EWSR1::WT1 gene fusions occur in rare and seemingly distinctive tumors other than conventional DSRCT with indolent behavior. Proper classification of these unusual soft tissue tumors with EWSR1::WT1 gene fusions requires direct correlation with tumor morphology and clinical behavior, which is essential to avoid overtreatment with aggressive chemotherapy.


Subject(s)
Desmoplastic Small Round Cell Tumor , Soft Tissue Neoplasms , Male , Humans , Female , Child , Aged, 80 and over , Adult , DNA Copy Number Variations , Desmoplastic Small Round Cell Tumor/genetics , Desmoplastic Small Round Cell Tumor/pathology , Desmin , Genitalia, Female/chemistry , Genitalia, Female/metabolism , Genitalia, Female/pathology , Oncogene Proteins, Fusion/analysis , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , WT1 Proteins/genetics
4.
Mol Cell Proteomics ; 20: 100156, 2021.
Article in English | MEDLINE | ID: mdl-34597791

ABSTRACT

Fertility depends on the progression of complex and coordinated postmating processes within the extracellular environment of the female reproductive tract (FRT). Molecular interactions between ejaculate and FRT proteins regulate many of these processes, including sperm motility, migration, storage, and modification, along with concurrent changes in the female. Although extensive progress has been made in the proteomic characterization of the male-derived components of sperm and seminal fluid, investigations into the FRT have remained more limited. To achieve a comparable level of knowledge regarding female-derived proteins that comprise the reproductive environment, we utilized semiquantitative MS-based proteomics to study the composition of the FRT tissue and, separately, the luminal fluid, before and after mating in Drosophila melanogaster. Our approach leveraged whole-fly isotopic labeling to delineate female proteins from transferred male ejaculate proteins. Our results revealed several characteristics that distinguish the FRT fluid proteome from the FRT tissue proteome: (1) the fluid proteome is encoded by genes with higher overall levels of FRT gene expression and tissue specificity, including many genes with enriched expression in the fat body, (2) fluid-biased proteins are enriched for metabolic functions, and (3) the fluid exhibits pronounced postmating compositional changes. The dynamic mating-induced proteomic changes in the FRT fluid inform our understanding of secretory mechanisms of the FRT, serve as a foundation for establishing female contributions to the ejaculate-female interactions that regulate fertility, and highlight the importance of applying proteomic approaches to characterize the composition and dynamics of the FRT environment.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Genitalia, Female/metabolism , Proteome/metabolism , Animals , Female , Male , Saccharomyces cerevisiae/genetics , Sexual Behavior, Animal
5.
J Cell Mol Med ; 26(1): 16-24, 2022 01.
Article in English | MEDLINE | ID: mdl-34859585

ABSTRACT

CDC42 is a member of the Rho-GTPase family and is involved in a variety of cellular functions including regulation of cell cycle progression, constitution of the actin backbone and membrane transport. In particular, CDC42 plays a key role in the establishment of polarity in female vertebrate oocytes, and essential to this major regulatory role is its local occupation of specific regions of the cell to ensure that the contractile ring is assembled at the right time and place to ensure proper gametogenesis. The multifactor controlled 'inactivation-activation' process of CDC42 also allows it to play an important role in the multilevel signalling network, and the synergistic regulation of multiple genes ensures maximum precision during gametogenesis. The purpose of this paper is to review the role of CDC42 in the control of gametogenesis and to explore its related mechanisms, with the aim of further understanding the great research potential of CDC42 in female vertebrate germ cells and its future clinical translation.


Subject(s)
Oocytes , cdc42 GTP-Binding Protein , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Female , Genitalia, Female/metabolism , Oocytes/metabolism , cdc42 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
6.
Mol Biol Evol ; 38(3): 986-999, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33035303

ABSTRACT

In many animal species, females undergo physiological and behavioral changes after mating. Some of these changes are driven by male-derived seminal fluid proteins and are critical for fertilization success. Unfortunately, our understanding of the molecular interplay between female and male reproductive proteins remains inadequate. Here, we analyze the postmating response in a Drosophila species that has evolved strong gametic incompatibility with its sister species; Drosophila novamexicana females produce only ∼1% fertilized eggs in crosses with Drosophila americana males, compared to ∼98% produced in within-species crosses. This incompatibility is likely caused by mismatched male and female reproductive molecules. In this study, we use short-read RNA sequencing to examine the evolutionary dynamics of female reproductive genes and the postmating transcriptome response in crosses within and between species. First, we found that most female reproductive tract genes are slow-evolving compared to the genome average. Second, postmating responses in con- and heterospecific matings are largely congruent, but heterospecific matings induce expression of additional stress-response genes. Some of those are immunity genes that are activated by the Imd pathway. We also identify several genes in the JAK/STAT signaling pathway that are induced in heterospecific, but not conspecific mating. While this immune response was most pronounced in the female reproductive tract, we also detect it in the female head and ovaries. These results show that the female's postmating transcriptome-level response is determined in part by the genotype of the male, and that divergence in male reproductive genes and/or traits can have immunogenic effects on females.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Reproductive Isolation , Animals , Copulation , Drosophila/metabolism , Female , Genitalia, Female/metabolism , Male , Pore Forming Cytotoxic Proteins/metabolism , Seminal Plasma Proteins , Transcription, Genetic , Transcriptome
7.
J Immunol ; 205(11): 3037-3049, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33087404

ABSTRACT

Chlamydia trachomatis infection of the female genital tract can lead to irreversible fallopian tube scarring. In the mouse model of genital infection using Chlamydia muridarum, IL-1R signaling plays a critical role in oviduct tissue damage. In this study, we investigated the pathologic role of IL-1α, one of the two proinflammatory cytokines that bind to IL-1R. Il1a-/- mice infected with C. muridarum cleared infection at their cervix at the same rate as wild-type (WT) mice, but were significantly protected from end point oviduct damage and fibrosis. The contribution of IL-1α to oviduct pathology was more dramatic than observed in mice deficient for IL-1ß. Although chlamydial burden was similar in WT and Il1a-/- oviduct during peak days of infection, levels of IL-1ß, IL-6, CSF3, and CXCL2 were reduced in Il1a-/- oviduct lysates. During infection, Il1a-/- oviducts and uterine horns exhibited reduced neutrophil infiltration, and this reduction persisted after the infection resolved. The absence of IL-1α did not compromise CD4 T cell recruitment or function during primary or secondary chlamydial infection. IL-1α is expressed predominantly by luminal cells of the genital tract in response to infection, and low levels of expression persisted after the infection cleared. Ab-mediated depletion of IL-1α in WT mice prevented infection-induced oviduct damage, further supporting a key role for IL-1α in oviduct pathology.


Subject(s)
Chlamydia Infections/metabolism , Genitalia, Female/metabolism , Interleukin-1alpha/metabolism , Oviducts/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Cervix Uteri/metabolism , Cervix Uteri/microbiology , Chlamydia Infections/microbiology , Chlamydia muridarum/pathogenicity , Disease Models, Animal , Female , Genitalia, Female/microbiology , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/physiology , Oviducts/microbiology , Reproductive Tract Infections/metabolism , Reproductive Tract Infections/microbiology
8.
Adv Exp Med Biol ; 1390: 21-39, 2022.
Article in English | MEDLINE | ID: mdl-36107311

ABSTRACT

The female reproductive system which consists of the ovaries, uterus (myometrium, endometrium), Fallopian tubes, cervix and vagina is exquisitely sensitive to the actions of steroid hormones. The ovaries play a key role in the synthesis of bioactive steroids (oestrogens, androgens, progestins) that act both within the tissue (intracrine/paracrine) as well as on other reproductive organs following release into the blood stream (endocrine action). Sex steroid receptors encoded by the oestrogen (ESR1, ESR2), progesterone (PR) and androgen (AR) receptor genes, which are members of the superfamily of ligand activated transcription factors are widely expressed within these tissues. These receptors play critical role(s) in regulation of cell proliferation, ovulation, endometrial receptivity, myometrial cell function and inflammatory cell infiltration. Our understanding of their importance has been informed by studies on human tissues and cells, which have employed immunohistochemistry as well as a wide range of molecular and genetic methods to identify which processes are dependent steroid ligand activation. The development of mice with targeted deletions of each of these receptors has provided complementary data that has extended our appreciation of cell-cell interactions in the fine tuning of reproductive tissue function. This large body of work has formed the basis of new and improved therapeutics to treat conditions such as infertility.


Subject(s)
Androgens , Receptors, Steroid , Animals , Estrogens/physiology , Female , Genitalia, Female/metabolism , Humans , Ligands , Mice , Progesterone/metabolism , Progestins , Receptors, Steroid/physiology
9.
Differentiation ; 118: 24-33, 2021.
Article in English | MEDLINE | ID: mdl-33339644

ABSTRACT

Estrogen signaling through the main estrogen receptor, estrogen receptor 1 (ESR1; also known as ERα), is essential for normal female and male reproductive function. Historically, studies of estrogen action have focused on the classical genomic pathway. Although this is clearly the major pathway for steroid hormone actions, these hormones also signal through rapid non-classical effects involving cell membrane actions. Reports of rapid effects of estrogens extend for more than half a century, but recent results have expanded understanding of the identity, structure, function and overall importance of membrane receptors in estrogen responses. Key findings in this field were the immunohistochemical detection of ESR1 in cell membranes and demonstration that a portion of newly synthesized ESR1 is routed to the membrane by palmitoylation. These receptors in the membrane can then signal through protein kinases and other mechanisms following ligand binding to alter cell function. Another crucial advance in the field was development of transgenic mice expressing normal amounts of functional nuclear ESR1 (nESR1) but lacking membrane ESR1 (mESR1). Both male and female transgenic mice lacking mESR1 were infertile as adults, and both sexes had extensive reproductive abnormalities. Transgenic mice lacking mESR1 were highly protected from deleterious effects of neonatal estrogen administration, and estrogen effects on the histone methyltransferase Enhancer of Zeste homolog 2 that are mediated through mESR1 could have significant effects on epigenetic imprinting. In summary, signaling through mESR1 is essential for normal male and female reproductive function and fertility, and is a critical enabler of normal estrogen responses in vivo. Although the precise role of mESR1 in estrogen responses remains to be established, future research in this area should clarify its mechanism of action and lead to a better understanding of how mESR1 signaling works with classical genomic signaling through nESR1 to promote full estrogenic responses.


Subject(s)
Cell Nucleus/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Estrogen Receptor alpha/genetics , Genitalia/metabolism , Animals , Cell Membrane/genetics , Epigenesis, Genetic/genetics , Female , Genitalia/physiology , Genitalia, Female/metabolism , Genitalia, Female/physiology , Genitalia, Male/metabolism , Genitalia, Male/physiology , Genomic Imprinting/genetics , Humans , Male , Mice, Transgenic/genetics , Signal Transduction/genetics
10.
Differentiation ; 118: 107-131, 2021.
Article in English | MEDLINE | ID: mdl-33176961

ABSTRACT

This paper reviews and provides new observations on the ontogeny of estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2) in developing human male and female internal and external genitalia. Included in this study are observations on the human fetal uterine tube, the uterotubal junction, uterus, cervix, vagina, penis and clitoris. We also summarize and report on the ontogeny of estrogen receptors in the human fetal prostate, prostatic urethra and epididymis. The ontogeny of ESR1 and ESR2, which spans from 8 to 21 weeks correlates well with the known "window of susceptibility" (7-15 weeks) for diethylstilbestrol (DES)-induced malformations of the human female reproductive tract as determined through examination of DES daughters exposed in utero to this potent estrogen. Our fairly complete mapping of the ontogeny of ESR1 and ESR2 in developing human male and female internal and external genitalia provides a mechanistic framework for further investigation of the role of estrogen in normal development and of abnormalities elicited by exogenous estrogens.


Subject(s)
Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Estrogens/metabolism , Genitalia, Female/metabolism , Genitalia, Male/metabolism , Diethylstilbestrol/toxicity , Embryonic Development/genetics , Estrogens/genetics , Female , Fetus , Genitalia, Female/abnormalities , Genitalia, Female/growth & development , Genitalia, Female/pathology , Genitalia, Male/abnormalities , Genitalia, Male/growth & development , Genitalia, Male/pathology , Humans , Male
11.
Differentiation ; 118: 34-40, 2021.
Article in English | MEDLINE | ID: mdl-33707128

ABSTRACT

The development of the female reproductive tract can be divided into three parts consisting of Müllerian duct organogenesis, pre-sexual maturation organ development, and post-sexual maturation hormonal regulation. In primates, Müllerian duct organogenesis proceeds in an estrogen independent fashion based on transcriptional pathways that are suppressed in males by the presence of AMH and SRY. However, clinical experience indicates that exposure to xenoestrogens such as diethylstilbestrol (DES) during critical periods including late organogenesis and pre-sexual maturational development can have substantial effects on uterine morphology, and confer increased risk of disease states later in life. Recent evidence has demonstrated that these effects are in part due to epigenetic regulation of gene expression, both in the form of aberrant CpG methylation, and accompanying histone modifications. While xenoestrogens and selective estrogen receptor modulators (SERMS) both can induce non-canonical binding confirmations in estrogen receptors, the primate specific fetal estrogens Estriol and Estetrol may act in a similar fashion to alter gene expression through tissue specific epigenetic modulation.


Subject(s)
DNA Methylation/genetics , Estrogens/genetics , Genitalia, Female/growth & development , Organogenesis/genetics , Animals , DNA Methylation/drug effects , Diethylstilbestrol/pharmacology , Epigenesis, Genetic/genetics , Estradiol/metabolism , Estrogens/metabolism , Female , Genitalia, Female/metabolism , Humans , Mullerian Ducts/drug effects , Mullerian Ducts/growth & development , Mullerian Ducts/metabolism , Organogenesis/drug effects , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Uterus/drug effects , Uterus/growth & development
12.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430615

ABSTRACT

Recent studies have clearly shown that vitamin D3 is a crucial regulator of the female reproductive process in humans and animals. Knowledge of the expression of vitamin D3 receptors and related molecules in the female reproductive organs such as ovaries, uterus, oviduct, or placenta under physiological and pathological conditions highlights its contribution to the proper function of the reproductive system in females. Furthermore, vitamin D3 deficiency leads to serious reproductive disturbances and pathologies including ovarian cysts. Although the influence of vitamin D3 on the reproductive processes of humans and rodents has been extensively described, the association between vitamin D3 and female reproductive function in farm animals, birds, and fish has rarely been summarized. In this review, we provide an overview of the role of vitamin D3 in the reproductive system of those animals, with special attention paid to the expression of vitamin D3 receptors and its metabolic molecules. This updated information could be essential for better understanding animal physiology and overcoming the incidence of infertility, which is crucial for optimizing reproductive outcomes in female livestock.


Subject(s)
Cholecalciferol , Genitalia, Female , Animals , Female , Pregnancy , Animals, Domestic/growth & development , Animals, Domestic/metabolism , Birds/growth & development , Birds/metabolism , Cholecalciferol/metabolism , Cholecalciferol/pharmacology , Genitalia, Female/drug effects , Genitalia, Female/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/metabolism , Vitamin D/pharmacology , Vitamin D Deficiency/metabolism , Fishes/growth & development , Fishes/metabolism , Reproduction
13.
Postepy Biochem ; 68(3): 336-343, 2022 09 30.
Article in Polish | MEDLINE | ID: mdl-36317987

ABSTRACT

Progesterone (P4) is a steroid hormone which participate in many processes in the female reproductive system. The hormone is produced mainly by the corpus luteum (CL), however, also the ovarian follicles, uterine tissues and placenta are able to produce P4. Progesterone is involved in the regulation of the sexual cycle, as well as in the initiation and maintenance of pregnancy. The hormone may affect cell function by genomic mechanism, through nuclear P4 receptors (PGR), and via nongenomic mechanism, through the membrane P4 receptors, such as progesterone receptor membrane component (PGRMC) 1 and 2, and membrane progestin receptors (mPR) α, ß and γ. The genomic mechanism of P4 action leads to the expression of target genes and the synthesis of new proteins, while the nongenomic mechanism modifies various intracellular signaling pathways. The integration of these two mechanisms of P4 activity leads to the suitable regulation of the cell, tissue and, consequently, the response of organism to the hormone.


Subject(s)
Progesterone , Receptors, Progesterone , Pregnancy , Female , Humans , Progesterone/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Corpus Luteum/metabolism , Genitalia, Female/metabolism , Hormones/metabolism
14.
Infect Immun ; 89(10): e0007221, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34125599

ABSTRACT

Genital infections with Chlamydia trachomatis can lead to uterine and oviduct tissue damage in the female reproductive tract. Neutrophils are strongly associated with tissue damage during chlamydial infection, while an adaptive CD4 T cell response is necessary to combat infection. Activation of triggering receptor expressed on myeloid cells-1 (TREM-1) on neutrophils has previously been shown to induce and/or enhance degranulation synergistically with Toll-like receptor (TLR) signaling. Additionally, TREM-1 can promote neutrophil transepithelial migration. In this study, we sought to determine the contribution of TREM-1,3 to immunopathology in the female mouse genital tract during Chlamydia muridarum infection. Relative to control mice, trem1,3-/- mice had no difference in chlamydial burden or duration of lower-genital-tract infection. We also observed a similar incidence of hydrosalpinx 45 days postinfection in trem1,3-/- compared to wild-type (WT) mice. However, compared to WT mice, trem1,3-/- mice developed significantly fewer hydrometra in uterine horns. Early in infection, trem1,3-/- mice displayed a notable decrease in the number of uterine glands containing polymorphonuclear cells and uterine horn lumens had fewer neutrophils, with increased granulocyte colony-stimulating factor (G-CSF). trem1,3-/- mice also had reduced erosion of the luminal epithelium. These data indicate that TREM-1,3 contributes to transepithelial neutrophil migration in the uterus and uterine glands, promoting the occurrence of hydrometra in infected mice.


Subject(s)
Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Receptors, Immunologic/immunology , Triggering Receptor Expressed on Myeloid Cells-1/immunology , Uterus/immunology , Adaptive Immunity/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , Cell Movement/immunology , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/immunology , Disease Models, Animal , Epithelium/immunology , Epithelium/metabolism , Epithelium/microbiology , Female , Genitalia, Female/immunology , Genitalia, Female/metabolism , Genitalia, Female/microbiology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Oviducts/immunology , Oviducts/metabolism , Oviducts/microbiology , Receptors, Immunologic/metabolism , Reproductive Tract Infections/immunology , Reproductive Tract Infections/metabolism , Reproductive Tract Infections/microbiology , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Uterus/metabolism , Uterus/microbiology
15.
Biol Reprod ; 104(4): 745-770, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33354727

ABSTRACT

Exposures to adverse conditions in utero can lead to permanent changes in the structure and function of key physiological systems in the developing fetus, increasing the risk of disease and premature aging in later postnatal life. When considering the systems that could be affected by an adverse gestational environment, the reproductive system of developing female offspring may be particularly important, as changes have the potential to alter both reproductive capacity of the first generation, as well as health of the second generation through changes in the oocyte. The aim of this review is to examine the impact of different adverse intrauterine conditions on the reproductive system of the female offspring. It focuses on the effects of exposure to maternal undernutrition, overnutrition/obesity, hypoxia, smoking, steroid excess, endocrine-disrupting chemicals, and pollutants during gestation and draws on data from human and animal studies to illuminate underlying mechanisms. The available data indeed indicate that adverse gestational environments alter the reproductive physiology of female offspring with consequences for future reproductive capacity. These alterations are mediated via programmed changes in the hypothalamic-pituitary-gonadal axis and the structure and function of reproductive tissues, particularly the ovaries. Reproductive programming may be observed as a change in the timing of puberty onset and menopause/reproductive decline, altered menstrual/estrous cycles, polycystic ovaries, and elevated risk of reproductive tissue cancers. These reproductive outcomes can affect the fertility and fecundity of the female offspring; however, further work is needed to better define the possible impact of these programmed changes on subsequent generations.


Subject(s)
Embryonic Development/physiology , Genitalia, Female/embryology , Animals , Female , Fertility/physiology , Genitalia, Female/metabolism , Humans , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Reproduction/physiology , Sexual Maturation/physiology
16.
Reprod Biol Endocrinol ; 19(1): 148, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34560886

ABSTRACT

BACKGROUND: Recently, human infertility incidence is increasing in obese women causing it to become an emerging global health challenge requiring improved treatment. There is extensive evidence that obesity caused female reproductive dysfunction is accompanied by an endocrinological influence. Besides, systemic and tissue-specific chronic inflammatory status are common characteristics of obesity. However, the underlying molecular mechanism is unclear linking obesity to infertility or subfertility. METHODS: To deal with this question, we created an obese mouse model through providing a high fat diet (HFD) and determined the fertility of the obese mice. The morphological alterations were evaluated in both the reproductive glands and tracts, such as uterus, ovary and oviduct. Furthermore, to explore the underlying mechanism of these functional changes, the expressions of pro-inflammatory cytokines as well as the activations of MAPK signaling and NF-κB signaling were detected in these reproductive tissues. RESULTS: The obese females were successful construction and displayed subfertility. They accumulated lipid droplets and developed morphological alterations in each of their reproductive organs including uterus, ovary and oviduct. These pathological changes accompanied increases in pro-inflammatory cytokine expression levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in all of these sites. Such effects also accompanied increases in nuclear factor kappa B (NF-kB) expression and mitogen-activated protein kinase (MAPK) signaling pathway stimulation based on uniform time dependent increases in the NF-κB (p-NF-κB), JNK (p-JNK), ERK1/2 (p-ERK) and p38 (p-p38) phosphorylation status. CONCLUSIONS: These HFD-induced increases in pro-inflammatory cytokine expression levels and NF-κB and MAPKs signaling pathway activation in reproductive organs support the notion that increases of adipocytes resident and inflammatory status are symptomatic of female fertility impairment in obese mice.


Subject(s)
Genitalia, Female/pathology , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Obesity/pathology , Animals , Diet, High-Fat , Female , Fertility/physiology , Genitalia, Female/metabolism , MAP Kinase Signaling System/physiology , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Signal Transduction/physiology
17.
Anal Biochem ; 631: 114264, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34116059

ABSTRACT

The expression of nitric oxide synthase (NOS) in male and female urogenital tissues has been investigated by using conventional light microscopical immunoperoxidase staining. We present an improved immunohistochemical method for the specific and simultaneous detection of endothelial and neuronal NOS (eNOS/nNOS) in vaginal tissue. Specific antibodies have been used in combination with the tyramide signal amplification method. We found a subepithelial meshwork of varicose nerve fibers. A subpopulation of fibers presented immunoreactivity specific for nNOS. Epithelial cells also showed cytoplasmatic labeling for nNOS. Arteries presenting signals for eNOS in their endothelial layer were found in close proximity to nNOS-positive nerve fibers.


Subject(s)
Genitalia, Female/cytology , Immunohistochemistry/methods , Nitric Oxide Synthase Type III/analysis , Nitric Oxide Synthase Type I/analysis , Female , Genitalia, Female/metabolism , Humans , Middle Aged , Vagina/metabolism
18.
Mol Cell Biochem ; 476(8): 3177-3190, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33864572

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine), the main product of pineal gland in vertebrates, is well known for its multifunctional role which has great influences on the reproductive system. Recent studies documented that melatonin is a powerful free radical scavenger that affects the reproductive system function and female infertility by MT1 and MT2 receptors. Furthermore, cancer researches indicate the influence of melatonin on the modulation of tumor cell signaling pathways resulting in growth inhibitor of the both in vivo/in vitro models. Cancer adjuvant therapy can also benefit from melatonin through therapeutic impact and decreasing the side effects of radiation and chemotherapy. This article reviews the scientific evidence about the influence of melatonin and its mechanism of action on the fertility potential, physiological alteration, and anticancer efficacy, during experimental and clinical studies.


Subject(s)
Genital Neoplasms, Female/drug therapy , Genitalia, Female/drug effects , Melatonin/pharmacology , Animals , Female , Genital Neoplasms, Female/metabolism , Genital Neoplasms, Female/pathology , Genitalia, Female/metabolism , Humans
19.
Pharmacol Res ; 171: 105758, 2021 09.
Article in English | MEDLINE | ID: mdl-34242799

ABSTRACT

Androgens in women, as well as in men, are intrinsic to maintenance of (i) reproductive competency, (ii) cardiac health, (iii) appropriate bone remodeling and mass retention, (iii) muscle tone and mass, and (iv) brain function, in part, through their mitigation of neurodegenerative disease effects. In recognition of the pluripotency of endogenous androgens, exogenous androgens, and selected congeners, have been prescribed off-label for several decades to treat low libido and sexual dysfunction in menopausal women, as well as, to improve physical performance. However, long-term safety and efficacy of androgen administration has yet to be fully elucidated. Side effects often observed include (i) hirsutism, (ii) acne, (iii) deepening of the voice, and (iv) weight gain but are associated most frequently with supra-physiological doses. By contrast, short-term clinical trials suggest that the use of low-dose testosterone therapy in women appears to be effective, safe and economical. There are, however, few clinical studies, which have focused on effects of androgen therapy on pre- and post-menopausal women; moreover, androgen mechanisms of action have not yet been thoroughly explained in these subjects. This review considers clinical effects of androgens on women's health in order to prevent chronic diseases and reduce cancer risk in gynecological tissues.


Subject(s)
Androgens/metabolism , Androgens/therapeutic use , Animals , Bone and Bones/metabolism , Breast Neoplasms/metabolism , Cardiovascular Diseases/metabolism , Female , Genitalia, Female/metabolism , Humans , Muscles/anatomy & histology , Neurodegenerative Diseases/drug therapy , Receptors, Androgen/metabolism , Sexual Behavior , Women's Health
20.
Cell Biol Int ; 45(11): 2264-2274, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34288236

ABSTRACT

The mammary gland (MG) and female prostate are plastic reproductive organs which are highly responsive to hormones. Thus, endocrine disruptors, such as bisphenol A (BPA) and exogenous estrogens, negatively affect glandular homeostasis. In addition to previously described alterations, changes in inflammatory markers expression also trigger the development of a microenvironment that contributes to tumor progression. The current work aimed to evaluate the inflammatory responses of the MG and prostate gland to BPA (50 µg/kg) and 17-ß estradiol (35 µg/kg) exposure during the perinatal window of susceptibility. The results showed that at 6 months of age there was an increase in the number of phospho-STAT3 (P-STAT3) positive cells in the female prostate from animals perinatally exposed to 50 µg/kg BPA daily. In addition, the number of macrophages increased in these animals in comparison with nonexposed animals, as shown by the F4/80 marker. Despite an increase in the incidence of lobuloalveolar and intraductal hyperplasia, the MG did not show any difference in the expression of the four inflammatory markers evaluated: tumor necrosis factor-α, COX-2, P-STAT3, and F4/80. Analysis of both glands from the same animal led to the conclusion that exposure to endocrine disruptors during the perinatal window of susceptibility leads to different inflammatory responses in different reproductive organs. As the prostate is more susceptible to these inflammatory mechanisms, it is reasonable to affirm that possible neoplastic alterations in this organ are related to changes in the inflammatory pattern of the stroma, a characteristic that is not evident in the MG.


Subject(s)
Endocrine Disruptors/pharmacology , Endocrine Glands/drug effects , Mammary Glands, Animal/metabolism , Animals , Animals, Newborn/metabolism , Benzhydryl Compounds/pharmacology , Endocrine Disruptors/metabolism , Endocrine Glands/metabolism , Estradiol/pharmacology , Female , Genitalia, Female/drug effects , Genitalia, Female/metabolism , Gerbillinae , Humans , Inflammation/metabolism , Mammary Glands, Animal/drug effects , Phenols/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Steroids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL