Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Mol Cell ; 84(7): 1354-1364.e9, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38447580

ABSTRACT

Batten disease, the most prevalent form of neurodegeneration in children, is caused by mutations in the CLN3 gene, which encodes a lysosomal transmembrane protein. CLN3 loss leads to significant accumulation of glycerophosphodiesters (GPDs), the end products of glycerophospholipid catabolism in the lysosome. Despite GPD storage being robustly observed upon CLN3 loss, the role of GPDs in neuropathology remains unclear. Here, we demonstrate that GPDs act as potent inhibitors of glycerophospholipid catabolism in the lysosome using human cell lines and mouse models. Mechanistically, GPDs bind and competitively inhibit the lysosomal phospholipases PLA2G15 and PLBD2, which we establish to possess phospholipase B activity. GPDs effectively inhibit the rate-limiting lysophospholipase activity of these phospholipases. Consistently, lysosomes of CLN3-deficient cells and tissues accumulate toxic lysophospholipids. Our work establishes that the storage material in Batten disease directly disrupts lysosomal lipid homeostasis, suggesting GPD clearance as a potential therapeutic approach to this fatal disease.


Subject(s)
Membrane Glycoproteins , Neuronal Ceroid-Lipofuscinoses , Mice , Animals , Child , Humans , Membrane Glycoproteins/metabolism , Molecular Chaperones/metabolism , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Neuronal Ceroid-Lipofuscinoses/pathology , Lysosomes/metabolism , Phospholipases/metabolism , Glycerophospholipids/metabolism , Phospholipids/metabolism
2.
FASEB J ; 38(13): e23725, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38959016

ABSTRACT

SLC40A1 is the sole iron export protein reported in mammals. In humans, its dysfunction is responsible for ferroportin disease, an inborn error of iron metabolism transmitted as an autosomal dominant trait and observed in different ethnic groups. As a member of the major facilitator superfamily, SLC40A1 requires a series of conformational changes to enable iron translocation across the plasma membrane. The influence of lipids on protein stability and its conformational changes has been little investigated to date. Here, we combine molecular dynamics simulations of SLC40A1 embedded in membrane bilayers with experimental alanine scanning mutagenesis to analyze the specific role of glycerophospholipids. We identify four basic residues (Lys90, Arg365, Lys366, and Arg371) that are located at the membrane-cytosol interface and consistently interact with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) molecules. These residues surround a network of salt bridges and hydrogens bonds that play a critical role in stabilizing SLC40A1 in its basal outward-facing conformation. More deeply embedded in the plasma membrane, we identify Arg179 as a charged amino acid residue also tightly interacting with lipid polar heads. This results in a local deformation of the lipid bilayer. Interestingly, Arg179 is adjacent to Arg178, which forms a functionally important salt-bridge with Asp473 and is a recurrently associated with ferroportin disease when mutated to glutamine. We demonstrate that the two p.Arg178Gln and p.Arg179Thr missense variants have similar functional behaviors. These observations provide insights into the role of phospholipids in the formation/disruption of the SLC40A1 inner gate, and give a better understanding of the diversity of molecular mechanisms of ferroportin disease.


Subject(s)
Cation Transport Proteins , Iron , Molecular Dynamics Simulation , Humans , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/chemistry , Iron/metabolism , Glycerophospholipids/metabolism , Glycerophospholipids/chemistry , Phosphatidylcholines/metabolism , Phosphatidylcholines/chemistry
3.
Arterioscler Thromb Vasc Biol ; 44(3): 741-754, 2024 03.
Article in English | MEDLINE | ID: mdl-38299357

ABSTRACT

BACKGROUND: The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS: In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS: MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS: An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.


Subject(s)
Aortic Diseases , Atherosclerosis , Cardiovascular Diseases , Plaque, Atherosclerotic , Humans , Animals , Mice , Plaque, Atherosclerotic/metabolism , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Risk Factors , Atherosclerosis/diagnosis , Atherosclerosis/metabolism , Aorta/diagnostic imaging , Aorta/metabolism , Aortic Diseases/genetics , Aortic Diseases/metabolism , Glycerophospholipids/metabolism , Heart Disease Risk Factors
4.
J Proteome Res ; 23(5): 1615-1633, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38649144

ABSTRACT

Autophagy supervises the proteostasis and survival of B lymphocytic cells. Trk-fused gene (TFG) promotes autophagosome-lysosome flux in murine CH12 B cells, as well as their survival. Hence, quantitative proteomics of CH12tfgKO and WT B cells in combination with lysosomal inhibition should identify proteins that are prone to lysosomal degradation and contribute to autophagy and B cell survival. Lysosome inhibition via NH4Cl unexpectedly reduced a number of proteins but increased a large cluster of translational, ribosomal, and mitochondrial proteins, independent of TFG. Hence, we propose a role for lysosomes in ribophagy in B cells. TFG-regulated proteins include CD74, BCL10, or the immunoglobulin JCHAIN. Gene ontology (GO) analysis reveals that proteins regulated by TFG alone, or in concert with lysosomes, localize to mitochondria and membrane-bound organelles. Likewise, TFG regulates the abundance of metabolic enzymes, such as ALDOC and the fatty acid-activating enzyme ACOT9. To test consequently for a function of TFG in lipid metabolism, we performed shotgun lipidomics of glycerophospholipids. Total phosphatidylglycerol is more abundant in CH12tfgKO B cells. Several glycerophospholipid species with similar acyl side chains, such as 36:2 phosphatidylethanolamine and 36:2 phosphatidylinositol, show a dysequilibrium. We suggest a role for TFG in lipid homeostasis, mitochondrial functions, translation, and metabolism in B cells.


Subject(s)
Autophagy , B-Lymphocytes , Glycerophospholipids , Lysosomes , Animals , Mice , B-Lymphocytes/metabolism , Glycerophospholipids/metabolism , Lipid Metabolism , Lipidomics/methods , Lysosomes/metabolism , Mitochondria/metabolism , Proteomics/methods
5.
J Proteome Res ; 23(8): 3444-3459, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39024330

ABSTRACT

Ferroptosis adversely affects the viability, differentiation, and metabolic integrity of C2C12 myoblasts, contributing to the decline in skeletal muscle health. The intricate mechanisms behind this process are not fully understood. In this study, we induced ferroptosis in myoblasts using targeted inducers and found a marked decrease in specific redox metabolites, particularly taurine. Taurine supplementation effectively reversed the deleterious effects of ferroptosis, significantly increased cellular glutathione levels, reduced MDA and ROS levels, and rejuvenated impaired myogenic differentiation. Furthermore, taurine downregulated HO-1 expression and decreased intracellular Fe2+ levels, thereby stabilizing the labile iron pool. Using NMR metabolomic analysis, we observed that taurine profoundly promoted glycerophospholipid metabolism, which is critical for cell membrane repair, and enhanced mitochondrial bioenergetics, thereby increasing the energy reserves essential for muscle satellite cell regeneration. These results suggest that taurine is a potent ferroptosis inhibitor that attenuates key drivers of this process, strengthens oxidative defenses, and improves redox homeostasis. This combined effect protects cells from ferroptosis-induced damage. This study highlights the potential of taurine as a valuable ferroptosis inhibitor that protects skeletal muscle from ferroptosis-induced damage and provides a basis for therapeutic strategies to rejuvenate and facilitate the regeneration of aging skeletal muscle.


Subject(s)
Ferroptosis , Homeostasis , Iron , Myoblasts , Oxidation-Reduction , Taurine , Taurine/pharmacology , Ferroptosis/drug effects , Oxidation-Reduction/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/cytology , Iron/metabolism , Animals , Mice , Homeostasis/drug effects , Cell Line , Reactive Oxygen Species/metabolism , Cell Differentiation/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Glutathione/metabolism , Oxidative Stress/drug effects , Glycerophospholipids/metabolism
6.
BMC Microbiol ; 24(1): 186, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802775

ABSTRACT

The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier to protect against toxic compounds. By nature, the OM is asymmetric with the highly packed lipopolysaccharide (LPS) at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla system, in which is responsible for the retrograde transport of glycerophospholipids from the OM to the inner membrane. This system is comprised of six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids that are mis-localized at the outer leaflet of the OM. Interestingly, MlaA was initially identified - and called VacJ - based on its role in the intracellular spreading of Shigella flexneri.Many open questions remain with respect to the Mla system and the mechanism involved in the translocation of mislocated glycerophospholipids at the outer leaflet of the OM, by MlaA. After summarizing the current knowledge on MlaA, we focus on the impact of mlaA deletion on OM lipid composition and biophysical properties of the OM. How changes in OM lipid composition and biophysical properties can impact the generation of membrane vesicles and membrane permeability is discussed. Finally, we explore whether and how MlaA might be a candidate for improving the activity of antibiotics and as a vaccine candidate.Efforts dedicated to understanding the relationship between the OM lipid composition and the mechanical strength of the bacterial envelope and, in turn, how such properties act against external stress, are needed for the design of new targets or drugs for Gram-negative infections.


Subject(s)
Bacterial Outer Membrane Proteins , Bacterial Outer Membrane , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Membrane Lipids/metabolism , Gram-Negative Bacteria/metabolism , Glycerophospholipids/metabolism , Shigella flexneri/metabolism , Shigella flexneri/physiology , Shigella flexneri/genetics
7.
Liver Int ; 44(5): 1176-1188, 2024 May.
Article in English | MEDLINE | ID: mdl-38353022

ABSTRACT

BACKGROUND AND AIMS: Bacterial species and microbial pathways along with metabolites and clinical parameters may interact to contribute to non-alcoholic fatty liver disease (NAFLD) and disease severity. We used integrated machine learning models and a cross-validation approach to assess this interaction in bariatric patients. METHODS: 113 patients undergoing bariatric surgery had clinical and biochemical parameters, blood and stool metabolite measurements as well as faecal shotgun metagenome sequencing to profile the intestinal microbiome. Liver histology was classified as normal liver obese (NLO; n = 30), simple steatosis (SS; n = 41) or non-alcoholic steatohepatitis (NASH; n = 42); fibrosis was graded F0 to F4. RESULTS: We found that those with NASH versus NLO had an increase in potentially harmful E. coli, a reduction of potentially beneficial Alistipes putredinis and an increase in ALT and AST. There was higher serum glucose, faecal 3-(3-hydroxyphenyl)-3-hydroxypropionic acid and faecal cholic acid and lower serum glycerophospholipids. In NAFLD, those with severe fibrosis (F3-F4) versus F0 had lower abundance of anti-inflammatory species (Eubacterium ventriosum, Alistipes finegoldii and Bacteroides dorei) and higher AST, serum glucose, faecal acylcarnitines, serum isoleucine and homocysteine as well as lower serum glycerophospholipids. Pathways involved with amino acid biosynthesis and degradation were significantly more represented in those with NASH compared to NLO, with severe fibrosis having an overall stronger significant association with Superpathway of menaquinol-10 biosynthesis and Peptidoglycan biosynthesis IV. CONCLUSIONS: In bariatric patients, NASH and severe fibrosis were associated with specific bacterial species, metabolic pathways and metabolites that may contribute to NAFLD pathogenesis and disease severity.


Subject(s)
Bariatric Surgery , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Humans , Non-alcoholic Fatty Liver Disease/complications , Escherichia coli , Liver/pathology , Fibrosis , Metabolome , Glycerophospholipids/metabolism , Glucose/metabolism , Obesity, Morbid/complications
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125896

ABSTRACT

Current understanding of the structure and functioning of biomembranes is impossible without determining the mechanism of formation of membrane lipid rafts. The formation of liquid-ordered and disordered phases (Lo and Ld) and lipid rafts in membranes and their simplified models is discussed. A new consideration of the processes of formation of lipid phases Lo and Ld and lipid rafts is proposed, taking into account the division of each of the glycerophospholipids into several groups. Generally accepted three-component schemes for modeling the membrane structure are critically considered. A four-component scheme is proposed, which is designed to more accurately assume the composition of lipids in the resulting Lo and Ld phases. The role of the polar head groups of phospholipids and, in particular, phosphatidylethanolamine is considered. The structure of membrane rafts and the possible absence of a clear boundary between the Lo and Ld phases are discussed.


Subject(s)
Membrane Microdomains , Membrane Microdomains/metabolism , Membrane Microdomains/chemistry , Glycerophospholipids/metabolism , Glycerophospholipids/chemistry , Membrane Lipids/metabolism , Membrane Lipids/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Animals , Humans
9.
Int J Biol Macromol ; 265(Pt 2): 130845, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503376

ABSTRACT

Endometrial fibrosis leads to the destruction of endometrial function and affects reproductive performance. However, mechanisms underlying the development of endometrial fibrosis in sheep remain unclear. We use transcriptomic, proteomic, and metabolomic studies to reveal the formation mechanisms of endometrial fibrosis. The results showed that the fibrotic endometrial tissue phenotype presented fewer glands, accompanied by collagen deposition. Transcriptomic results indicated alterations in genes associated with the synthesis and degradation of extracellular matrix components, which alter metabolite homeostasis, especially in glycerophospholipid metabolism. Moreover, differentially expressed metabolites may play regulatory roles in key metabolic processes during fibrogenesis, including protein digestion and absorption, and amino acid synthesis. Affected by the aberrant genes, protein levels related to the extracellular matrix components were altered. In addition, based on Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes, metabolites and proteins, amino acid biosynthesis, glutathione, glycerophospholipid, arginine and proline metabolism, and cell adhesion are closely associated with fibrogenesis. Finally, we analyzed the dynamic changes in serum differential metabolites at different time points during fibrosis. Taken together, fibrosis development is related to metabolic obstacles in extracellular matrix synthesis and degradation triggered by disturbed gene and protein levels.


Subject(s)
Multiomics , Proteomics , Animals , Sheep , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Fibrosis , Transcriptome , Glycerophospholipids/metabolism , Amino Acids/metabolism
10.
Neurochem Int ; 175: 105701, 2024 May.
Article in English | MEDLINE | ID: mdl-38428503

ABSTRACT

Brain tissue is highly enriched in lipids, the majority of which are glycerophospholipids. Glycerophospholipids are the major constituents of cellular membranes and play an important role in maintaining integrity and function of cellular and subcellular structures. Any changes in glycerophospholipid homeostasis can adversely affect brain functions. Traumatic brain injury (TBI), an acquired injury caused by the impact of external forces to the brain, triggers activation of secondary biochemical events that include perturbation of lipid homeostasis. Several studies have demonstrated glycerophospholipid dysregulation in the brain and circulation after TBI. This includes spatial and temporal changes in abundance and distribution of glycerophospholipids in the injured brain. This is at least in part mediated by TBI-induced oxidative stress and by activation of lipid metabolism pathways involved in tissue repairing. In this review, we discuss current advances in understanding of the mechanisms and implications of glycerophospholipid dysregulation following TBI.


Subject(s)
Brain Injuries, Traumatic , Glycerophospholipids , Humans , Glycerophospholipids/metabolism , Brain Injuries, Traumatic/metabolism , Brain/metabolism , Oxidative Stress/physiology
11.
Mol Biol Cell ; 35(3): ar25, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38117591

ABSTRACT

Lysosomes are acidic organelles responsible for lipid catabolism, and their functions can be disrupted by cationic amphiphilic drugs that neutralize lumenal pH and thereby inhibit most lysosomal hydrolases. These drugs can also induce lysosomal membrane permeabilization and cancer cell death, but the underlying mechanism remains elusive. Here, we uncover that the cationic amphiphilic drugs induce a substantial accumulation of cytolytic lysoglycerophospholipids within the lysosomes of cancer cells, and thereby prevent the recycling of lysoglycerophospholipids to produce common membrane glycerophospholipids. Using quantitative mass spectrometry-based shotgun lipidomics, we demonstrate that structurally diverse cationic amphiphilic drugs, along with other types of lysosomal pH-neutralizing reagents, elevate the amounts of lysoglycerophospholipids in MCF7 breast carcinoma cells. Lysoglycerophospholipids constitute ∼11 mol% of total glycerophospholipids in lysosomes purified from MCF7 cells, compared with ∼1 mol% in the cell lysates. Treatment with cationic amphiphilic drug siramesine further elevates the lysosomal lysoglycerophospholipid content to ∼24 mol% of total glycerophospholipids. Exogenously added traceable lysophosphatidylcholine is rapidly acylated to form diacylphosphatidylcholine, but siramesine treatment sequesters the lysophosphatidylcholine in the lysosomes and prevents it from undergoing acylation. These findings shed light on the unexplored role of lysosomes in the recycling of lysoglycerophospholipids and uncover the mechanism of action of promising anticancer agents.


Subject(s)
Glycerophospholipids , Indoles , Neoplasms , Spiro Compounds , Humans , Glycerophospholipids/metabolism , Lysophosphatidylcholines/metabolism , Lysosomes/metabolism , Cell Death , Neoplasms/metabolism
12.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38418090

ABSTRACT

During development, different tissues acquire distinct lipotypes that are coupled to tissue function and homeostasis. In the brain, where complex membrane trafficking systems are required for neural function, specific glycerophospholipids, sphingolipids, and cholesterol are highly abundant, and defective lipid metabolism is associated with abnormal neural development and neurodegenerative disease. Notably, the production of specific lipotypes requires appropriate programming of the underlying lipid metabolic machinery during development, but when and how this occurs is unclear. To address this, we used high-resolution MSALL lipidomics to generate an extensive time-resolved resource of mouse brain development covering early embryonic and postnatal stages. This revealed a distinct bifurcation in the establishment of the neural lipotype, whereby the canonical lipid biomarkers 22:6-glycerophospholipids and 18:0-sphingolipids begin to be produced in utero, whereas cholesterol attains its characteristic high levels after birth. Using the resource as a reference, we next examined to which extent this can be recapitulated by commonly used protocols for in vitro neuronal differentiation of stem cells. Here, we found that the programming of the lipid metabolic machinery is incomplete and that stem cell-derived cells can only partially acquire a neural lipotype when the cell culture media is supplemented with brain-specific lipid precursors. Altogether, our work provides an extensive lipidomic resource for early mouse brain development and highlights a potential caveat when using stem cell-derived neuronal progenitors for mechanistic studies of lipid biochemistry, membrane biology and biophysics, which nonetheless can be mitigated by further optimizing in vitro differentiation protocols.


Subject(s)
Neurodegenerative Diseases , Mice , Animals , Stem Cells/metabolism , Neurons/metabolism , Sphingolipids/metabolism , Cholesterol , Glycerophospholipids/metabolism
13.
Sci Total Environ ; 916: 170011, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220005

ABSTRACT

Plastic products and nutrients are widely used in aquaculture facilities, resulting in copresence of nanoplastics (NPs) released from plastics and microcystins (MCs) from toxic cyanobacteria. The potential effects of NPs-MCs coexposure on aquatic products require investigation. This study investigated the toxic effects of polystyrene (PS) NPs and MC-LR on the gut-liver axis of silver carp Hypophthalmichthys molitrix, a representative commercial fish, and explored the effects of the coexposure on intestinal microorganism structure and liver metabolic function using traditional toxicology and multi-omics association analysis. The results showed that the PS-NPs and MC-LR coexposure significantly shortened villi length, and the higher the concentration of PS-NPs, the more obvious the villi shortening. The coexposure of high concentrations of PS-NPs and MC-LR increased the hepatocyte space in fish, and caused obvious loss of gill filaments. The diversity and richness of the fish gut microbes significantly increased after the PS-NPs exposure, and this trend was amplified in the copresence of MC-LR. In the coexposure, MC-LR contributed more to the alteration of fish liver metabolism, which affected the enrichment pathway in glycerophospholipid metabolism and folic acid biosynthesis, and there was a correlation between the differential glycerophospholipid metabolites and affected bacteria. These results suggested that the toxic mechanism of PS-NPs and MC-LR coexposure may be pathological changes of the liver, gut, and gill tissues, intestinal microbiota disturbance, and glycerophospholipid metabolism imbalance. The findings not only improve the understanding of environmental risks of NPs combined with other pollutants, but also provide potential microbiota and glycerophospholipid biomarkers in silver carp.


Subject(s)
Carps , Cyanobacteria , Marine Toxins , Animals , Carps/metabolism , Microcystins/analysis , Microplastics/metabolism , Liver/chemistry , Cyanobacteria/metabolism , Glycerophospholipids/metabolism , Glycerophospholipids/pharmacology
14.
J Hazard Mater ; 475: 134870, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38876019

ABSTRACT

Exposure to ozone (O3) has been associated with cardiovascular outcomes in humans, yet the underlying mechanisms of the adverse effect remain poorly understood. We aimed to investigate the association between O3 exposure and glycerophospholipid metabolism in healthy young adults. We quantified plasma concentrations of phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) using a UPLC-MS/MS system. Time-weighted personal exposures were calculated to O3 and co-pollutants over 4 time windows, and we employed orthogonal partial least squares discriminant analysis to discern differences in lipids profiles between high and low O3 exposure. Linear mixed-effects models and mediation analysis were utilized to estimate the associations between O3 exposure, lipids, and cardiovascular physiology indicators. Forty-three healthy adults were included in this study, and the mean (SD) time-weighted personal exposures to O3 was 9.08 (4.06) ppb. With shorter exposure durations, O3 increases were associated with increasing PC and lysoPC levels; whereas at longer exposure times, the opposite relationship was shown. Furthermore, two specific lipids, namely lysoPC a C26:0 and lysoPC a C17:0, showed significantly positive mediating effects on associations of long-term O3 exposure with pulse wave velocity and systolic blood pressure, respectively. Alterations in specific lipids may underlie the cardiovascular effects of O3 exposure.


Subject(s)
Air Pollutants , Ozone , Humans , Ozone/toxicity , Male , Female , Adult , Air Pollutants/toxicity , Young Adult , Lysophosphatidylcholines/blood , Glycerophospholipids/blood , Glycerophospholipids/metabolism , Environmental Exposure , Phosphatidylcholines/metabolism , Phosphatidylcholines/blood
15.
Psychoneuroendocrinology ; 167: 107086, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38824765

ABSTRACT

Major depressive disorder (MDD) is a psychiatric illness that can jeopardize the normal growth and development of adolescents. Approximately 40% of adolescent patients with MDD exhibit resistance to conventional antidepressants, leading to the development of Treatment-Resistant Depression (TRD). TRD is associated with severe impairments in social functioning and learning ability and an elevated risk of suicide, thereby imposing an additional societal burden. In this study, we conducted plasma metabolomic analysis on 53 adolescents diagnosed with first-episode drug-naïve MDD (FEDN-MDD), 53 adolescents with TRD, and 56 healthy controls (HCs) using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) and reversed-phase liquid chromatography-mass spectrometry (RPLC-MS). We established a diagnostic model by identifying differentially expressed metabolites and applying cluster analysis, metabolic pathway analysis, and multivariate linear support vector machine (SVM) algorithms. Our findings suggest that adolescent TRD shares similarities with FEDN-MDD in five amino acid metabolic pathways and exhibits distinct metabolic characteristics, particularly tyrosine and glycerophospholipid metabolism. Furthermore, through multivariate receiver operating characteristic (ROC) analysis, we optimized the area under the curve (AUC) and achieved the highest predictive accuracy, obtaining an AUC of 0.903 when comparing FEDN-MDD patients with HCs and an AUC of 0.968 when comparing TRD patients with HCs. This study provides new evidence for the identification of adolescent TRD and sheds light on different pathophysiologies by delineating the distinct plasma metabolic profiles of adolescent TRD and FEDN-MDD.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Metabolomics , Humans , Adolescent , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/blood , Female , Male , Depressive Disorder, Treatment-Resistant/metabolism , Metabolomics/methods , Support Vector Machine , Antidepressive Agents/therapeutic use , Glycerophospholipids/blood , Glycerophospholipids/metabolism , Case-Control Studies , Chromatography, Liquid/methods
16.
J Ethnopharmacol ; 330: 118199, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38631486

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nocardiosis is an uncommon infectious disease that bears certain similarities to tuberculosis, with a continuous increase in its incidence and a poor prognosis. In traditional Chinese medicine, the leaves of Cajanus cajan (L.) Millsp. are employed to treat wounds, malaria, coughs, and abdominal pain. AIM OF THE STUDY: In this study, we investigated the effects and mechanisms of longistylin A (LGA), a natural stilbene isolated from C. cajan, as a potential antibiotic against nocardiosis. MATERIALS AND METHODS: LGA was isolated from the leaves of C. cajan and assessed using a minimum bactericidal concentration (MBC) determination against Nocardia seriolae. Multi-omics analysis encompassing genes, proteins, and metabolites was conducted to investigate the impact of LGA treatment on N. seriolae. Additionally, quantitative analysis of 40 cytokinins in N. seriolae mycelium was performed to assess the specific effects of LGA treatment on cytokinin levels. Cryo-scanning electron microscopy was utilized to examine morphological changes induced by LGA treatment, particularly in the presence of exogenous trans-zeatin-O-glucoside (tZOG). The therapeutic effect of LGA was investigated by feeding N. seriolae-infected largemouth bass. RESULTS: LGA exhibited significant efficacy against N. seriolae, with MBC value of 2.56 µg/mL. Multi-omics analysis revealed that LGA disrupted glycerophospholipid metabolism and hormone biosynthesis by notably reducing the expression of glycerol-3-phosphate dehydrogenase and calmodulin-like protein. Treatment with LGA markedly disrupted 12 distinct cytokinins in N. seriolae mycelium. Additionally, the addition of exogenous tZOG counteracted the inhibitory effects of LGA on filamentous growth, resulting in mycelial elongation and branching. Furthermore, LGA treatment improved the survival rate of largemouth bass infected with N. seriolae. CONCLUSIONS: We found for the first time that LGA from C. cajan exhibited significant efficacy against N. seriolae by interfering with glycerophospholipid metabolism and cytokinin biosynthesis.


Subject(s)
Anti-Bacterial Agents , Cajanus , Cytokinins , Glycerophospholipids , Nocardia , Nocardia/metabolism , Nocardia/drug effects , Cytokinins/pharmacology , Cytokinins/biosynthesis , Cytokinins/metabolism , Glycerophospholipids/metabolism , Glycerophospholipids/biosynthesis , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Plant Leaves
17.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38843936

ABSTRACT

Lipid composition is conserved within sub-cellular compartments to maintain cell function. Lipidomic analyses of liver, muscle, white and brown adipose tissue (BAT) mitochondria revealed substantial differences in their glycerophospholipid (GPL) and free cholesterol (FC) contents. The GPL to FC ratio was 50-fold higher in brown than white adipose tissue mitochondria. Their purity was verified by comparison of proteomes with ER and mitochondria-associated membranes. A lipid signature containing PC and FC, calculated from the lipidomic profiles, allowed differentiation of mitochondria from BAT of mice housed at different temperatures. Elevating FC in BAT mitochondria prevented uncoupling protein (UCP) 1 function, whereas increasing GPL boosted it. Similarly, STARD3 overexpression facilitating mitochondrial FC import inhibited UCP1 function in primary brown adipocytes, whereas a knockdown promoted it. We conclude that the mitochondrial GPL/FC ratio is key for BAT function and propose that targeting it might be a promising strategy to promote UCP1 activity.


Subject(s)
Adipose Tissue, Brown , Cholesterol , Lipidomics , Mitochondria , Uncoupling Protein 1 , Animals , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Mice , Adipose Tissue, Brown/metabolism , Cholesterol/metabolism , Mitochondria/metabolism , Lipidomics/methods , Organ Specificity , Mice, Inbred C57BL , Adipose Tissue, White/metabolism , Glycerophospholipids/metabolism , Male , Lipid Metabolism
18.
Colloids Surf B Biointerfaces ; 238: 113922, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678790

ABSTRACT

The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces. The latter is supported by the results from Laurdan spectroscopy of large unilamellar vesicles providing data on hydration at the glycerol backbones of glycerophospholipides. Higher degree of lipid order is reported for POPC membranes compared to PDPC. While resveratrol mostly enhances the hydration of PDPC membranes, increasing POPC dehydration is reported upon treatment with the polyphenol. Dehydration of the polyunsaturated lipid bilayers is measured only at the highest phytoalexin content studied (resveratrol/lipid 0.5 mol/mol) and is less pronounced than the effect reported for POPC membranes. The polyphenol effect on membrane mechanics is probed by thermal shape fluctuation analysis of quasispherical giant unilamellar vesicles. Markedly different trend of the bending elasticity with increasing resveratrol concentration is reported for the two types of phospholipid bilayers studied. POPC membranes become more rigid in the presence of resveratrol, whereas PDPC-containing bilayers exhibit softening at lower concentrations of the polyphenol followed by a slight growth without bilayer stiffening even at the highest resveratrol content explored. The new data on the structural organization and membrane properties of resveratrol-treated phosphatidylcholine membranes may underpin the development of future liposomal applications of the polyphenol in medicinal chemistry.


Subject(s)
Lipid Bilayers , Resveratrol , Resveratrol/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Glycerophospholipids/chemistry , Glycerophospholipids/metabolism , Stilbenes/chemistry , Biomimetic Materials/chemistry , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
19.
Sci Total Environ ; 938: 173576, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38810761

ABSTRACT

Surface modification of graphene-based nanomaterials (GBNs) may occur in aquatic environment and during intentional preparation. However, the influence of the surface groups on the developmental toxicity of GBNs has not been determined. In this study, we evaluated the developmental toxicity of three GBNs including GO (graphene oxide), RGO (reduced GO) and RGO-N (aminated RGO) by employing zebrafish embryos at environmentally relevant concentrations (1-100 µg/L), and the underlying metabolic mechanisms were explored. The results showed that both GO and RGO-N disturbed the development of zebrafish embryos, and the adverse effect of GO was greater than that of RGO-N. Furthermore, the oxygen-containing groups of GBNs play a more important role in inducing developmental toxicity compared to size, defects and nitrogen-containing groups. Specifically, the epoxide and hydroxyl groups of GBNs increased their intrinsic oxidative potential, promoted the generation of ROS, and caused lipid peroxidation. Moreover, a significant decrease in guanosine and abnormal metabolism of multiple glycerophospholipids were observed in all three GBN-treated groups. Nevertheless, GO exposure triggered more metabolic activities related to lipid peroxidation than RGO or RGO-N exposure, and the disturbance intensity of the same metabolite was greater than that of the other two agents. These findings reveal underlying metabolic mechanisms of GBN-induced developmental toxicity.


Subject(s)
Glycerophospholipids , Graphite , Nanostructures , Water Pollutants, Chemical , Zebrafish , Graphite/toxicity , Animals , Glycerophospholipids/metabolism , Nanostructures/toxicity , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Metabolic Networks and Pathways/drug effects , Lipid Peroxidation/drug effects
20.
Nat Commun ; 15(1): 6252, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048572

ABSTRACT

Dysregulated glycerophospholipid (GP) metabolism in the brain is associated with the progression of neurodegenerative diseases including Alzheimer's disease (AD). Routine liquid chromatography-mass spectrometry (LC-MS)-based large-scale lipidomic methods often fail to elucidate subtle yet important structural features such as sn-position, hindering the precise interrogation of GP molecules. Leveraging high-resolution demultiplexing (HRdm) ion mobility spectrometry (IMS), we develop a four-dimensional (4D) lipidomic strategy to resolve GP sn-position isomers. We further construct a comprehensive experimental 4D GP database of 498 GPs identified from the mouse brain and an in-depth extended 4D library of 2500 GPs predicted by machine learning, enabling automated profiling of GPs with detailed acyl chain sn-position assignment. Analyzing three mouse brain regions (hippocampus, cerebellum, and cortex), we successfully identify a total of 592 GPs including 130 pairs of sn-position isomers. Further temporal GPs analysis in the three functional brain regions illustrates their metabolic alterations in AD progression.


Subject(s)
Alzheimer Disease , Brain , Glycerophospholipids , Lipidomics , Animals , Alzheimer Disease/metabolism , Lipidomics/methods , Glycerophospholipids/metabolism , Mice , Brain/metabolism , Ion Mobility Spectrometry/methods , Male , Cerebellum/metabolism , Disease Models, Animal , Chromatography, Liquid/methods , Mice, Inbred C57BL , Hippocampus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL