Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61.471
Filter
Add more filters

Publication year range
1.
Cell ; 184(20): 5151-5162.e11, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34520724

ABSTRACT

The heartbeat is initiated by voltage-gated sodium channel NaV1.5, which opens rapidly and triggers the cardiac action potential; however, the structural basis for pore opening remains unknown. Here, we blocked fast inactivation with a mutation and captured the elusive open-state structure. The fast inactivation gate moves away from its receptor, allowing asymmetric opening of pore-lining S6 segments, which bend and rotate at their intracellular ends to dilate the activation gate to ∼10 Å diameter. Molecular dynamics analyses predict physiological rates of Na+ conductance. The open-state pore blocker propafenone binds in a high-affinity pose, and drug-access pathways are revealed through the open activation gate and fenestrations. Comparison with mutagenesis results provides a structural map of arrhythmia mutations that target the activation and fast inactivation gates. These results give atomic-level insights into molecular events that underlie generation of the action potential, open-state drug block, and fast inactivation of cardiac sodium channels, which initiate the heartbeat.


Subject(s)
NAV1.5 Voltage-Gated Sodium Channel/chemistry , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Animals , Arrhythmias, Cardiac/genetics , Cryoelectron Microscopy , HEK293 Cells , Heart Rate/drug effects , Humans , Ion Channel Gating , Models, Molecular , Molecular Dynamics Simulation , Mutation/genetics , Myocardium , NAV1.5 Voltage-Gated Sodium Channel/isolation & purification , NAV1.5 Voltage-Gated Sodium Channel/ultrastructure , Propafenone/pharmacology , Protein Conformation , Rats , Sodium/metabolism , Time Factors , Water/chemistry
2.
Cell ; 184(24): 5886-5901.e22, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34822784

ABSTRACT

Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.


Subject(s)
Alzheimer Disease/drug therapy , Drug Design , Receptor, Muscarinic M1/agonists , Aged , Aged, 80 and over , Aging/pathology , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amino Acid Sequence , Animals , Blood Pressure/drug effects , CHO Cells , Cholinesterase Inhibitors/pharmacology , Cricetulus , Crystallization , Disease Models, Animal , Dogs , Donepezil/pharmacology , Electroencephalography , Female , HEK293 Cells , Heart Rate/drug effects , Humans , Male , Mice, Inbred C57BL , Models, Molecular , Molecular Dynamics Simulation , Nerve Degeneration/complications , Nerve Degeneration/pathology , Primates , Rats , Receptor, Muscarinic M1/chemistry , Signal Transduction , Structural Homology, Protein
3.
Circulation ; 150(7): 531-543, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38939955

ABSTRACT

BACKGROUND: Despite major advances in the clinical management of long QT syndrome, some patients are not fully protected by beta-blocker therapy. Mexiletine is a well-known sodium channel blocker, with proven efficacy in patients with sodium channel-mediated long QT syndrome type 3. Our aim was to evaluate the efficacy of mexiletine in long QT syndrome type 2 (LQT2) using cardiomyocytes derived from patient-specific human induced pluripotent stem cells, a transgenic LQT2 rabbit model, and patients with LQT2. METHODS: Heart rate-corrected field potential duration, a surrogate for QTc, was measured in human induced pluripotent stem cells from 2 patients with LQT2 (KCNH2-p.A561V, KCNH2-p.R366X) before and after mexiletine using a multiwell multi-electrode array system. Action potential duration at 90% repolarization (APD90) was evaluated in cardiomyocytes isolated from transgenic LQT2 rabbits (KCNH2-p.G628S) at baseline and after mexiletine application. Mexiletine was given to 96 patients with LQT2. Patients were defined as responders in the presence of a QTc shortening ≥40 ms. Antiarrhythmic efficacy of mexiletine was evaluated by a Poisson regression model. RESULTS: After acute treatment with mexiletine, human induced pluripotent stem cells from both patients with LQT2 showed a significant shortening of heart rate-corrected field potential duration compared with dimethyl sulfoxide control. In cardiomyocytes isolated from LQT2 rabbits, acute mexiletine significantly shortened APD90 by 113 ms, indicating a strong mexiletine-mediated shortening across different LQT2 model systems. Mexiletine was given to 96 patients with LQT2 either chronically (n=60) or after the acute oral drug test (n=36): 65% of the patients taking mexiletine only chronically and 75% of the patients who performed the acute oral test were responders. There was a significant correlation between basal QTc and ∆QTc during the test (r= -0.8; P<0.001). The oral drug test correctly predicted long-term effect in 93% of the patients. Mexiletine reduced the mean yearly event rate from 0.10 (95% CI, 0.07-0.14) to 0.04 (95% CI, 0.02-0.08), with an incidence rate ratio of 0.40 (95% CI, 0.16-0.84), reflecting a 60% reduction in the event rate (P=0.01). CONCLUSIONS: Mexiletine significantly shortens cardiac repolarization in LQT2 human induced pluripotent stem cells, in the LQT2 rabbit model, and in the majority of patients with LQT2. Furthermore, mexiletine showed antiarrhythmic efficacy. Mexiletine should therefore be considered a valid therapeutic option to be added to conventional therapies in higher-risk patients with LQT2.


Subject(s)
Animals, Genetically Modified , Induced Pluripotent Stem Cells , Long QT Syndrome , Mexiletine , Myocytes, Cardiac , Mexiletine/pharmacology , Mexiletine/therapeutic use , Animals , Humans , Rabbits , Myocytes, Cardiac/drug effects , Long QT Syndrome/drug therapy , Long QT Syndrome/physiopathology , Long QT Syndrome/genetics , Induced Pluripotent Stem Cells/drug effects , Male , Female , Adult , Action Potentials/drug effects , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Adolescent , Middle Aged , Young Adult , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , Heart Rate/drug effects , Disease Models, Animal , Child , Treatment Outcome
4.
Dev Dyn ; 253(10): 895-905, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38459937

ABSTRACT

BACKGROUND: Maturation of the mouse is accompanied by the increase in heart rate. However, the mechanisms underlying this process remain unclear. We performed an action potentials (APs) recordings in mouse sinoatrial node (SAN) true pacemaker cells and in silico analysis to clarify the mechanisms underlying pre-postnatal period heart rate changes. RESULTS: The APs of true pacemaker cells at different stages had similar configurations and dV/dtmax values. The cycle length, action potential duration (APD90), maximal diastolic potential (MDP), and AP amplitude decreased, meanwhile the velocity of diastolic depolarization (DDR) increased from E12.5 stage to adult. Using a pharmacological approach we found that in SAN true pacemaker cells ivabradine reduces the DDR and the cycle length significantly stronger in E12.5 than in newborn and adult mice, whereas the effects of Ni2+ and nifedipine were significantly stronger in adult mice. Computer simulations further suggested that the density of the hyperpolarization-activated pacemaker сurrent (If) decreased during development, whereas transmembrane and intracellular Ca2+ flows increased. CONCLUSIONS: The ontogenetic decrease in IK1 density from E12.5 to adult leads to depolarization of MDP to the voltage range in which calcium currents are activated, thereby shifting the balance from the "membrane-clock" to the "calcium-clock."


Subject(s)
Action Potentials , Computer Simulation , Sinoatrial Node , Animals , Sinoatrial Node/cytology , Sinoatrial Node/drug effects , Mice , Action Potentials/drug effects , Action Potentials/physiology , Heart Rate/drug effects , Heart Rate/physiology , Ivabradine/pharmacology , Nifedipine/pharmacology , Calcium/metabolism , Biological Clocks/physiology , Biological Clocks/drug effects , Benzazepines/pharmacology
5.
J Mol Cell Cardiol ; 194: 96-104, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971217

ABSTRACT

Understanding of the mechanisms contributing to the increased maternal susceptibility for major adverse cardiovascular events in the postpartum period remains poor. Accordingly, this study tested the hypothesis that the balance between coronary blood flow and myocardial metabolism is compromised during the puerperium period (35-45 days post-delivery) in swine. Systemic and coronary hemodynamic responses were assessed in anesthetized, open-chest control (nonpregnant) and puerperium/postpartum swine at baseline and in response to intravenous infusion of dobutamine (1-30 µg/kg/min). Blood pressure and heart rate were lower in postpartum swine at baseline and in response to dobutamine (P < 0.05). Coronary blood flow and myocardial oxygen delivery were significantly diminished at baseline in postpartum swine (P < 0.001), which corresponded with ∼35% reduction in myocardial oxygen consumption (MVO2) (P < 0.001). Postpartum swine displayed enhanced retrograde coronary flow, larger cardiomyocyte area (P < 0.01) and marked capillary rarefaction (P < 0.01). The relationship between coronary blood flow and heart rate (P < 0.05) or MVO2 (P < 0.001) was significantly diminished in postpartum swine as dobutamine increased MVO2 up to ∼135% in both groups. This reduction in myocardial perfusion was associated with decreases in myocardial lactate uptake (P < 0.001), increases in coronary venous PCO2 (P < 0.01) and decreased coronary venous pH (P < 0.01). These findings suggest an impaired balance between coronary blood flow and myocardial metabolism could contribute to the increased incidence of maternal myocardial ischemia and premature death in the postpartum period.


Subject(s)
Coronary Circulation , Myocardium , Postpartum Period , Animals , Female , Swine , Myocardium/metabolism , Coronary Circulation/drug effects , Hemodynamics/drug effects , Heart Rate/drug effects , Dobutamine/pharmacology , Oxygen Consumption/drug effects , Blood Pressure/drug effects , Pregnancy
6.
Physiol Genomics ; 56(6): 426-435, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38557279

ABSTRACT

Short-chain fatty acids (SCFAs) produced by the gut bacteria have been associated with cardiovascular dysfunction in humans and rodents. However, studies exploring effects of SCFAs on cardiovascular parameters in the zebrafish, an increasingly popular model in cardiovascular research, remain limited. Here, we performed fecal bacterial 16S sequencing and gas chromatography/mass spectrometry (GC-MS) to determine the composition and abundance of gut microbiota and SCFAs in adult zebrafish. Following this, the acute effects of major SCFAs on heart rate and vascular tone were measured in anesthetized zebrafish larvae using fecal concentrations of butyrate, acetate, and propionate. Finally, we investigated if coincubation with butyrate may lessen the effects of angiotensin II (ANG II) and phenylephrine (PE) on vascular tone in anesthetized zebrafish larvae. We found that the abundance in Proteobacteria, Firmicutes, and Fusobacteria phyla in the adult zebrafish resembled those reported in rodents and humans. SCFA levels with highest concentration of acetate (27.43 µM), followed by butyrate (2.19 µM) and propionate (1.65 µM) were observed in the fecal samples of adult zebrafish. Immersion in butyrate and acetate produced a ∼20% decrease in heart rate (HR), respectively, with no observed effects of propionate. Butyrate alone also produced an ∼25% decrease in the cross-sectional width of the dorsal aorta (DA) at 60 min (*P < 0.05), suggesting compensatory vasoconstriction, with no effects of either acetate or propionate. In addition, butyrate significantly alleviated the decrease in DA cross-sectional width produced by both ANG II and PE. We demonstrate the potential for zebrafish in investigation of host-microbiota interactions in cardiovascular health.NEW & NOTEWORTHY We highlight the presence of a core gut microbiota and demonstrate in vivo short-chain fatty acid production in adult zebrafish. In addition, we show cardio-beneficial vasoactive and chronotropic properties of butyrate, and chronotropic properties of acetate in anesthetized zebrafish larvae.


Subject(s)
Fatty Acids, Volatile , Feces , Gastrointestinal Microbiome , Heart Rate , Larva , Zebrafish , Animals , Zebrafish/microbiology , Gastrointestinal Microbiome/drug effects , Fatty Acids, Volatile/metabolism , Heart Rate/drug effects , Feces/microbiology , Butyrates/metabolism , Butyrates/pharmacology , Angiotensin II/metabolism , Angiotensin II/pharmacology , Bacteria/drug effects , Phenylephrine/pharmacology , Acetates/pharmacology , Acetates/metabolism , RNA, Ribosomal, 16S/genetics
7.
J Physiol ; 602(16): 4053-4071, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39058701

ABSTRACT

The present study investigated the impact of central α2-adrenergic mechanisms on sympathetic action potential (AP) discharge, recruitment and latency strategies. We used the microneurographic technique to record muscle sympathetic nerve activity and a continuous wavelet transform to investigate postganglionic sympathetic AP firing during a baseline condition and an infusion of a α2-adrenergic receptor agonist, dexmedetomidine (10 min loading infusion of 0.225 µg kg-1; maintenance infusion of 0.1-0.5 µg kg h-1) in eight healthy individuals (28 ± 7 years, five females). Dexmedetomidine reduced mean pressure (92 ± 7 to 80 ± 8 mmHg, P < 0.001) but did not alter heart rate (61 ± 13 to 60 ± 14 bpm; P = 0.748). Dexmedetomidine reduced sympathetic AP discharge (126 ± 73 to 27 ± 24 AP 100 beats-1, P = 0.003) most strongly for medium-sized APs (normalized cluster 2: 21 ± 10 to 5 ± 5 AP 100 beats-1; P < 0.001). Dexmedetomidine progressively de-recruited sympathetic APs beginning with the largest AP clusters (12 ± 3 to 7 ± 2 clusters, P = 0.002). Despite de-recruiting large AP clusters with shorter latencies, dexmedetomidine reduced AP latency across remaining clusters (1.18 ± 0.12 to 1.13 ± 0.13 s, P = 0.002). A subset of six participants performed a Valsalva manoeuvre (20 s, 40 mmHg) during baseline and the dexmedetomidine infusion. Compared to baseline, AP discharge (Δ 361 ± 292 to Δ 113 ± 155 AP 100 beats-1, P = 0.011) and AP cluster recruitment elicited by the Valsalva manoeuvre were lower during dexmedetomidine (Δ 2 ± 1 to Δ 0 ± 2 AP clusters, P = 0.041). The reduction in sympathetic AP latency elicited by the Valsalva manoeuvre was not affected by dexmedetomidine (Δ -0.09 ± 0.07 to Δ -0.07 ± 0.14 s, P = 0.606). Dexmedetomidine reduced baroreflex gain, most strongly for medium-sized APs (normalized cluster 2: -6.0 ± 5 to -1.6 ± 2 % mmHg-1; P = 0.008). These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans. KEY POINTS: Sympathetic postganglionic neuronal subpopulations innervating the human circulation exhibit complex patterns of discharge, recruitment and latency. However, the central neural mechanisms governing sympathetic postganglionic discharge remain unclear. This microneurographic study investigated the impact of a dexmedetomidine infusion (α2-adrenergic receptor agonist) on muscle sympathetic postganglionic action potential (AP) discharge, recruitment and latency patterns. Dexmedetomidine infusion inhibited the recruitment of large and fast conducting sympathetic APs and attenuated the discharge of medium sized sympathetic APs that fired during resting conditions and the Valsalva manoeuvre. Dexmedetomidine infusion elicited shorter sympathetic AP latencies during resting conditions but did not affect the reductions in latency that occurred during the Valsalva manoeuvre. These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans.


Subject(s)
Action Potentials , Adrenergic alpha-2 Receptor Agonists , Dexmedetomidine , Sympathetic Nervous System , Humans , Dexmedetomidine/pharmacology , Female , Adult , Male , Adrenergic alpha-2 Receptor Agonists/pharmacology , Sympathetic Nervous System/physiology , Sympathetic Nervous System/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Young Adult , Heart Rate/drug effects , Heart Rate/physiology , Blood Pressure/physiology , Blood Pressure/drug effects , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/drug effects , Receptors, Adrenergic, alpha-2/physiology , Receptors, Adrenergic, alpha-2/metabolism
8.
Am J Physiol Renal Physiol ; 327(2): F199-F207, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38841747

ABSTRACT

Chronic kidney disease is the loss of renal function that can occur from aging or through a myriad of other disease states. Rising serum concentrations of kynurenine, a tryptophan metabolite, have been shown to correlate with increasing severity of chronic kidney disease. This study used chronic intravenous infusion in conscious male Sprague-Dawley rats to test the hypothesis that kynurenine can induce renal damage and promote alterations in blood pressure, heart rate, and decreased renal function. We found that kynurenine infusion increased mean arterial pressure, increased the maximum and minimum range of heart rate, decreased glomerular filtration rate, and induced kidney damage in a dose-dependent manner. This study shows that kynurenine infusion can promote kidney disease in healthy, young rats, implying that the increase in kynurenine levels associated with chronic kidney disease may establish a feed-forward mechanism that exacerbates the loss of renal function.NEW & NOTEWORTHY In humans, an elevated serum concentration of kynurenine has long been associated with negative outcomes in various disease states as well as in aging. However, it has been unknown whether these increased kynurenine levels are mediating the disorders or simply associated with them. This study shows that chronically infusing kynurenine can contribute to the development of hypertension and kidney impairment. The mechanism of this action remains to be determined in future studies.


Subject(s)
Arterial Pressure , Glomerular Filtration Rate , Kidney , Kynurenine , Rats, Sprague-Dawley , Tryptophan , Animals , Kynurenine/blood , Kynurenine/metabolism , Male , Arterial Pressure/drug effects , Tryptophan/blood , Tryptophan/metabolism , Glomerular Filtration Rate/drug effects , Kidney/metabolism , Kidney/drug effects , Kidney/physiopathology , Infusions, Intravenous , Heart Rate/drug effects , Rats , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/blood
9.
J Neurophysiol ; 132(3): 922-928, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39110514

ABSTRACT

Preclinical models indicate that amiloride (AMD) reduces baroreflex sensitivity and perturbs homeostatic blood pressure (BP) regulation. However, it remains unclear whether these findings translate to humans. This study investigated whether oral administration of AMD reduces spontaneous cardiac and sympathetic baroreflex sensitivity and perturbs BP regulation in healthy young humans. Heart rate (HR; electrocardiography), beat-to-beat BP (photoplethysmography), and muscle sympathetic activity (MSNA, microneurography) were continuously measured in 10 young subjects (4 females) during rest across two randomized experimental visits: 1) after 3 h of oral administration of placebo (PLA, 10 mg of methylcellulose within a gelatin capsule) and 2) after 3 h of oral administration of AMD (10 mg). Visits were separated for at least 48 h. We calculated the standard deviation and other indices of BP variability. Spontaneous cardiac baroreflex was assessed via the sequence technique and cardiac autonomic modulation through time- and frequency-domain HR variability. The sensitivity (gain) of the sympathetic baroreflex was determined via weighted linear regression analysis between MSNA and diastolic BP. AMD did not affect HR, BP, and MSNA compared with PLA. Indexes of cardiac autonomic modulation (time- and frequency-domain HR variability) and BP variability were also unchanged after AMD ingestion. Likewise, AMD did not modify the gain of both spontaneous cardiac and sympathetic arterial baroreflex. A single oral dose of AMD does not affect spontaneous arterial baroreflex sensitivity and BP variability in healthy young adults.NEW & NOTEWORTHY Preclinical models indicate that amiloride (AMD), a nonselective antagonist of the acid-sensing ion channels (ASICs), impairs baroreflex sensitivity and perturbs blood pressure regulation. We translated these findings into humans, investigating the impact of acute oral ingestion of AMD on blood pressure variability and spontaneous cardiac and sympathetic baroreflex sensitivity in healthy young humans. In contrast to preclinical evidence, AMD does not impair spontaneous arterial baroreflex sensitivity and blood pressure variability in healthy young adults.


Subject(s)
Amiloride , Baroreflex , Blood Pressure , Heart Rate , Humans , Baroreflex/drug effects , Baroreflex/physiology , Amiloride/pharmacology , Amiloride/administration & dosage , Male , Female , Adult , Heart Rate/drug effects , Young Adult , Blood Pressure/drug effects , Blood Pressure/physiology , Administration, Oral , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Epithelial Sodium Channel Blockers/pharmacology , Epithelial Sodium Channel Blockers/administration & dosage
10.
Eur J Neurosci ; 60(5): 4830-4842, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39044301

ABSTRACT

Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.


Subject(s)
Blood Pressure , Chemokines , Rats, Sprague-Dawley , Solitary Nucleus , Sympathetic Nervous System , Animals , Solitary Nucleus/drug effects , Solitary Nucleus/physiology , Solitary Nucleus/metabolism , Male , Chemokines/metabolism , Blood Pressure/drug effects , Blood Pressure/physiology , Sympathetic Nervous System/physiology , Sympathetic Nervous System/drug effects , Rats , Receptors, Chemokine/metabolism , Heart Rate/drug effects , Heart Rate/physiology , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/administration & dosage , NADPH Oxidases/metabolism , Superoxides/metabolism
11.
Eur J Neurosci ; 60(8): 5849-5860, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39235324

ABSTRACT

The paraventricular nucleus of the hypothalamus (PVN) regulates physiological and behavioural responses evoked by stressful stimuli, but the local neurochemical and signalling mechanisms involved are not completely understood. The soluble guanylate cyclase (sGC) within the PVN is implicated in autonomic and cardiovascular control in rodents under resting conditions. However, the involvement of PVN sGC-mediated signalling in stress responses is unknown. Therefore, we investigated the role of sGC within the PVN in cardiovascular, autonomic, neuroendocrine, and local neuronal responses to acute restraint stress in rats. Bilateral microinjection of the selective sGC inhibitor ODQ (1 nmol/100 nl) into the PVN reduced both the increased arterial pressure and the drop in cutaneous tail temperature evoked by restraint stress, while the tachycardia was enhanced. Intra-PVN injection of ODQ did not alter the number of Fos-immunoreactive neurons in either the dorsal cap parvocellular (PaDC), ventromedial (PaV), medial parvocellular (PaMP), or lateral magnocelllular (PaLM) portions of the PVN following acute restraint stress. Local microinjection of ODQ into the PVN did not affect the restraint-induced increases in plasma corticosterone concentration. Taken together, these findings suggest that sGC-mediated signalling in the PVN plays a key role in acute stress-induced pressor responses and sympathetically mediated cutaneous vasoconstriction, whereas the tachycardiac response is inhibited. Absence of an effect of ODQ on corticosterone and PVN neuronal activation in and the PaV and PaMP suggests that PVN sGC is not involved in restraint-evoked hypothalamus-pituitary-adrenal (HPA) axis activation and further indicates that autonomic and neuroendocrine responses are dissociable at the level of the PVN.


Subject(s)
Paraventricular Hypothalamic Nucleus , Restraint, Physical , Stress, Psychological , Animals , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Male , Rats , Stress, Psychological/physiopathology , Stress, Psychological/metabolism , Soluble Guanylyl Cyclase/metabolism , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiopathology , Rats, Wistar , Heart Rate/drug effects , Heart Rate/physiology , Blood Pressure/drug effects , Blood Pressure/physiology , Guanylate Cyclase/metabolism , Guanylate Cyclase/antagonists & inhibitors
12.
Antimicrob Agents Chemother ; 68(8): e0046424, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38953364

ABSTRACT

Islatravir is a deoxynucleoside analog being developed for the treatment of HIV-1 infection. Clinical studies are being conducted to evaluate islatravir, administered in combination with other antiretroviral therapies, at doses of 0.25 mg once daily and 2 mg once weekly. In multiple previous clinical studies, islatravir was generally well tolerated, with no clear trend in cardiac adverse events. A trial was conducted to evaluate the effect of islatravir on cardiac repolarization. A randomized, double-blind, active- and placebo-controlled phase 1 trial was conducted, in which a single dose of islatravir 0.75 mg, islatravir 240 mg (supratherapeutic dose), moxifloxacin 400 mg (active control), or placebo was administered. Continuous 12-lead electrocardiogram monitoring was performed before dosing through 24 hours after dosing. QT interval measurements were collected, and safety and pharmacokinetics were evaluated. Sixty-three participants were enrolled, and 59 completed the study. Fridericia's QT correction for heart rate was inadequate; therefore, a population-specific correction was applied (QTcP). The placebo-corrected change from baseline in QTcP (ΔΔQTcP) interval at the observed geometric mean maximum plasma concentration associated with islatravir 0.75 mg and islatravir 240 mg was <10 ms at all time points. Assay sensitivity was confirmed because the use of moxifloxacin 400 mg led to a ΔΔQTcP >10 ms. The pharmacokinetic profile of islatravir was consistent with that of previous studies, and islatravir was generally well tolerated. Results from the current trial suggest that single doses of islatravir as high as 240 mg do not lead to QTc interval prolongation.


Subject(s)
Electrocardiography , Fluoroquinolones , Moxifloxacin , Humans , Adult , Male , Electrocardiography/drug effects , Double-Blind Method , Female , Middle Aged , Fluoroquinolones/adverse effects , Fluoroquinolones/pharmacokinetics , Moxifloxacin/adverse effects , Moxifloxacin/pharmacokinetics , Heart Rate/drug effects , Long QT Syndrome/chemically induced , Young Adult , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/adverse effects , Anti-HIV Agents/therapeutic use , Aza Compounds/adverse effects , Aza Compounds/pharmacokinetics , Deoxyadenosines
13.
Am J Physiol Heart Circ Physiol ; 327(1): H12-H27, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38727253

ABSTRACT

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the comprehensive in vitro proarrhythmia assay (CiPA). Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. We investigated the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. iCell cardiomyocytes2 were cultured and biosignals were acquired using a microelectrode array (MEA) system (2-14 days). Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-min equilibration period. Location-specific differences across a multiwell plate were also observed, with iCell cardiomyocytes2 in the outer rows beating 8.8 beats/min faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2 to 14 days, the beating rate decreased (-12.7 beats/min), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted cardiomyocyte drug responsiveness (E-4031, nifedipine, isoproterenol). qRT-PCR results suggest that daily variations in cardiac metrics may be linked to the continued maturation of hiPSC-CMs in culture (2-30 days). Daily experiments were also repeated using a second cell line (Cor.4U). Collectively, our study highlights multiple sources of variability to consider and address when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., cell line, culture time, equilibration time, electrical stimulation settings, and raw data values).NEW & NOTEWORTHY We demonstrate that iCell cardiomyocytes2 electrophysiology measurements are impacted by deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first 2 wk following defrost.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Humans , Induced Pluripotent Stem Cells/drug effects , Reproducibility of Results , Time Factors , Action Potentials/drug effects , Cells, Cultured , Isoproterenol/pharmacology , Heart Rate/drug effects , Microelectrodes , Cell Line , Cardiotoxicity
14.
Am J Physiol Heart Circ Physiol ; 327(5): H1187-H1197, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39331021

ABSTRACT

The Ras-related GTP-binding protein D (RRAGD) gene plays a crucial role in cellular processes. Recently, RRAGD variants found in patients have been implicated in a novel disorder with kidney tubulopathy and dilated cardiomyopathy. Currently, the consequences of RRAGD variants at the organismal level are unknown. Therefore, this study investigated the impact of RRAGD variants on cardiac function using a zebrafish embryo model. Furthermore, the potential usage of rapamycin, an mTOR inhibitor, as a therapy was assessed in this model. Zebrafish embryos were injected with RRAGD p.S76L and p.P119R cRNA and the resulting heart phenotypes were studied. Our findings reveal that overexpression of RRAGD mutants resulted in decreased ventricular fractional shortening, ejection fraction, and pericardial swelling. In RRAGD S76L-injected embryos, lower survival and heartbeat were observed, whereas survival was unaffected in RRAGD P119R embryos. These observations were reversible following therapy with the mTOR inhibitor rapamycin. Moreover, no effects on electrolyte homeostasis were observed. Together, these findings indicate a crucial role of RRAGD in cardiac function. In the future, the molecular mechanisms by which RRAGD variants result in cardiac dysfunction and if the effects of rapamycin are specific for RRAGD-dependent cardiomyopathy should be studied in clinical studies.NEW & NOTEWORTHY The resultant heart-associated phenotypes in the zebrafish embryos of this study serve as a valuable experimental model for this rare cardiomyopathy. Moreover, the potential therapeutic property of rapamycin in cardiac dysfunctions was highlighted, making this study a pivotal step toward prospective clinical applications.


Subject(s)
Phenotype , Sirolimus , Zebrafish Proteins , Zebrafish , Animals , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Sirolimus/pharmacology , Disease Models, Animal , MTOR Inhibitors/pharmacology , Heart Rate/drug effects , Mutation , Heart/physiopathology , Heart/drug effects , Heart/embryology , Stroke Volume/drug effects
15.
Am J Physiol Heart Circ Physiol ; 327(1): H131-H137, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38700470

ABSTRACT

Right ventricular failure (RVF) is a major cause of early mortality after heart transplantation (HT). Isoproterenol (Iso) has chronotropic, inotropic, and vasodilatory properties, which might improve right ventricle function in this setting. We aimed to investigate the hemodynamic effects of isoproterenol on patients with post-HT RVF. We conducted a 1-yr retrospective observational study including patients receiving isoproterenol (Iso) and dobutamine for early RVF after HT. A comprehensive multiparametric hemodynamic evaluation was performed successively three times: no isoproterenol, low doses: 0.025 µg/kg/min, and high doses: 0.05 µg/kg/min (henceforth, respectively, called no Iso, low Iso, and high Iso). From June 2022 to June 2023, 25 patients, median [interquartile range (IQR) 25-75] age 54 [38-61] yr, were included. Before isoproterenol was introduced, all patients received dobutamine, and 15 (60%) were on venoarterial extracorporeal membrane oxygenation (VA-ECMO). Isoproterenol significantly increased heart rate from 84 [77-99] (no Iso) to 91 [88-106] (low Iso) and 102 [90-122] beats/min (high Iso, P < 0.001). Similarly, cardiac index rose from 2.3 [1.4-3.1] to 2.7 [1.8-3.4] and 3 [1.9-3.7] L/min/m2 (P < 0.001) with a concomitant increase in indexed stroke volume (28 [17-34] to 31 [20-34] and 33 [23-35] mL/m2, P < 0.05). Effective pulmonary arterial elastance and pressures were not modified by isoproterenol. Pulmonary vascular resistance (PVR) tended to decrease from 2.9 [1.4-3.6] to 2.3 [1.3-3.5] wood units (WU), P = 0.06. Right ventricular ejection fraction/systolic pulmonary artery pressure (sPAP) evaluating right ventricle-pulmonary artery (RV-PA) coupling increased after isoproterenol from 0.8 to 0.9 and 1%·mmHg-1 (P = 0.001). In conclusion, in post-HT RVF, isoproterenol exhibits chronotropic and inotropic effects, thereby improving RV-PA coupling and resulting in a clinically relevant increase in the cardiac index.NEW & NOTEWORTHY This study offers a detailed and comprehensive hemodynamic investigation at the bedside, illustrating the favorable impact of isoproterenol on right ventricular-pulmonary arterial coupling and global hemodynamics. It elucidates the physiological effects of an underused inotropic strategy in a critical clinical scenario. By enhancing cardiac hemodynamics, isoproterenol has the potential to expedite right ventricular recovery and mitigate primary graft dysfunction, thereby reducing the duration of mechanical support and intensive care unit stay posttransplantation.


Subject(s)
Heart Transplantation , Hemodynamics , Isoproterenol , Pulmonary Artery , Ventricular Dysfunction, Right , Ventricular Function, Right , Humans , Isoproterenol/pharmacology , Heart Transplantation/adverse effects , Middle Aged , Male , Pulmonary Artery/physiopathology , Pulmonary Artery/drug effects , Female , Ventricular Function, Right/drug effects , Retrospective Studies , Adult , Hemodynamics/drug effects , Aged , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/etiology , Heart Failure/physiopathology , Heart Failure/drug therapy , Dobutamine/pharmacology , Treatment Outcome , Heart Rate/drug effects , Recovery of Function , Cardiotonic Agents/pharmacology
16.
Am J Physiol Heart Circ Physiol ; 326(6): H1337-H1349, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38551482

ABSTRACT

Nicotine is the primary addictive component of tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. To assess the underlying mechanisms, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days before performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the first to third thoracic vertebrae, and ß-adrenergic responsiveness was additionally evaluated following norepinephrine (NE) perfusion. Baseline ex vivo heart rate (HR) and SNS stimulation threshold were higher in NIC versus CT (P = 0.004 and P = 0.003, respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC versus CT at baseline (P = 0.002) and during SNS (P = 0.0003), with similar results obtained for Ca2+ transient alternans. SNS shortened the PCL at which alternans emerged in CT but not in NIC hearts. NIC-exposed hearts tended to have slower and reduced HR responses to NE perfusion, but ventricular responses to NE were comparable between groups. Although fibrosis was unaltered, NIC hearts had lower sympathetic nerve density (P = 0.03) but no difference in NE content versus CT. These results suggest both sympathetic hypoinnervation of the myocardium and regional differences in ß-adrenergic responsiveness with NIC. This autonomic remodeling may contribute to the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with long-term use.NEW & NOTEWORTHY Here, we show that chronic nicotine exposure was associated with increased heart rate, increased susceptibility to alternans, and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to sympathetic hypoinnervation of the myocardium and diminished ß-adrenergic responsiveness of the sinoatrial node following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this proarrhythmic remodeling.


Subject(s)
Action Potentials , Heart Rate , Heart , Nicotine , Sympathetic Nervous System , Animals , Nicotine/toxicity , Nicotine/adverse effects , Rabbits , Heart Rate/drug effects , Action Potentials/drug effects , Heart/innervation , Heart/drug effects , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Male , Nicotinic Agonists/toxicity , Nicotinic Agonists/administration & dosage , Calcium Signaling/drug effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/metabolism , Transdermal Patch , Isolated Heart Preparation , Administration, Cutaneous , Norepinephrine/metabolism
17.
Am J Physiol Regul Integr Comp Physiol ; 327(4): R379-R388, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39034814

ABSTRACT

Oral contraceptive (OC) use can increase resting blood pressure (BP) in females as well as contribute to greater activation of group III/IV afferents during upper body exercise. It is unknown, however, whether an exaggerated BP response occurs during lower limb exercise in OC users. We sought to elucidate the group III/IV afferent activity-mediated BP and heart rate responses while performing lower extremity tasks during early and late follicular phases in young, healthy females. Females not taking OCs (NOC: n = 8; age: 25 ± 4 yr) and those taking OCs (OC: n = 10; age: 23 ± 2 yr) completed a continuous knee extension/flexion passive stretch (mechanoreflex) and cycling exercise with subsystolic cuff occlusion (exercise pressor reflex), which was followed by a 2-min postexercise circulatory occlusion (PECO) (metaboreflex). Data collection occurred on two occasions: once during the early follicular phase (days 1-4) and once during the late follicular phase (days 10-14) of their menstrual cycle (NOC) or during the placebo and active pill phases (OC). Resting mean arterial BP and heart rate were not different between phases in NOC and OC participants (P > 0.05). Hemodynamic responses to metaboreflex, mechanoreflex, and collective exercise pressor reflex activation were not different between phases in both groups (P > 0.05). In conclusion, although OCs are known to increase BP at rest, our findings indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during large, lower limb muscle exercise with or without group III/IV afferent activation in young, healthy females.NEW & NOTEWORTHY Sex differences in the cardiovascular response to exercise have been demonstrated and may be dependent on sex hormone levels. Furthermore, oral contraceptives (OCs) have been shown to exaggerate the blood pressure response to upper extremity exercise. The results of this study indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during lower extremity dynamic exercise or with group III/IV afferent activation in young, healthy females.


Subject(s)
Exercise , Heart Rate , Lower Extremity , Humans , Female , Adult , Young Adult , Heart Rate/drug effects , Exercise/physiology , Blood Pressure/drug effects , Muscle, Skeletal , Reflex , Follicular Phase , Contraceptives, Oral, Hormonal/pharmacology , Contraceptives, Oral, Hormonal/administration & dosage
18.
Am J Physiol Regul Integr Comp Physiol ; 327(5): R497-R507, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39155710

ABSTRACT

Hemorrhage is a leading cause of death in the prehospital setting. Since trauma-induced pain often accompanies a hemorrhagic insult, the administered pain medication must not interfere with critical autonomic regulation of arterial blood pressure and vital organ perfusion. The purpose of this study was to test two unrelated hypotheses: 1) sublingual sufentanil (Dsuvia) impairs tolerance to progressive central hypovolemia and 2) sublingual sufentanil attenuates pain sensation and the accompanying cardiovascular responses to a noxious stimulus. Twenty-nine adults participated in this double-blinded, randomized, crossover, placebo-controlled trial. After sublingual administration of sufentanil (30 µg) or placebo, participants completed a progressive lower-body negative pressure (LBNP) challenge to tolerance (aim 1). After a recovery period, participants completed a cold pressor test (CPT; aim 2). Addressing the first aim, tolerance to LBNP was not different between trials (P = 0.495). Decreases in systolic blood pressure from baseline to the end of LBNP also did not differ between trials (time P < 0.001, trial P = 0.477, interaction P = 0.587). Finally, increases in heart rate from baseline to the end of LBNP did not differ between trials (time P < 0.001, trial P = 0.626, interaction P = 0.424). Addressing the second aim, sufentanil attenuated perceived pain (P < 0.001) in response to the CPT, though the magnitude of the change in mean blood pressure during the CPT (P = 0.078) was not different between trials. These data demonstrate that sublingual sufentanil does not impair tolerance to progressive central hypovolemia. Additionally, sublingual sufentanil attenuates perceived pain, but not the accompanying mean blood pressure responses to the CPT.NEW & NOTEWORTHY Addressing two unique aims, we observed that sublingual sufentanil administration does not impair tolerance or cardiovascular responses to lower-body negative pressure (LBNP)-induced progressive central hypovolemia. Second, despite pain perception being reduced, sublingual sufentanil did not attenuate mean blood pressure responses to a cold pressor test (CPT).


Subject(s)
Analgesics, Opioid , Blood Pressure , Cross-Over Studies , Hypovolemia , Lower Body Negative Pressure , Sufentanil , Humans , Sufentanil/administration & dosage , Male , Female , Hypovolemia/physiopathology , Adult , Double-Blind Method , Analgesics, Opioid/administration & dosage , Blood Pressure/drug effects , Young Adult , Cold Temperature , Administration, Sublingual , Pain Threshold/drug effects , Pain Perception/drug effects , Heart Rate/drug effects
19.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R599-R608, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38682242

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) with orthostatic intolerance (OI) is characterized by neurocognitive deficits perhaps related to upright hypocapnia and loss of cerebral autoregulation (CA). We performed N-back neurocognition testing and calculated the phase synchronization index (PhSI) between arterial pressure (AP) and cerebral blood velocity (CBV) as a time-dependent measurement of cerebral autoregulation in 11 control (mean age = 24.1 yr) and 15 patients with ME/CFS (mean age = 21.8 yr). All patients with ME/CFS had postural tachycardia syndrome (POTS). A 10-min 60° head-up tilt (HUT) significantly increased heart rate (109.4 ± 3.9 vs. 77.2 ± 1.6 beats/min, P < 0.05) and respiratory rate (20.9 ± 1.7 vs. 14.2 ± 1.2 breaths/min, P < 0.05) and decreased end-tidal CO2 (ETCO2; 33.9 ± 1.1 vs. 42.8 ± 1.2 Torr, P < 0.05) in ME/CFS versus control. In ME/CFS, HUT significantly decreased CBV compared with control (-22.5% vs. -8.7%, P < 0.005). To mitigate the orthostatic CBV reduction, we administered supplemental CO2, phenylephrine, and acetazolamide and performed N-back testing supine and during HUT. Only phenylephrine corrected the orthostatic decrease in neurocognition by reverting % correct n = 4 N-back during HUT in ME/CFS similar to control (ME/CFS = 38.5 ± 5.5 vs. ME/CFS + PE= 65.6 ± 5.7 vs. Control 56.9 ± 7.5). HUT in ME/CFS resulted in increased PhSI values indicating decreased CA. Although CO2 and acetazolamide had no effect on PhSI in ME/CFS, phenylephrine caused a significant reduction in PhSI (ME/CFS = 0.80 ± 0.03 vs. ME/CFS + PE= 0.69 ± 0.04, P < 0.05) and improved cerebral autoregulation. Thus, PE improved neurocognitive function in patients with ME/CFS, perhaps related to improved neurovascular coupling, cerebral autoregulation, and maintenance of CBV.NEW & NOTEWORTHY We evaluated cognitive function before and after CO2, acetazolamide, and phenylephrine, which mitigate orthostatic reductions in cerebral blood velocity. Neither CO2 nor acetazolamide affected N-back testing (% correct answers) during an orthostatic challenge. Only phenylephrine improved upright N-back performance in ME/CFS, as it both blocked hyperventilation and increased CO2 significantly compared with those untreated. And only phenylephrine resulted in improved PSI values in both ME/CFS and control while upright, suggesting improved cerebral autoregulation.


Subject(s)
Blood Pressure , Cerebrovascular Circulation , Orthostatic Intolerance , Phenylephrine , Humans , Cerebrovascular Circulation/drug effects , Phenylephrine/pharmacology , Female , Male , Orthostatic Intolerance/physiopathology , Adult , Young Adult , Blood Flow Velocity/drug effects , Blood Pressure/drug effects , Fatigue Syndrome, Chronic/physiopathology , Fatigue Syndrome, Chronic/drug therapy , Tilt-Table Test , Cognition/drug effects , Homeostasis , Case-Control Studies , Heart Rate/drug effects , Arterial Pressure/drug effects , Postural Orthostatic Tachycardia Syndrome/physiopathology , Postural Orthostatic Tachycardia Syndrome/drug therapy
20.
Ophthalmology ; 131(9): 1045-1055, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38492865

ABSTRACT

PURPOSE: To examine if 12.5 µl timolol maleate 0.5% microdrops dispensed with the Nanodropper Adaptor provide noninferior intraocular pressure (IOP) reduction compared with conventional 28 µl drops in patients with open-angle glaucoma (OAG) and ocular hypertension (OHT). DESIGN: Prospective, noninferiority, parallel, multicenter, single-masked, active-controlled, randomized trial. PARTICIPANTS: Treatment-naïve subjects who were recently diagnosed with OAG and OHT at the Aravind Eye Care System. METHODS: Both eyes of subjects received 1 commercially available drop or both eyes of subjects received 1 microdrop of timolol maleate 0.5%. We measured IOP, resting heart rate (HR), and blood pressure (BP) at baseline and 1, 2, 5, and 8 hours after timolol administration. MAIN OUTCOME MEASURES: The IOP was the primary outcome measure. Secondary outcomes were resting HR, systolic BP (sBP), and diastolic BP (dBP). RESULTS: Adaptor-mediated microdrops and conventional drops of timolol significantly decreased IOP compared with baseline at all timepoints. Noninferiority was established at 3 of 4 timepoints. Heart rate decreases with Nanodropper were approximately 3 beats per minute (bpm) less than with conventional drops. CONCLUSIONS: Timolol microdrops appear to be as effective in ocular hypotensive action as conventional drops with a slightly attenuated effect on resting HR and BP. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Subject(s)
Antihypertensive Agents , Blood Pressure , Glaucoma, Open-Angle , Heart Rate , Intraocular Pressure , Ocular Hypertension , Ophthalmic Solutions , Timolol , Tonometry, Ocular , Humans , Timolol/administration & dosage , Intraocular Pressure/drug effects , Intraocular Pressure/physiology , Prospective Studies , Glaucoma, Open-Angle/drug therapy , Glaucoma, Open-Angle/physiopathology , Male , Female , Ocular Hypertension/drug therapy , Ocular Hypertension/physiopathology , Middle Aged , Ophthalmic Solutions/administration & dosage , Antihypertensive Agents/administration & dosage , Single-Blind Method , Blood Pressure/drug effects , Blood Pressure/physiology , Aged , Heart Rate/drug effects , Treatment Outcome , Adult , Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL