Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.020
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 39: 345-368, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33556247

ABSTRACT

For many infections and almost all vaccines, neutralizing-antibody-mediated immunity is the primary basis and best functional correlate of immunological protection. Durable long-term humoral immunity is mediated by antibodies secreted by plasma cells that preexist subsequent exposures and by memory B cells that rapidly respond to infections once they have occurred. In the midst of the current pandemic of coronavirus disease 2019, it is important to define our current understanding of the unique roles of memory B cells and plasma cells in immunity and the factors that control the formation and persistence of these cell types. This fundamental knowledge is the basis to interpret findings from natural infections and vaccines. Here, we review transcriptional and metabolic programs that promote and support B cell fates and functions, suggesting points at which these pathways do and do not intersect.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Energy Metabolism , Gene Expression Regulation , Immunologic Memory , Plasma Cells/immunology , Plasma Cells/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Survival/genetics , Cell Survival/immunology , Germinal Center/immunology , Germinal Center/metabolism , Humans , Immunologic Memory/genetics , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Transcription, Genetic
2.
Annu Rev Immunol ; 36: 339-357, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29356584

ABSTRACT

Maintenance of immunological self-tolerance requires lymphocytes carrying self-reactive antigen receptors to be selectively prevented from mounting destructive or inflammatory effector responses. Classically, self-tolerance is viewed in terms of the removal, editing, or silencing of B and T cells that have formed self-reactive antigen receptors during their early development. However, B cells activated by foreign antigen can enter germinal centers (GCs), where they further modify their antigen receptor by somatic hypermutation (SHM) of their immunoglobulin genes. The inevitable emergence of activated, self-reactive GC B cells presents a unique challenge to the maintenance of self-tolerance that must be rapidly countered to avoid autoantibody production. Here we discuss current knowledge of the mechanisms that enforce B cell self-tolerance, with particular focus on the control of self-reactive GC B cells. We also consider how self-reactive GC B cells can escape self-tolerance to initiate autoantibody production or instead be redeemed via SHM and used in productive antibody responses.


Subject(s)
Autoimmunity , B-Lymphocytes/immunology , Germinal Center/immunology , Animals , Autoantibodies/immunology , Autoantigens/immunology , B-Lymphocytes/metabolism , Germinal Center/metabolism , Humans , Immune Tolerance , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Plasma Cells/immunology , Plasma Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
3.
Cell ; 184(7): 1775-1789.e19, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33711260

ABSTRACT

Regulatory T cells prevent the emergence of autoantibodies and excessive IgE, but the precise mechanisms are unclear. Here, we show that BCL6-expressing Tregs, known as follicular regulatory T (Tfr) cells, produce abundant neuritin protein that targets B cells. Mice lacking Tfr cells or neuritin in Foxp3-expressing cells accumulated early plasma cells in germinal centers (GCs) and developed autoantibodies against histones and tissue-specific self-antigens. Upon immunization, these mice also produced increased plasma IgE and IgG1. We show that neuritin is taken up by B cells, causes phosphorylation of numerous proteins, and dampens IgE class switching. Neuritin reduced differentiation of mouse and human GC B cells into plasma cells, downregulated BLIMP-1, and upregulated BCL6. Administration of neuritin to Tfr-deficient mice prevented the accumulation of early plasma cells in GCs. Production of neuritin by Tfr cells emerges as a central mechanism to suppress B cell-driven autoimmunity and IgE-mediated allergies.


Subject(s)
B-Lymphocytes/immunology , Nerve Tissue Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Autoantibodies/immunology , Autoimmunity , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , GPI-Linked Proteins/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Histones/immunology , Immunoglobulin Class Switching , Immunoglobulin E/blood , Immunoglobulin E/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Plasma Cells/cytology , Plasma Cells/immunology , Plasma Cells/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism
4.
Cell ; 180(1): 92-106.e11, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31866068

ABSTRACT

Repeated exposure to pathogens or their antigens triggers anamnestic antibody responses that are higher in magnitude and affinity than the primary response. These involve reengagement of memory B cell (MBC) clones, the diversity and specificity of which determine the breadth and effectiveness of the ensuing antibody response. Using prime-boost models in mice, we find that secondary responses are characterized by a clonality bottleneck that restricts the engagement of the large diversity of MBC clones generated by priming. Rediversification of mutated MBCs is infrequent within secondary germinal centers (GCs), which instead consist predominantly of B cells without prior GC experience or detectable clonal expansion. Few MBC clones, generally derived from higher-affinity germline precursors, account for the majority of secondary antibody responses, while most primary-derived clonal diversity is not reengaged detectably by boosting. Understanding how to counter this bottleneck may improve our ability to elicit antibodies to non-immunodominant epitopes by vaccination.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Immunologic Memory/immunology , Adaptive Immunity/immunology , Animals , Antibody Formation/immunology , Antibody Formation/physiology , Antigens/immunology , B-Lymphocytes/metabolism , CHO Cells , Cell Line , Cricetulus , Female , Germinal Center/metabolism , Humans , Immunologic Memory/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal
5.
Cell ; 182(2): 297-316.e27, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32619424

ABSTRACT

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Subject(s)
Immunologic Memory/physiology , Lymphoma, Large B-Cell, Diffuse/pathology , Nuclear Proteins/genetics , Precursor Cells, B-Lymphoid/immunology , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Chromatin/chemistry , Chromatin/metabolism , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Histone Deacetylases/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 2/chemistry , Nuclear Receptor Co-Repressor 2/metabolism , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Protein Binding , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcription, Genetic
6.
Annu Rev Immunol ; 30: 429-57, 2012.
Article in English | MEDLINE | ID: mdl-22224772

ABSTRACT

Germinal centers (GCs) were described more than 125 years ago as compartments within secondary lymphoid organs that contained mitotic cells. Since then, it has become clear that this structure is the site of B cell clonal expansion, somatic hypermutation, and affinity-based selection, the combination of which results in the production of high-affinity antibodies. Decades of anatomical and functional studies have led to an overall model of how the GC reaction and affinity-based selection operate. More recently, the introduction of intravital imaging into the GC field has opened the door to direct investigation of certain key dynamic features of this microanatomic structure, sparking renewed interest in the relationship between cell movement and affinity maturation. We review these and other recent advances in our understanding of GCs, focusing on cellular dynamics and on the mechanism of selection of high-affinity B cells.


Subject(s)
Germinal Center/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Germinal Center/cytology , Germinal Center/metabolism , Humans , Self Tolerance/immunology
7.
Cell ; 177(3): 524-540, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31002794

ABSTRACT

B cells and the antibodies they produce have a deeply penetrating influence on human physiology. Here, we review current understanding of how B cell responses are initiated; the different paths to generate short- and long-lived plasma cells, germinal center cells, and memory cells; and how each path impacts antibody diversity, selectivity, and affinity. We discuss how basic research is informing efforts to generate vaccines that induce broadly neutralizing antibodies against viral pathogens, revealing the special features associated with allergen-reactive IgE responses and uncovering the antibody-independent mechanisms by which B cells contribute to health and disease.


Subject(s)
B-Lymphocytes/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antigens/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Germinal Center/metabolism , Humans , Immunologic Memory , Plasma Cells/immunology , Plasma Cells/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vaccines/immunology
8.
Nat Immunol ; 22(7): 904-913, 2021 07.
Article in English | MEDLINE | ID: mdl-34031613

ABSTRACT

Antigen-activated B cells diversify variable regions of B cell antigen receptors by somatic hypermutation in germinal centers (GCs). The positive selection of GC B cells that acquire high-affinity mutations enables antibody affinity maturation. In spite of considerable progress, the genomic states underlying this process remain to be elucidated. Single-cell RNA sequencing and topic modeling revealed increased expression of the oxidative phosphorylation (OXPHOS) module in GC B cells undergoing mitoses. Coupled analysis of somatic hypermutation in immunoglobulin heavy chain (Igh) variable gene regions showed that GC B cells acquiring higher-affinity mutations had further elevated expression of OXPHOS genes. Deletion of mitochondrial Cox10 in GC B cells resulted in reduced cell division and impaired positive selection. Correspondingly, augmentation of OXPHOS activity with oltipraz promoted affinity maturation. We propose that elevated OXPHOS activity promotes B cell clonal expansion and also positive selection by tuning cell division times.


Subject(s)
B-Lymphocytes/metabolism , Gene Expression Profiling , Germinal Center/metabolism , Mutation , Oxidative Phosphorylation , Receptors, Antigen, B-Cell/genetics , Single-Cell Analysis , Transcriptome , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Animals , B-Lymphocytes/immunology , Cell Proliferation , Cells, Cultured , DNA Mutational Analysis , Female , Genes, Immunoglobulin Heavy Chain , Germinal Center/immunology , Immunoglobulin Variable Region , Lymphocyte Activation , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , RNA-Seq , Receptors, Antigen, B-Cell/metabolism
9.
Nat Immunol ; 22(6): 757-768, 2021 06.
Article in English | MEDLINE | ID: mdl-34031614

ABSTRACT

Maturation of B cells within germinal centers (GCs) generates diversified B cell pools and high-affinity B cell antigen receptors (BCRs) for pathogen clearance. Increased receptor affinity is achieved by iterative cycles of T cell-dependent, affinity-based B cell positive selection and clonal expansion by mechanisms hitherto incompletely understood. Here we found that, as part of a physiologic program, GC B cells repressed expression of decay-accelerating factor (DAF/CD55) and other complement C3 convertase regulators via BCL6, but increased the expression of C5b-9 inhibitor CD59. These changes permitted C3 cleavage on GC B cell surfaces without the formation of membrane attack complex and activated C3a- and C5a-receptor signals required for positive selection. Genetic disruption of this pathway in antigen-activated B cells by conditional transgenic DAF overexpression or deletion of C3a and C5a receptors limited the activation of mechanistic target of rapamycin (mTOR) in response to BCR-CD40 signaling, causing premature GC collapse and impaired affinity maturation. These results reveal that coordinated shifts in complement regulation within the GC provide crucial signals underlying GC B cell positive selection.


Subject(s)
B-Lymphocytes/immunology , Complement Activation , Complement C3a/metabolism , Complement C5a/metabolism , Germinal Center/immunology , Animals , Animals, Genetically Modified , B-Lymphocytes/metabolism , CD55 Antigens/genetics , CD55 Antigens/metabolism , CD59 Antigens/metabolism , Cell Line, Tumor , Clonal Hematopoiesis/immunology , Germinal Center/cytology , Germinal Center/metabolism , Humans , Lymphocyte Activation , Mice , Palatine Tonsil/cytology , Palatine Tonsil/pathology , Proto-Oncogene Proteins c-bcl-6/metabolism , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Complement/genetics , Receptors, Complement/metabolism , Signal Transduction/immunology , TOR Serine-Threonine Kinases/metabolism
10.
Nat Immunol ; 22(2): 240-253, 2021 02.
Article in English | MEDLINE | ID: mdl-33432228

ABSTRACT

During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.


Subject(s)
B-Lymphocytes/metabolism , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Transformation, Neoplastic/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Gene Dosage , Germinal Center/metabolism , Immunity, Humoral , Lymphoma, B-Cell/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Chondroitin Sulfate Proteoglycans/deficiency , Chondroitin Sulfate Proteoglycans/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Gene Deletion , Gene Expression Regulation, Neoplastic , Germinal Center/immunology , Germinal Center/pathology , Haploinsufficiency , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Cohesins
11.
Nat Immunol ; 21(3): 331-342, 2020 03.
Article in English | MEDLINE | ID: mdl-32066950

ABSTRACT

Germinal center B cells (GCBCs) are critical for generating long-lived humoral immunity. How GCBCs meet the energetic challenge of rapid proliferation is poorly understood. Dividing lymphocytes typically rely on aerobic glycolysis over oxidative phosphorylation for energy. Here we report that GCBCs are exceptional among proliferating B and T cells, as they actively oxidize fatty acids (FAs) and conduct minimal glycolysis. In vitro, GCBCs had a very low glycolytic extracellular acidification rate but consumed oxygen in response to FAs. [13C6]-glucose feeding revealed that GCBCs generate significantly less phosphorylated glucose and little lactate. Further, GCBCs did not metabolize glucose into tricarboxylic acid (TCA) cycle intermediates. Conversely, [13C16]-palmitic acid labeling demonstrated that GCBCs generate most of their acetyl-CoA and acetylcarnitine from FAs. FA oxidation was functionally important, as drug-mediated and genetic dampening of FA oxidation resulted in a selective reduction of GCBCs. Hence, GCBCs appear to uncouple rapid proliferation from aerobic glycolysis.


Subject(s)
B-Lymphocytes/metabolism , Fatty Acids/metabolism , Germinal Center/metabolism , Animals , B-Lymphocytes/immunology , Cell Proliferation , Energy Metabolism , Fatty Acids, Nonesterified/metabolism , Gene Expression , Germinal Center/cytology , Germinal Center/immunology , Glucose/metabolism , Glycolysis/genetics , In Vitro Techniques , Metabolome , Mice , Mice, Inbred BALB C , Mice, Knockout , Oxidation-Reduction , Oxidative Phosphorylation , Oxygen Consumption
12.
Nat Immunol ; 21(6): 649-659, 2020 06.
Article in English | MEDLINE | ID: mdl-32424359

ABSTRACT

Efficient generation of germinal center (GC) responses requires directed movement of B cells between distinct microenvironments underpinned by specialized B cell-interacting reticular cells (BRCs). How BRCs are reprogrammed to cater to the developing GC remains unclear, and studying this process is largely hindered by incomplete resolution of the cellular composition of the B cell follicle. Here we used genetic targeting of Cxcl13-expressing cells to define the molecular identity of the BRC landscape. Single-cell transcriptomic analysis revealed that BRC subset specification was predetermined in the primary B cell follicle. Further topological remodeling of light and dark zone follicular dendritic cells required CXCL12-dependent crosstalk with B cells and dictated GC output by retaining B cells in the follicle and steering their interaction with follicular helper T cells. Together, our results reveal that poised BRC-defined microenvironments establish a feed-forward system that determines the efficacy of the GC reaction.


Subject(s)
Darkness , Dendritic Cells, Follicular/immunology , Dendritic Cells, Follicular/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Immunomodulation/radiation effects , Light , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Cell Communication , Chemokine CXCL12/metabolism , Mice , Mice, Transgenic , Phenotype , Single-Cell Analysis , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
13.
Nat Immunol ; 21(7): 790-801, 2020 07.
Article in English | MEDLINE | ID: mdl-32424361

ABSTRACT

Plasmodium parasite-specific antibodies are critical for protection against malaria, yet the development of long-lived and effective humoral immunity against Plasmodium takes many years and multiple rounds of infection and cure. Here, we report that the rapid development of short-lived plasmablasts during experimental malaria unexpectedly hindered parasite control by impeding germinal center responses. Metabolic hyperactivity of plasmablasts resulted in nutrient deprivation of the germinal center reaction, limiting the generation of memory B cell and long-lived plasma cell responses. Therapeutic administration of a single amino acid to experimentally infected mice was sufficient to overcome the metabolic constraints imposed by plasmablasts and enhanced parasite clearance and the formation of protective humoral immune memory responses. Thus, our studies not only challenge the current model describing the role and function of blood-stage Plasmodium-induced plasmablasts but they also reveal new targets and strategies to improve anti-Plasmodium humoral immunity.


Subject(s)
Immunity, Humoral , Malaria/immunology , Plasma Cells/metabolism , Plasmodium falciparum/immunology , Adolescent , Adult , Amino Acids/administration & dosage , Amino Acids/metabolism , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antibodies, Protozoan/metabolism , Antimalarials/administration & dosage , DNA, Protozoan/isolation & purification , Disease Models, Animal , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Host-Parasite Interactions/immunology , Humans , Malaria/blood , Malaria/drug therapy , Malaria/parasitology , Mice , Mice, Transgenic , Middle Aged , Nutrients/metabolism , Plasma Cells/immunology , Plasma Cells/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Proof of Concept Study , Young Adult
14.
Immunity ; 52(5): 842-855.e6, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32353250

ABSTRACT

B cell subsets expressing the transcription factor T-bet are associated with humoral immune responses and autoimmunity. Here, we examined the anatomic distribution, clonal relationships, and functional properties of T-bet+ and T-bet- memory B cells (MBCs) in the context of the influenza-specific immune response. In mice, both T-bet- and T-bet+ hemagglutinin (HA)-specific B cells arose in germinal centers, acquired memory B cell markers, and persisted indefinitely. Lineage tracing and IgH repertoire analyses revealed minimal interconversion between T-bet- and T-bet+ MBCs, and parabionts showed differential tissue residency and recirculation properties. T-bet+ MBCs could be subdivided into recirculating T-betlo MBCs and spleen-resident T-bethi MBCs. Human MBCs displayed similar features. Conditional gene deletion studies revealed that T-bet expression in B cells was required for nearly all HA stalk-specific IgG2c antibodies and for durable neutralizing titers to influenza. Thus, T-bet expression distinguishes MBC subsets that have profoundly different homing, residency, and functional properties, and mediate distinct aspects of humoral immune memory.


Subject(s)
Antibody Specificity/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Immunologic Memory/immunology , Organ Specificity/immunology , T-Box Domain Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/metabolism , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , HIV Antibodies/immunology , Humans , Influenza A virus/immunology , Influenza A virus/physiology , Influenza, Human/immunology , Influenza, Human/virology , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
15.
Immunity ; 53(5): 952-970.e11, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33098766

ABSTRACT

Precise targeting of activation-induced cytidine deaminase (AID) to immunoglobulin (Ig) loci promotes antibody class switch recombination (CSR) and somatic hypermutation (SHM), whereas AID targeting of non-Ig loci can generate oncogenic DNA lesions. Here, we examined the contribution of G-quadruplex (G4) nucleic acid structures to AID targeting in vivo. Mice bearing a mutation in Aicda (AIDG133V) that disrupts AID-G4 binding modeled the pathology of hyper-IgM syndrome patients with an orthologous mutation, lacked CSR and SHM, and had broad defects in genome-wide AIDG133V chromatin localization. Genome-wide analyses also revealed that wild-type AID localized to MHCII genes, and AID expression correlated with decreased MHCII expression in germinal center B cells and diffuse large B cell lymphoma. Our findings indicate a crucial role for G4 binding in AID targeting and suggest that AID activity may extend beyond Ig loci to regulate the expression of genes relevant to the physiology and pathology of activated B cells.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , G-Quadruplexes , Hyper-IgM Immunodeficiency Syndrome/etiology , Hyper-IgM Immunodeficiency Syndrome/metabolism , Mutation , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Computational Biology/methods , Disease Models, Animal , Disease Susceptibility , Enzyme Activation , Fluorescent Antibody Technique , Gene Expression Profiling , Genome-Wide Association Study , Germinal Center/immunology , Germinal Center/metabolism , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Hyper-IgM Immunodeficiency Syndrome/diagnosis , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Immunophenotyping , Lymphocyte Activation/genetics , Lymphoma, Large B-Cell, Diffuse/etiology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Transgenic
16.
Immunity ; 52(6): 1022-1038.e7, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32454024

ABSTRACT

Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Communication , DNA/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interferon Type I/metabolism , Animals , Antibodies, Antinuclear/immunology , Autoantigens/immunology , Autoimmunity , Biomarkers , CD40 Ligand/deficiency , Cell Communication/genetics , Cell Communication/immunology , Disease Models, Animal , Disease Susceptibility , Endodeoxyribonucleases/deficiency , Fluorescent Antibody Technique , Germinal Center/immunology , Germinal Center/metabolism , Germinal Center/pathology , Lupus Erythematosus, Systemic/etiology , Lupus Erythematosus, Systemic/metabolism , Mice , Mice, Knockout , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/metabolism
17.
Cell ; 159(3): 700-700.e1, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25417116

ABSTRACT

To produce high-affinity antibodies, B cells must undergo iterative cycles of targeted mutagenesis and affinity-based selection. These cycles take place in a structure known as the germinal center, which forms in secondary lymphoid organs upon exposure to antigenic stimuli. Here, we summarize our current understanding of the germinal center reaction.


Subject(s)
Antibodies/immunology , Germinal Center/metabolism , Animals , Antigens/immunology , B-Lymphocytes/immunology , T-Lymphocytes/immunology
18.
Nat Immunol ; 16(9): 991-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26214740

ABSTRACT

Induction of the transcriptional repressor Bcl-6 in CD4(+) T cells is critical for the differentiation of follicular helper T cells (T(FH) cells), which are essential for B cell-mediated immunity. In contrast, the transcription factor Blimp1 (encoded by Prdm1) inhibits T(FH) differentiation by antagonizing Bcl-6. Here we found that the transcription factor TCF-1 was essential for both the initiation of T(FH) differentiation and the effector function of differentiated T(FH) cells during acute viral infection. Mechanistically, TCF-1 bound directly to the Bcl6 promoter and Prdm1 5' regulatory regions, which promoted Bcl-6 expression but repressed Blimp1 expression. TCF-1-null T(FH) cells upregulated genes associated with non-T(FH) cell lineages. Thus, TCF-1 functions as an important hub upstream of the Bcl-6-Blimp1 axis to initiate and secure the differentiation of T(FH) cells during acute viral infection.


Subject(s)
Cell Differentiation/immunology , DNA-Binding Proteins/immunology , Hepatocyte Nuclear Factor 1-alpha/immunology , Orthomyxoviridae Infections/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcription Factors/immunology , Animals , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Germinal Center/immunology , Germinal Center/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Influenza A virus , Mice , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Proto-Oncogene Proteins c-bcl-6 , T-Lymphocytes, Helper-Inducer/metabolism , Transcription Factors/genetics
19.
Nat Immunol ; 16(9): 980-90, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26214741

ABSTRACT

Follicular helper T cells (T(FH) cells) are specialized effector CD4(+) T cells that help B cells develop germinal centers (GCs) and memory. However, the transcription factors that regulate the differentiation of T(FH) cells remain incompletely understood. Here we report that selective loss of Lef1 or Tcf7 (which encode the transcription factor LEF-1 or TCF-1, respectively) resulted in T(FH) cell defects, while deletion of both Lef1 and Tcf7 severely impaired the differentiation of T(FH) cells and the formation of GCs. Forced expression of LEF-1 enhanced T(FH) differentiation. LEF-1 and TCF-1 coordinated such differentiation by two general mechanisms. First, they established the responsiveness of naive CD4(+) T cells to T(FH) cell signals. Second, they promoted early T(FH) differentiation via the multipronged approach of sustaining expression of the cytokine receptors IL-6Rα and gp130, enhancing expression of the costimulatory receptor ICOS and promoting expression of the transcriptional repressor Bcl6.


Subject(s)
Cell Differentiation/immunology , Cytokine Receptor gp130/immunology , DNA-Binding Proteins/immunology , Germinal Center/immunology , Hepatocyte Nuclear Factor 1-alpha/immunology , Lymphoid Enhancer-Binding Factor 1/immunology , Receptors, Interleukin-6/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocytes/immunology , Cell Differentiation/genetics , Cytokine Receptor gp130/genetics , DNA-Binding Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation , Germinal Center/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Lymphoid Enhancer-Binding Factor 1/genetics , Mice , Proto-Oncogene Proteins c-bcl-6 , Receptors, Interleukin-6/genetics , T-Lymphocytes, Helper-Inducer/metabolism
20.
Immunity ; 48(3): 530-541.e6, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29562201

ABSTRACT

Selective expansion of high-affinity antigen-specific B cells in germinal centers (GCs) is a key event in antibody affinity maturation. GC B cells with improved affinity can either continue affinity-driven selection or exit the GC to differentiate into plasma cells (PCs) or memory B cells. Here we found that deleting E3 ubiquitin ligases Cbl and Cbl-b (Cbls) in GC B cells resulted in the early exit of high-affinity antigen-specific B cells from the GC reaction and thus impaired clonal expansion. Cbls were highly expressed in GC light zone (LZ) B cells, where they promoted the ubiquitination and degradation of Irf4, a transcription factor facilitating PC fate choice. Strong CD40 and BCR stimulation triggered the Cbl degradation, resulting in increased Irf4 expression and exit from GC affinity selection. Thus, a regulatory cascade that is centered on the Cbl ubiquitin ligases ensures affinity-driven clonal expansion by connecting BCR affinity signals with differentiation programs.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Animals , Antibody Affinity/ethics , Antibody Affinity/immunology , Antibody Formation/genetics , Antibody Formation/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Clonal Selection, Antigen-Mediated/genetics , Clonal Selection, Antigen-Mediated/immunology , Gene Expression , Gene Knockout Techniques , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Transgenic , Mutation , Protein Binding , Proteolysis , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL