Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters

Publication year range
1.
BMC Pediatr ; 22(1): 284, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35578201

ABSTRACT

BACKGROUND: Glycogen storage disease type III (GSD III) is a rare autosomal recessive glycogenolysis disorder due to AGL gene variants, characterized by hepatomegaly, fasting hypoglycemia, hyperlipidemia, elevated hepatic transaminases, growth retardation, progressive myopathy, and cardiomyopathy. However, it is not easy to make a definite diagnosis in early stage of disease only based on the clinical phenotype and imageology due to its clinical heterogeneity. CASE PRESENTATION: We report a two-year-old girl with GSD III from a nonconsanguineous Chinese family, who presented with hepatomegaly, fasting hypoglycemia, hyperlipidemia, elevated levels of transaminases. Accordingly, Sanger sequencing, whole­exome sequencing of family trios, and qRT-PCR was performed, which revealed that the patient carried the compound heterogeneous variants, a novel frameshift mutation c.597delG (p. Q199Hfs*2) and a novel large gene fragment deletion of the entire exon 13 in AGL gene. The deletion of AGL was inherited from the proband's father and the c.597delG variant was from the mother. CONCLUSIONS: In this study, we identified two novel variants c.597delG (p. Q199Hfs*2) and deletion of the entire exon 13 in AGL in a Chinese GSD III patient. We extend the mutation spectrum of AGL. We suggest that high-throughput sequencing technology can detect and screen pathogenic variant, which is a scientific basis about genetic counseling and clinical diagnosis.


Subject(s)
Glycogen Storage Disease Type III , Hypoglycemia , China , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/genetics , Hepatomegaly , Humans , Mutation , Transaminases
2.
Neuropediatrics ; 50(1): 22-30, 2019 02.
Article in English | MEDLINE | ID: mdl-30308687

ABSTRACT

BACKGROUND: Our aim was to describe the natural history of neuromuscular involvement (NMI) in glycogen storage disease type III (GSDIII). METHODS: We conducted a longitudinal study of 50 Tunisian patients, 9.87 years old in average. RESULTS: NMI was diagnosed at an average age of 2.66 years and was clinically overt in 85% of patients. Patients with clinical features were older (p = 0.001). Complaints were dominated by exercise intolerance (80%), noticed at 5.33 years in average. Physical signs, observed at 6.75 years in average, were dominated by muscle weakness (62%). Functional impairment was observed in 64% of patients, without any link with age (p = 0.255). Among 33 patients, 7 improved. Creatine kinase (CK) and aspartate aminotransferase (AST) levels were higher with age.Electrophysiological abnormalities, diagnosed in average at 6.5 years, were more frequent after the first decade (p = 0.0005). Myogenic pattern was predominant (42%). Nerve conduction velocities were slow in two patients. Lower caloric intake was associated with more frequent clinical and electrophysiological features. Higher protein intake was related to fewer complaints and physical anomalies. CONCLUSION: Neuromuscular investigation is warranted even in asymptomatic patients, as early as the diagnosis of GSDIII is suspected. Muscle involvement can be disabling even in children. Favorable evolution is possible in case of optimal diet.


Subject(s)
Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/epidemiology , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/epidemiology , Phenotype , Child , Child, Preschool , Cross-Sectional Studies , Female , Follow-Up Studies , Glycogen Storage Disease Type III/blood , Humans , Infant , Longitudinal Studies , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Neuromuscular Diseases/blood , Retrospective Studies , Tunisia/epidemiology
3.
Mol Ther ; 26(3): 890-901, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29396266

ABSTRACT

Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder caused by a deficiency of glycogen-debranching enzyme (GDE), which results in profound liver metabolism impairment and muscle weakness. To date, no cure is available for GSDIII and current treatments are mostly based on diet. Here we describe the development of a mouse model of GSDIII, which faithfully recapitulates the main features of the human condition. We used this model to develop and test novel therapies based on adeno-associated virus (AAV) vector-mediated gene transfer. First, we showed that overexpression of the lysosomal enzyme alpha-acid glucosidase (GAA) with an AAV vector led to a decrease in liver glycogen content but failed to reverse the disease phenotype. Using dual overlapping AAV vectors expressing the GDE transgene in muscle, we showed functional rescue with no impact on glucose metabolism. Liver expression of GDE, conversely, had a direct impact on blood glucose levels. These results provide proof of concept of correction of GSDIII with AAV vectors, and they indicate that restoration of the enzyme deficiency in muscle and liver is necessary to address both the metabolic and neuromuscular manifestations of the disease.


Subject(s)
Genetic Therapy , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type III/genetics , Glycogen Storage Disease Type III/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Phenotype , Animals , Biomarkers , Blood Glucose , Dependovirus/genetics , Disease Models, Animal , Enzyme Activation , Gene Expression , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Glycogen/metabolism , Glycogen Debranching Enzyme System/metabolism , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/therapy , Hepatocytes/metabolism , Male , Mice , Mice, Knockout , Organ Specificity
4.
Niger Postgrad Med J ; 26(2): 138-141, 2019.
Article in English | MEDLINE | ID: mdl-31187755

ABSTRACT

Glycogen storage disease (GSD) is a rare inborn error of metabolism with an incidence of 1/20,000-40,000 live births. Some of the presenting clinical features can mimic diseases commonly seen in the tropics and subtropics. We report a 14-month-old Nigerian child who presented at our institution with GSD Type 111a to alert physicians on the need to consider and recognise this rare disorder. The child presented with progressive abdominal swelling due to marked hepatomegaly. From the clinical history, the only clue to hypoglycaemia was that she eats very frequently. Her random blood sugar was normal; however, fasting blood sugar was low. The diagnosis was further entertained with laboratory results showing hypercholesterolaemia and uricaemia and confirmed by histology of biopsied liver tissue. GSD should be suspected in a child with unexplained hepatomegaly and investigated accordingly.


Subject(s)
Diabetes Mellitus, Type 2/complications , Glycogen Storage Disease Type III/diagnosis , Hepatomegaly/etiology , Liver/pathology , Biopsy , Female , Glycogen Storage Disease Type III/pathology , Humans , Hypercholesterolemia/etiology , Hyperuricemia/etiology , Infant , Liver/metabolism , Nigeria
5.
J Hum Genet ; 61(7): 641-5, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26984562

ABSTRACT

Glycogen storage disease type III (GSD III), a rare autosomal recessive disease characterized by hepatomegaly, fasting hypoglycemia, growth retardation, progressive myopathy and cardiomyopathy, is caused by deficiency of the glycogen debranching enzyme (AGL). Direct sequencing of human AGL cDNA and genomic DNA has enabled analysis of the underlying genetic defects responsible for GSD III. To date, the frequent mutations in different areas and populations have been described in Italy, Japan, Faroe Islands and Mediterranean area, whereas little has been performed in Chinese population. Here we report a sequencing-based mutation analysis in 43 Chinese patients with GSD III from 41 families. We identified 51 different mutations, including 15 splice-site (29.4%), 11 small deletions (21.6%), 12 nonsense (23.5%), 7 missense (13.7%), 5 duplication (9.8%) and 1 complex deletion/insertion (2.0%), 31 of which are novel mutations. The most common mutation is c.1735+1G>T (11.5%). The association of AGL missense and small in-frame deletion mutations with normal creatine kinase level was observed. Our study extends the spectrum of AGL mutations and suggests a genotype-phenotype correlation in GSD III.


Subject(s)
Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/genetics , Mutation , Adolescent , Alleles , Amino Acid Sequence , Asian People/genetics , Child , Child, Preschool , China , Computational Biology/methods , DNA Mutational Analysis , Female , Gene Frequency , Genetic Association Studies , Genotype , Humans , Infant , Male , Phenotype , RNA Splice Sites , Young Adult
6.
J Inherit Metab Dis ; 39(5): 697-704, 2016 09.
Article in English | MEDLINE | ID: mdl-27106217

ABSTRACT

Glycogen storage disease type III (GSDIII) is a rare disorder of glycogenolysis due to AGL gene mutations, causing glycogen debranching enzyme deficiency and storage of limited dextrin. Patients with GSDIIIa show involvement of liver and cardiac/skeletal muscle, whereas GSDIIIb patients display only liver symptoms and signs. The International Study on Glycogen Storage Disease (ISGSDIII) is a descriptive retrospective, international, multi-centre cohort study of diagnosis, genotype, management, clinical course and outcome of 175 patients from 147 families (86 % GSDIIIa; 14 % GSDIIIb), with follow-up into adulthood in 91 patients. In total 58 AGL mutations (non-missense mutations were overrepresented and 21 novel mutations were observed) were identified in 76 families. GSDIII patients first presented before the age of 1.5 years, hepatomegaly was the most common presenting clinical sign. Dietary management was very diverse and included frequent meals, uncooked cornstarch and continuous gastric drip feeding. Chronic complications involved the liver (hepatic cirrhosis, adenoma(s), and/or hepatocellular carcinoma in 11 %), heart (cardiac involvement and cardiomyopathy, in 58 % and 15 %, respectively, generally presenting in early childhood), and muscle (pain in 34 %). Type 2 diabetes mellitus was diagnosed in eight out of 91 adult patients (9 %). In adult patients no significant correlation was detected between (non-) missense AGL genotypes and hepatic, cardiac or muscular complications. This study demonstrates heterogeneity in a large cohort of ageing GSDIII patients. An international GSD patient registry is warranted to prospectively define the clinical course, heterogeneity and the effect of different dietary interventions in patients with GSDIII.


Subject(s)
Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Follow-Up Studies , Genotype , Glycogen Debranching Enzyme System/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation/genetics , Retrospective Studies , Young Adult
7.
Curr Opin Clin Nutr Metab Care ; 18(4): 415-21, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26001652

ABSTRACT

PURPOSE OF REVIEW: Glycogen storage disorders (GSDs) are inborn errors of metabolism with abnormal storage or utilization of glycogen. The present review focuses on recent advances in hepatic GSD types I, III and VI/IX, with emphasis on clinical aspects and treatment. RECENT FINDINGS: Evidence accumulates that poor metabolic control is a risk factor for the development of long-term complications, such as liver adenomas, low bone density/osteoporosis, and kidney disease in GSD I. However, mechanisms leading to these complications remain poorly understood and are being investigated. Molecular causes underlying neutropenia and neutrophil dysfunction in GSD I have been elucidated. Case series provide new insights into the natural course and outcome of GSD types VI and IX. For GSD III, a high protein/fat diet has been reported to improve (cardio)myopathy, but the beneficial effect of this dietary concept on muscle and liver disease manifestations needs to be further established in prospective studies. SUMMARY: Although further knowledge has been gained regarding pathophysiology, disease course, treatment, and complications of hepatic GSDs, more controlled prospective studies are needed to assess effects of different dietary and medical treatment options on long-term outcome and quality of life.


Subject(s)
Glycogen Storage Disease Type III/physiopathology , Glycogen Storage Disease Type I/physiopathology , Glycogen Storage Disease Type VI/physiopathology , Liver/physiopathology , Animals , Cardiomyopathies/complications , Cardiomyopathies/diet therapy , Cardiomyopathies/physiopathology , Diet, Carbohydrate-Restricted , Diet, High-Fat , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Dietary Proteins/administration & dosage , Disease Models, Animal , Glycogen/metabolism , Glycogen Storage Disease Type I/complications , Glycogen Storage Disease Type I/diagnosis , Glycogen Storage Disease Type I/diet therapy , Glycogen Storage Disease Type III/complications , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/diet therapy , Glycogen Storage Disease Type VI/complications , Glycogen Storage Disease Type VI/diagnosis , Glycogen Storage Disease Type VI/diet therapy , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/diet therapy , Liver Cirrhosis/physiopathology
8.
CMAJ ; 187(2): E68-E73, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25602008

ABSTRACT

BACKGROUND: Glycogen storage disease type III is caused by mutations in both alleles of the AGL gene, which leads to reduced activity of glycogen-debranching enzyme. The clinical picture encompasses hypoglycemia, with glycogen accumulation leading to hepatomegaly and muscle involvement (skeletal and cardiac). We sought to identify the genetic cause of this disease within the Inuit community of Nunavik, in whom previous DNA sequencing had not identified such mutations. METHODS: Five Inuit children with a clinical and biochemical diagnosis of glycogen storage disease type IIIa were recruited to undergo genetic testing: 2 underwent whole-exome sequencing and all 5 underwent Sanger sequencing to confirm the identified mutation. Selected DNA regions near the AGL gene were also sequenced to identify a potential founder effect in the community. In addition, control samples from 4 adults of European descent and 7 family members of the affected children were analyzed for the specific mutation by Sanger sequencing. RESULTS: We identified a homozygous frame-shift deletion, c.4456delT, in exon 33 of the AGL gene in 2 children by whole-exome sequencing. Confirmation by Sanger sequencing showed the same mutation in all 5 patients, and 5 family members were found to be carriers. With the identification of this mutation in 5 probands, the estimated prevalence of genetically confirmed glycogen storage disease type IIIa in this region is among the highest worldwide (1:2500). Despite identical mutations, we saw variations in clinical features of the disease. INTERPRETATION: Our detection of a homozygous frameshift mutation in 5 Inuit children determines the cause of glycogen storage disease type IIIa and confirms a founder effect.


Subject(s)
Founder Effect , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type III/ethnology , Glycogen Storage Disease Type III/genetics , Inuit/genetics , Mutation/genetics , Canada , Case-Control Studies , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Exome/genetics , Female , Glycogen Storage Disease Type III/diagnosis , Humans , Infant , Male
9.
Biochem Biophys Res Commun ; 455(1-2): 90-7, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25451272

ABSTRACT

We studied two patients from a nonconsanguineous family with life-long abnormal liver function, hepatomegaly and abnormal fatty acid profiles. Abnormal liver function, hypoglycemia and muscle weakness are observed in various genetic diseases, including medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and glycogen storage diseases. The proband showed increased free fatty acids, mainly C8 and C10, resembling fatty acid oxidation disorder. However, no mutation was found in ACADM and ACADL gene. Sequencing of theamylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) gene showed that both patients were compound heterozygotes for c.118C > T (p.Gln40X) and c.753_756 del CAGA (p.Asp251Glufsx29), whereas their parents were each heterozygous for one of these mutations. The AGL protein was undetectable in EBV-B cells from the two patients. Transcriptome analysis demonstrated a significant different pattern of gene expression in both of patients' cells, including genes involving in the PPAR signaling pathway, fatty acid biosynthesis, lipid synthesis and visceral fat deposition and metabolic syndrome. This unique gene expression pattern is probably due to the absence of AGL, which potentially accounts for the observed clinical phenotypes of hyperlipidemia and hepatocyte steatosis in glycogen storage disease type IIIa.


Subject(s)
Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type III/genetics , Mutation , Acyl-CoA Dehydrogenase/deficiency , Adolescent , Cells, Cultured , Fatty Acids/biosynthesis , Fatty Acids, Unsaturated/biosynthesis , Gene Expression , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/metabolism , Humans , Lipid Metabolism, Inborn Errors/diagnosis , Male
10.
J Hum Genet ; 59(1): 42-5, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24257475

ABSTRACT

Glycogen storage disease type III (GSD III) is an autosomal recessive disorder that is characterized by the excessive accumulation of abnormal glycogen in the liver and muscles and is caused by a deficiency in glycogen debranching enzyme (amylo-1,6-glucosidase, 4-alpha-glucanotransferase (AGL)) activity. To investigate the molecular characteristics of GSD III patients in Korea, we have sequenced the AGL gene in eight children with GSD III. All patients were compound heterozygotes. We identified 10 different mutations (five novel and five previously reported). The novel mutations include one nonsense (c.1461G>A, p.W487X), three splicing (c.293+4_293+6delAGT in IVS4, c.460+1G>T in IVS5, c.2682-8A>G in IVS21) and one missense mutation (c.2591G>C, p.R864P). Together, p.R285X, c.1735+1G>T and p.L1139P accounted for 56% of all alleles, while the remaining mutations are heterogeneous. These three mutations can be common in Korea, and further larger studies are needed to confirm our findings.


Subject(s)
Asian People/genetics , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type III/genetics , Mutation , Adolescent , Alleles , Amino Acid Sequence , Amino Acid Substitution , Child , Child, Preschool , Female , Gene Frequency , Glycogen Debranching Enzyme System/chemistry , Glycogen Storage Disease Type III/diagnosis , Heterozygote , Humans , Male , Republic of Korea , Sequence Alignment
11.
Pediatr Endocrinol Rev ; 11(3): 318-23, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24716397

ABSTRACT

Glycogen storage disease type III (GSD III) was found in the past with an unusual frequency among North African Jews in Israel. The aim of this study was to review the long-term clinical course of GSD III's patients in Israel. Relevant pediatric and adult clinical units of all Israeli hospitals were approached to report on their GSD III patients. 21 (14 M/7F) live patients were located. The average age of the patients was nearly twenty years. Eleven patients were older than 18 years of age. 76% of the patients were of Jewish North African origin, 14% of Jewish European origin, and 10% were Arab Muslims. The symptoms at presentation were fasting, hypoglycemia, hepatomegaly slight hypotonia in infancy and delayed growth. Although in most of the patients their signs and symptoms ameliorated after childhood, significant complications were observed in some 20% of the patients. Consequently, a life long follow up of GSD-III patients is required.


Subject(s)
Glycogen Storage Disease Type III/epidemiology , Adolescent , Adult , Africa, Northern/ethnology , Arabs/genetics , Child , Child, Preschool , Europe/ethnology , Fasting , Female , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/genetics , Growth Disorders , Heart Diseases , Hepatomegaly , Humans , Hypoglycemia , Islam , Israel , Jews/genetics , Male , Muscular Diseases , Mutation
12.
Vestn Ross Akad Med Nauk ; (7-8): 78-84, 2014.
Article in Russian | MEDLINE | ID: mdl-25563007

ABSTRACT

AIM: The purpose of the study was to assess mitochondrial dysfunction severity in patients with hepatic forms of glycogen storage disease (GSD). PATIENTS AND METHODS: We examined 53 children with GSD in the dynamics. Distribution of children by disease types was: 1st group--children with GSD type I, 2nd group--children with GSD type III, 3rd group--children with GSD type VI and IX; comparison group consisted of 34 healthy children. Intracellular dehydrogenases activity: succinate dehydrogenase (SDH), glycerol-3-phosphate-dehydrogenase (GPDH). nicotinamideadenin-H-dehydrogenase (NADH-D) and lactatdehydrogenase (LDH) was measured using the quantitative cytochemical method in the peripheral lymphocytes. RESULTS: It was revealed decrease of SDH- (p < 0.001) and GPDH-activities (p < 0.001), along with increase of the NADH-D activity (p < 0.05) in all patients with GSD, (SDH/ NADH-D) index was decreased (p < 0.001). LDH activity was increased in groups 1 (p < 0.05) and 3 (p < 0.01), compared with comparison group. The most pronounced intracellular enzymes activity deviations were observed in children with GSD type I, that correspond to more severe clinical form of GSD. It was found strong correlation between intracellular enzymes activity and both hepatomegaly level (R = 0.867) and metabolic acidosis severity (R = 0.987). CONCLUSION: Our investigation revealed features of mitochondrial dysfunction in children with GSD, depending on the GSD type. Activities of lymphocytes enzymes correlates with the main disease severity parameters and can be used as an additional diagnostic criteria in children with hepatic form of GSD.


Subject(s)
Glycogen Storage Disease Type III , Glycogen Storage Disease Type I , Glycogen Storage Disease Type VI , Liver , Lymphocytes/metabolism , Mitochondria/metabolism , Carbohydrate Metabolism , Child , Cytological Techniques/methods , Female , Glycogen Storage Disease Type I/diagnosis , Glycogen Storage Disease Type I/metabolism , Glycogen Storage Disease Type I/physiopathology , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/metabolism , Glycogen Storage Disease Type III/physiopathology , Glycogen Storage Disease Type VI/diagnosis , Glycogen Storage Disease Type VI/metabolism , Glycogen Storage Disease Type VI/physiopathology , Humans , Liver/metabolism , Liver/pathology , Liver/physiopathology , Male , Oxidoreductases/analysis , Oxidoreductases/classification , Oxidoreductases/metabolism , Severity of Illness Index , Statistics as Topic
13.
J Hum Genet ; 57(3): 170-5, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22089644

ABSTRACT

Glycogen storage disease type III (GSD III) is an autosomal recessive inborn error of metabolism caused by mutations in the glycogen debranching enzyme amylo-1,6-glucosidase gene, which is located on chromosome 1p21.2. GSD III is characterized by the storage of structurally abnormal glycogen, termed limit dextrin, in both skeletal and cardiac muscle and/or liver, with great variability in resultant organ dysfunction. The spectrum of AGL gene mutations in GSD III patients depends on ethnic group. The most prevalent mutations have been reported in the North African Jewish population and in an isolate such as the Faroe Islands. Here, we present the molecular and biochemical analyses of 22 Tunisian GSD III patients. Molecular analysis revealed three novel mutations: nonsense (Tyr1148X) and two deletions (3033_3036del AATT and 3216_3217del GA) and five known mutations: three nonsense (R864X, W1327X and W255X), a missense (R524H) and an acceptor splice-site mutation (IVS32-12A>G). Each mutation is associated to a specific haplotype. This is the first report of screening for mutations of AGL gene in the Tunisian population.


Subject(s)
Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/genetics , Adolescent , Black People/genetics , Child , Child, Preschool , Female , Haplotypes , Humans , Infant , Male , Mutation , Polymorphism, Single Nucleotide , Tunisia
14.
J Pediatr Endocrinol Metab ; 35(4): 451-462, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35038814

ABSTRACT

OBJECTIVES: To reveal the different clinical presentations of liver glycogen storage disease type IX (GSD IX), which is a clinically and genetically heterogeneous type of glycogenosis. METHODS: The data from the electronic hospital records of 25 patients diagnosed with liver GSD IX was reviewed. Symptoms, clinical findings, and laboratory and molecular analysis were assessed. RESULTS: Of the patients, 10 had complaints of short stature in the initial presentation additionally other clinical findings. Elevated serum transaminases were found in 20 patients, and hepatomegaly was found in 22 patients. Interestingly, three patients were referred due to neurodevelopmental delay and hypotonia, while one was referred for only autism. One patient who presented with neurodevelopmental delay developed hepatomegaly and elevated transaminases during the disease later on. Three of the patients had low hemoglobin A1C and fructosamine values that were near the lowest reference range. Two patients had left ventricular hypertrophy. Three patients developed osteopenia during follow-up, and one patient had osteoporosis after puberty. The most common gene variant, PHKA2, was observed in 16 patients, 10 variants were novel and six variants were defined before. Six patients had variants in PHKG2, two variants were not defined before and four variants were defined before. PHKB variants were found in three patients. One patient had two novel splice site mutations in trans position. It was revealed that one novel homozygous variant and one defined homozygous variant were found in PHKB. CONCLUSIONS: This study revealed that GSD IX may present with only hypotonia and neurodevelopmental delay without liver involvement in the early infantile period. It should be emphasized that although liver GSDIX is thought of as a benign disease, it might present with multisystemic involvement and patients should be screened with echocardiography, bone mineral densitometry, and psychometric evaluation.


Subject(s)
Glycogen Storage Disease Type III , Glycogen Storage Disease , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/genetics , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/genetics , Hepatomegaly , Humans , Mutation , Phosphorylase Kinase/genetics
15.
Ann Biol Clin (Paris) ; 69(1): 41-5, 2011.
Article in French | MEDLINE | ID: mdl-21463994

ABSTRACT

The confirmation of type III glycogen storage disease diagnosis is based on histological explorations on to live and/or muscle biopsies that induce some problems of delay and sensitivity. The purpose of this study was to evaluate a fluorimetric technique for the determination of amylo-1,6-glucosidase activity in leukocytes, in order to confirm the diagnosis of type III glycogen storage disease. The method consists in measuring the glucose released by hydrolysis of phosphorylase dextrin limit in the presence of cellular extracts, in 50 volunteers and 18 patients suspected of glycogenosis. Benefits of this technique are linearity, precision (CV = 1.68%), exactitude (CI = 0.17%), its high sensitivity (Sn = 100%) and its specificity (Sp = 96.1%). The phosphorylation of dextrin limit test allows measurement of both transferasic (α-1,4) and hydrolytic (α-1,6) enzyme activities. In conclusion, this non-invasive, and inexpensive assay, can be applied to most of the clinical biology laboratories. Comparison with radiometry and immunoblot indicate a noticeable discriminating capacity between normal subjects, patients with type I and VI glycogenosis, and patients' subgroups of type III glycogenosis.


Subject(s)
Glycogen Debranching Enzyme System/metabolism , Glycogen Storage Disease Type III/diagnosis , Leukocytes/enzymology , Adolescent , Adult , Child , Child, Preschool , Female , Fluorometry , Humans , Infant , Male , Young Adult
16.
J Clin Neuromuscul Dis ; 22(4): 224-227, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34019008

ABSTRACT

ABSTRACT: Glycogen storage disease type III is a rare inherited disease caused by decreased activity of glycogen debranching enzyme. It affects primarily the liver, cardiac muscle, and skeletal muscle. Pure involvement of the skeletal muscle with adult onset is extremely rare. We report on a patient with myopathy due to glycogen storage disease III, and describe the clinical features, and pathologic and genetic findings.


Subject(s)
Glycogen Storage Disease Type III/diagnosis , Muscular Diseases/etiology , Humans , Male , Middle Aged , Muscle, Skeletal
17.
Mol Genet Genomic Med ; 9(10): e1779, 2021 10.
Article in English | MEDLINE | ID: mdl-34405590

ABSTRACT

BACKGROUND: The condition of uniparental disomy (UPD) occurs when an individual inherits two copies of a chromosome, or part of a chromosome, from one parent. Most cases of uniparental heterodisomy (UPhD) do not cause diseases, whereas cases of uniparental isodisomy (UPiD), while rare, may be pathogenic. Theoretically, UPiD may cause rare genetic diseases in a homozygous recessive manner. METHODS: A 4-year-old girl presented with congenital hearing loss, developmental delay, hepatomegaly, and other clinical features. She and her parents were genetically tested using trio whole exome sequencing (Trio-WES) and copy number variation sequencing (CNV-seq). In addition, we built a structural model to further examine the pathogenicity of the UPiD variants. RESULTS: Trio-WES identified a paternal UPiD in chromosome 1, and two homozygous pathogenic variants AGL c.4284T>G/p.Tyr1428* and USH2A c.6528T>A/p.Tyr2176* in the UPiD region. We further analyzed the pathogenicity of these two variations. The patient was diagnosed with Usher syndrome type 2A (USH2A) and glycogen storage disease type III (GSD3). CONCLUSIONS: Our study reports a rare case of a patient carrying two pathogenic variants of different genes caused by paternal UPiD, supporting the potential application of Trio-WES in detecting and facilitating the diagnosis of UPD.


Subject(s)
Chromosomes, Human, Pair 1 , Glycogen Storage Disease Type III/complications , Glycogen Storage Disease Type III/diagnosis , Paternal Inheritance , Uniparental Disomy , Usher Syndromes/complications , Usher Syndromes/diagnosis , Adult , Biomarkers , Child, Preschool , DNA Copy Number Variations , Female , Genetic Association Studies , Genetic Predisposition to Disease , Glycogen Debranching Enzyme System/chemistry , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type III/etiology , Glycogen Storage Disease Type III/metabolism , Humans , Male , Middle Aged , Models, Molecular , Pedigree , Sequence Analysis, DNA , Structure-Activity Relationship , Usher Syndromes/etiology , Usher Syndromes/metabolism , Exome Sequencing
18.
Genet Med ; 12(7): 446-63, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20631546

ABSTRACT

PURPOSE: Glycogen storage disease type III is a rare disease of variable clinical severity affecting primarily the liver, heart, and skeletal muscle. It is caused by deficient activity of glycogen debranching enzyme, which is a key enzyme in glycogen degradation. Glycogen storage disease type III manifests a wide clinical spectrum. Individuals with glycogen storage disease type III present with hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Those with type IIIa have symptoms related to liver disease and progressive muscle (cardiac and skeletal) involvement that varies in age of onset, rate of disease progression, and severity. Those with type IIIb primarily have symptoms related to liver disease. This guideline for the management of glycogen storage disease type III was developed as an educational resource for health care providers to facilitate prompt and accurate diagnosis and appropriate management of patients. METHODS: An international group of experts in various aspects of glycogen storage disease type III met to review the evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management. RESULTS: This management guideline specifically addresses evaluation and diagnosis across multiple organ systems (cardiovascular, gastrointestinal/nutrition, hepatic, musculoskeletal, and neuromuscular) involved in glycogen storage disease type III. Conditions to consider in a differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, hepatic transplantation, and prenatal diagnosis, are addressed. CONCLUSIONS: A guideline that will facilitate the accurate diagnosis and appropriate management of individuals with glycogen storage disease type III was developed. This guideline will help health care providers recognize patients with all forms of glycogen storage disease type III, expedite diagnosis, and minimize stress and negative sequelae from delayed diagnosis and inappropriate management. It will also help identify gaps in scientific knowledge that exist today and suggest future studies.


Subject(s)
Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/therapy , Liver/pathology , Muscle, Skeletal/pathology , Humans , Liver/metabolism , Muscle, Skeletal/metabolism , Prognosis
19.
Genet Med ; 12(7): 440-5, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20071996

ABSTRACT

PURPOSE: Glycogen Storage Disease Type III, also known as debrancher deficiency or Cori disease, is an autosomal recessive disorder recognized for both its hepatic and muscle manifestations. The neuromuscular manifestations of Glycogen Storage Disease Type III are not well characterized. In this study, we attempt to better define the disorder. METHODS: The medical records of 40 patients with Glycogen Storage Disease Type III seen at Duke University during 1990-2009 were reviewed. The medical records of all patients with nerve conduction studies and/or electromyography were examined. RESULTS: Twelve patients with Glycogen Storage Disease Type III (aged 5-55 years) had undergone nerve conduction studies +/- electromyography. Three of these cases are presented in detail. Nine patients had Glycogen Storage Disease Type IIIa, two patients had Glycogen Storage Disease Type IIIb, and the clinical subtype of one patient was unknown. All had nerve conduction studies and of those nerves tested, abnormalities in the median motor response were most common, corresponding to previously described, intrinsic hand muscle weakness. Electromyography was performed in eight patients and myopathic findings were present in six individuals. Abnormal electrodiagnostic findings were more common in older patients. The two patients with Glycogen Storage Disease Type IIIb had electrodiagnostic evidence of nerve involvement with minor myopathic findings. CONCLUSIONS: The neuromuscular manifestations of Glycogen Storage Disease Type III include myopathy and neuropathy and are more likely to occur with increasing age, even in those diagnosed with Glycogen Storage Disease Type IIIb. Intrinsic hand muscle weakness is likely due to a combination of nerve and muscle dysfunction, a finding that may have implications for treatment.


Subject(s)
Electrodiagnosis , Glycogen Storage Disease Type III/diagnosis , Muscle, Skeletal/pathology , Muscular Diseases/pathology , Neuromuscular Junction/pathology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Neuromuscular Junction/metabolism , Young Adult
20.
J Inherit Metab Dis ; 33 Suppl 3: S215-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20490926

ABSTRACT

Glycogen storage disease type III (GSD III) results from mutations of the AGL gene encoding the glycogen debrancher enzyme. The disease has clinical and biochemical heterogeneity reflecting the severity of the AGL mutations. We sought to characterise the molecular defects in our cohort of Irish patients with GSD III. Fifteen patients from eight unrelated Irish families were identified: six males and nine females. The age ranged from 2-39 years old, and all presented in the first 3 years of life. Four patients (of three families) had mild disease with hepatomegaly, mild hypoglycaemia and normal creatine kinase (CK) levels. Five families had more severe disease, with liver and skeletal muscle involvement and elevated CK. Eleven different mutations were identified amongst the eight families. Of the 11, six were novel: p.T512fs, p.S736fs, p.A1400fs, p.K1407fs, p.Y519X and p.D627Y. The family homozygous for p.A1400fs had the most severe phenotype (early-onset hypoglycaemia, massive hepatomegaly, myopathy and hypertrophic cardiomyopathy before age 2 years), which was not halted by aggressive carbohydrate and protein supplementation. Conversely, the only missense mutation identified in the cohort, p.D627Y, was associated with a mild phenotype. The phenotypic diversity in our GSD III cohort is mirrored by the allelic heterogeneity. We describe two novel null mutations in exon 32 in two families with severe GSD III resistant to current treatment modalities. Knowledge of the specific mutations segregating in this cohort may allow for the development of new therapeutic interventions.


Subject(s)
Glycogen Debranching Enzyme System/deficiency , Glycogen Storage Disease Type III/enzymology , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Disease Progression , Female , Founder Effect , Genetic Association Studies , Genetic Predisposition to Disease , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/epidemiology , Glycogen Storage Disease Type III/genetics , Glycogen Storage Disease Type III/therapy , Heredity , Heterozygote , Homozygote , Humans , Infant , Infant, Newborn , Ireland/epidemiology , Male , Mutation , Pedigree , Phenotype , Severity of Illness Index , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL