Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69.048
Filter
Add more filters

Publication year range
1.
Nature ; 622(7984): 834-841, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794190

ABSTRACT

Although haemoglobin is a known carrier of oxygen in erythrocytes that functions to transport oxygen over a long range, its physiological roles outside erythrocytes are largely elusive1,2. Here we found that chondrocytes produced massive amounts of haemoglobin to form eosin-positive bodies in their cytoplasm. The haemoglobin body (Hedy) is a membraneless condensate characterized by phase separation. Production of haemoglobin in chondrocytes is controlled by hypoxia and is dependent on KLF1 rather than the HIF1/2α pathway. Deletion of haemoglobin in chondrocytes leads to Hedy loss along with severe hypoxia, enhanced glycolysis and extensive cell death in the centre of cartilaginous tissue, which is attributed to the loss of the Hedy-controlled oxygen supply under hypoxic conditions. These results demonstrate an extra-erythrocyte role of haemoglobin in chondrocytes, and uncover a heretofore unrecognized mechanism in which chondrocytes survive a hypoxic environment through Hedy.


Subject(s)
Adaptation, Physiological , Cell Hypoxia , Chondrocytes , Hemoglobins , Humans , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Cell Death , Cell Hypoxia/physiology , Chondrocytes/metabolism , Cytoplasm/metabolism , Eosine Yellowish-(YS)/metabolism , Erythrocytes/metabolism , Glycolysis , Hemoglobins/deficiency , Hemoglobins/genetics , Hemoglobins/metabolism , Oxygen/metabolism
2.
EMBO J ; 42(19): e114164, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37554073

ABSTRACT

Cellular circadian rhythms confer temporal organisation upon physiology that is fundamental to human health. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body, but their physiological function is poorly understood. Here, we present a novel biochemical assay for haemoglobin (Hb) oxidation status which relies on a redox-sensitive covalent haem-Hb linkage that forms during SDS-mediated cell lysis. Formation of this linkage is lowest when ferrous Hb is oxidised, in the form of ferric metHb. Daily haemoglobin oxidation rhythms are observed in mouse and human RBCs cultured in vitro, or taken from humans in vivo, and are unaffected by mutations that affect circadian rhythms in nucleated cells. These rhythms correlate with daily rhythms in core body temperature, with temperature lowest when metHb levels are highest. Raising metHb levels with dietary sodium nitrite can further decrease daytime core body temperature in mice via nitric oxide (NO) signalling. These results extend our molecular understanding of RBC circadian rhythms and suggest they contribute to the regulation of body temperature.


Subject(s)
Erythrocytes , Hemoglobins , Humans , Mice , Animals , Erythrocytes/metabolism , Hemoglobins/metabolism , Oxidation-Reduction , Heme/metabolism , Circadian Rhythm
3.
N Engl J Med ; 390(11): 994-1008, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38477987

ABSTRACT

BACKGROUND: Persistent hemolytic anemia and a lack of oral treatments are challenges for patients with paroxysmal nocturnal hemoglobinuria who have received anti-C5 therapy or have not received complement inhibitors. Iptacopan, a first-in-class oral factor B inhibitor, has been shown to improve hemoglobin levels in these patients. METHODS: In two phase 3 trials, we assessed iptacopan monotherapy over a 24-week period in patients with hemoglobin levels of less than 10 g per deciliter. In the first, anti-C5-treated patients were randomly assigned to switch to iptacopan or to continue anti-C5 therapy. In the second, single-group trial, patients who had not received complement inhibitors and who had lactate dehydrogenase (LDH) levels more than 1.5 times the upper limit of the normal range received iptacopan. The two primary end points in the first trial were an increase in the hemoglobin level of at least 2 g per deciliter from baseline and a hemoglobin level of at least 12 g per deciliter, each without red-cell transfusion; the primary end point for the second trial was an increase in hemoglobin level of at least 2 g per deciliter from baseline without red-cell transfusion. RESULTS: In the first trial, 51 of the 60 patients who received iptacopan had an increase in the hemoglobin level of at least 2 g per deciliter from baseline, and 42 had a hemoglobin level of at least 12 g per deciliter, each without transfusion; none of the 35 anti-C5-treated patients attained the end-point levels. In the second trial, 31 of 33 patients had an increase in the hemoglobin level of at least 2 g per deciliter from baseline without red-cell transfusion. In the first trial, 59 of the 62 patients who received iptacopan and 14 of the 35 anti-C5-treated patients did not require or receive transfusion; in the second trial, no patients required or received transfusion. Treatment with iptacopan increased hemoglobin levels, reduced fatigue, reduced reticulocyte and bilirubin levels, and resulted in mean LDH levels that were less than 1.5 times the upper limit of the normal range. Headache was the most frequent adverse event with iptacopan. CONCLUSIONS: Iptacopan treatment improved hematologic and clinical outcomes in anti-C5-treated patients with persistent anemia - in whom iptacopan showed superiority to anti-C5 therapy - and in patients who had not received complement inhibitors. (Funded by Novartis; APPLY-PNH ClinicalTrials.gov number, NCT04558918; APPOINT-PNH ClinicalTrials.gov number, NCT04820530.).


Subject(s)
Anemia, Hemolytic , Complement Factor B , Complement Inactivating Agents , Hemoglobins , Hemoglobinuria, Paroxysmal , Humans , Administration, Oral , Anemia, Hemolytic/complications , Complement C5/antagonists & inhibitors , Complement Factor B/antagonists & inhibitors , Complement Inactivating Agents/administration & dosage , Complement Inactivating Agents/adverse effects , Complement Inactivating Agents/therapeutic use , Erythrocyte Transfusion , Headache/chemically induced , Hemoglobins/analysis , Hemoglobinuria, Paroxysmal/drug therapy , Hemoglobinuria, Paroxysmal/etiology , Clinical Trials, Phase III as Topic , Randomized Controlled Trials as Topic
4.
N Engl J Med ; 388(15): 1386-1395, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37043654

ABSTRACT

BACKGROUND: Conflicting observational evidence exists regarding the association between the sex of red-cell donors and mortality among transfusion recipients. Evidence to inform transfusion practice and policy is limited. METHODS: In this multicenter, double-blind trial, we randomly assigned patients undergoing red-cell transfusion to receive units of red cells from either male donors or female donors. Patients maintained their trial-group assignment throughout the trial period, including during subsequent inpatient and outpatient encounters. Randomization was conducted in a 60:40 ratio (male donor group to female donor group) to match the historical allocation of red-cell units from the blood supplier. The primary outcome was survival, with the male donor group as the reference group. RESULTS: A total of 8719 patients underwent randomization before undergoing transfusion; 5190 patients were assigned to the male donor group, and 3529 to the female donor group. At baseline, the mean (±SD) age of the enrolled patients was 66.8±16.4 years. The setting of the first transfusion was as an inpatient in 6969 patients (79.9%), of whom 2942 (42.2%) had been admitted under a surgical service. The baseline hemoglobin level before transfusion was 79.5±19.7 g per liter, and patients received a mean of 5.4±10.5 units of red cells in the female donor group and 5.1±8.9 units in the male donor group (difference, 0.3 units; 95% confidence interval [CI], -0.1 to 0.7). Over the duration of the trial, 1141 patients in the female donor group and 1712 patients in the male donor group died. In the primary analysis of overall survival, the adjusted hazard ratio for death was 0.98 (95% CI, 0.91 to 1.06). CONCLUSIONS: This trial showed no significant difference in survival between a transfusion strategy involving red-cell units from female donors and a strategy involving red-cell units from male donors. (Funded by the Canadian Institutes of Health Research; iTADS ClinicalTrials.gov number, NCT03344887.).


Subject(s)
Anemia , Blood Donors , Erythrocyte Transfusion , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Blood Transfusion/mortality , Canada , Erythrocyte Transfusion/mortality , Proportional Hazards Models , Sex Factors , Double-Blind Method , Hemoglobins/analysis , Anemia/blood , Anemia/therapy
5.
N Engl J Med ; 388(15): 1365-1375, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37043652

ABSTRACT

BACKGROUND: Prophylactic use of tranexamic acid at the time of cesarean delivery has been shown to decrease the calculated blood loss, but the effect on the need for blood transfusions is unclear. METHODS: We randomly assigned patients undergoing cesarean delivery at 31 U.S. hospitals to receive either tranexamic acid or placebo after umbilical-cord clamping. The primary outcome was a composite of maternal death or blood transfusion by hospital discharge or 7 days post partum, whichever came first. Key secondary outcomes were estimated intraoperative blood loss of more than 1 liter (prespecified as a major secondary outcome), interventions for bleeding and related complications, the preoperative-to-postoperative change in the hemoglobin level, and postpartum infectious complications. Adverse events were assessed. RESULTS: A total of 11,000 participants underwent randomization (5529 to the tranexamic acid group and 5471 to the placebo group); scheduled cesarean delivery accounted for 50.1% and 49.2% of the deliveries in the respective groups. A primary-outcome event occurred in 201 of 5525 participants (3.6%) in the tranexamic acid group and in 233 of 5470 (4.3%) in the placebo group (adjusted relative risk, 0.89; 95.26% confidence interval [CI], 0.74 to 1.07; P = 0.19). Estimated intraoperative blood loss of more than 1 liter occurred in 7.3% of the participants in the tranexamic acid group and in 8.0% of those in the placebo group (relative risk, 0.91; 95% CI, 0.79 to 1.05). Interventions for bleeding complications occurred in 16.1% of the participants in the tranexamic acid group and in 18.0% of those in the placebo group (relative risk, 0.90; 95% CI, 0.82 to 0.97); the change in the hemoglobin level was -1.8 g per deciliter and -1.9 g per deciliter, respectively (mean difference, -0.1 g per deciliter; 95% CI, -0.2 to -0.1); and postpartum infectious complications occurred in 3.2% and 2.5% of the participants, respectively (relative risk, 1.28; 95% CI, 1.02 to 1.61). The frequencies of thromboembolic events and other adverse events were similar in the two groups. CONCLUSIONS: Prophylactic use of tranexamic acid during cesarean delivery did not lead to a significantly lower risk of a composite outcome of maternal death or blood transfusion than placebo. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development; ClinicalTrials.gov number, NCT03364491.).


Subject(s)
Antifibrinolytic Agents , Cesarean Section , Postpartum Hemorrhage , Tranexamic Acid , Child , Female , Humans , Pregnancy , Antifibrinolytic Agents/adverse effects , Antifibrinolytic Agents/therapeutic use , Blood Loss, Surgical/mortality , Blood Loss, Surgical/prevention & control , Hemoglobins/analysis , Maternal Death , Tranexamic Acid/adverse effects , Tranexamic Acid/therapeutic use , Postpartum Hemorrhage/blood , Postpartum Hemorrhage/etiology , Postpartum Hemorrhage/mortality , Postpartum Hemorrhage/prevention & control , Cesarean Section/adverse effects , Blood Transfusion , Chemoprevention
6.
N Engl J Med ; 389(26): 2446-2456, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-37952133

ABSTRACT

BACKGROUND: A strategy of administering a transfusion only when the hemoglobin level falls below 7 or 8 g per deciliter has been widely adopted. However, patients with acute myocardial infarction may benefit from a higher hemoglobin level. METHODS: In this phase 3, interventional trial, we randomly assigned patients with myocardial infarction and a hemoglobin level of less than 10 g per deciliter to a restrictive transfusion strategy (hemoglobin cutoff for transfusion, 7 or 8 g per deciliter) or a liberal transfusion strategy (hemoglobin cutoff, <10 g per deciliter). The primary outcome was a composite of myocardial infarction or death at 30 days. RESULTS: A total of 3504 patients were included in the primary analysis. The mean (±SD) number of red-cell units that were transfused was 0.7±1.6 in the restrictive-strategy group and 2.5±2.3 in the liberal-strategy group. The mean hemoglobin level was 1.3 to 1.6 g per deciliter lower in the restrictive-strategy group than in the liberal-strategy group on days 1 to 3 after randomization. A primary-outcome event occurred in 295 of 1749 patients (16.9%) in the restrictive-strategy group and in 255 of 1755 patients (14.5%) in the liberal-strategy group (risk ratio modeled with multiple imputation for incomplete follow-up, 1.15; 95% confidence interval [CI], 0.99 to 1.34; P = 0.07). Death occurred in 9.9% of the patients with the restrictive strategy and in 8.3% of the patients with the liberal strategy (risk ratio, 1.19; 95% CI, 0.96 to 1.47); myocardial infarction occurred in 8.5% and 7.2% of the patients, respectively (risk ratio, 1.19; 95% CI, 0.94 to 1.49). CONCLUSIONS: In patients with acute myocardial infarction and anemia, a liberal transfusion strategy did not significantly reduce the risk of recurrent myocardial infarction or death at 30 days. However, potential harms of a restrictive transfusion strategy cannot be excluded. (Funded by the National Heart, Lung, and Blood Institute and others; MINT ClinicalTrials.gov number, NCT02981407.).


Subject(s)
Anemia , Blood Transfusion , Myocardial Infarction , Humans , Anemia/blood , Anemia/etiology , Anemia/therapy , Blood Transfusion/methods , Erythrocyte Transfusion/adverse effects , Erythrocyte Transfusion/methods , Hemoglobins/analysis , Myocardial Infarction/blood , Myocardial Infarction/complications , Myocardial Infarction/mortality , Myocardial Infarction/therapy , Recurrence
7.
Blood ; 143(8): 713-720, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38085846

ABSTRACT

ABSTRACT: Cold agglutinin disease is a rare autoimmune hemolytic anemia characterized by complement pathway-mediated hemolysis. Riliprubart (SAR445088, BIVV020), a second-generation classical complement inhibitor, is a humanized monoclonal antibody that selectively inhibits only the activated form of C1s. This Phase 1b study evaluated the safety, tolerability, and effect on hemolysis of riliprubart in adult patients with cold agglutinin disease. On day 1, 12 patients received a single IV dose of either 30 mg/kg (n = 6) or 15 mg/kg (n = 6) of riliprubart and were subsequently followed for 15 weeks. Riliprubart was generally well tolerated; there were no treatment-emergent serious adverse events, or treatment-emergent adverse events leading to death or permanent study discontinuation. There were no reports of serious infections, encapsulated bacterial infections including meningococcal infections, hypersensitivity, or thromboembolic events. Rapid improvements in hemoglobin (day 5) and bilirubin (day 1) were observed in both treatment cohorts. Mean hemoglobin levels were maintained at >11.0 g/dL from day 29 and mean levels of bilirubin were normalized by day 29; both responses were maintained throughout the study. Improvements in clinical markers closely correlated with a sustained reduction in the 50% hemolytic complement (CH50) throughout the study. Mean C4 levels, an in vivo marker of treatment activity, increased 1 week after treatment with either dose of riliprubart and were sustained throughout the study. In conclusion, a single IV dose of riliprubart was well tolerated, and led to rapid classical complement inhibition, control of hemolysis, and improvement in anemia, all of which were sustained over 15 weeks. This trial was registered at www.ClinicalTrials.gov as #NCT04269551.


Subject(s)
Anemia, Hemolytic, Autoimmune , Adult , Humans , Anemia, Hemolytic, Autoimmune/drug therapy , Hemolysis , Complement System Proteins , Bilirubin , Hemoglobins
8.
Nature ; 581(7809): 480-485, 2020 05.
Article in English | MEDLINE | ID: mdl-32461643

ABSTRACT

Most proteins associate into multimeric complexes with specific architectures1,2, which often have functional properties such as cooperative ligand binding or allosteric regulation3. No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous α- and ß-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical 'missing link' through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct α- and ß-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein's structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Subject(s)
Evolution, Molecular , Hemoglobins/metabolism , Allosteric Regulation , Binding Sites/genetics , Heme/metabolism , Hemoglobins/chemistry , Humans , Iron/metabolism , Models, Molecular , Oxygen/metabolism , Protein Multimerization/genetics , Protein Structure, Quaternary/genetics , Protein Subunits/chemistry , Protein Subunits/metabolism
9.
Bioessays ; 46(7): e2400053, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713161

ABSTRACT

Trypanosoma brucei is the causal agent of African Trypanosomiasis in humans and other animals. It maintains a long-term infection through an antigenic variation based population survival strategy. To proliferate in a mammal, T. brucei acquires iron and haem through the receptor mediated uptake of host transferrin and haptoglobin-hemoglobin respectively. The receptors are exposed to host antibodies but this does not lead to clearance of the infection. Here we discuss how the trypanosome avoids this fate in the context of recent findings on the structure and cell biology of the receptors.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Trypanosoma brucei brucei/immunology , Trypanosoma brucei brucei/metabolism , Humans , Animals , Trypanosomiasis, African/immunology , Trypanosomiasis, African/parasitology , Haptoglobins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/immunology , Transferrin/metabolism , Hemoglobins/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/immunology , Host-Parasite Interactions/immunology , Iron/metabolism , Antibodies, Protozoan/immunology
10.
Mol Cell Proteomics ; 23(6): 100775, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663568

ABSTRACT

Chagas disease is transmitted to humans by obligatory hematophagous insects of Triatominae subfamily, which feeds on various hosts to acquire their nutritional sustenance derived from blood proteins. Hemoglobin (Hb) digestion is a pivotal metabolic feature of triatomines, representing a key juncture in their competence toward Trypanosoma cruzi; however, it remains poorly understood. To explore the Hb digestion pathway in Rhodnius prolixus, a major Chagas disease vector, we employed an array of approaches for activity profiling of various midgut-associated peptidases using specific substrates and inhibitors. Dissecting the individual contribution of each peptidase family in Hb digestion has unveiled a predominant role played by aspartic proteases and cathepsin B-like peptidases. Determination of peptidase-specific cleavage sites of these key hemoglobinases, in conjunction with mass spectrometry-based identification of in vivo Hb-derived fragments, has revealed the intricate network of peptidases involved in the Hb digestion pathway. This network is initiated by aspartic proteases and subsequently sustained by cysteine proteases belonging to the C1 family. The process is continued simultaneously by amino and carboxypeptidases. The comprehensive profiling of midgut-associated aspartic proteases by quantitative proteomics has enabled the accurate revision of gene annotations within the A1 family of the R. prolixus genome. Significantly, this study also serves to illuminate a potentially important role of the anterior midgut in blood digestion. The expanded repertoire of midgut-associated proteases presented in this study holds promise for the identification of novel targets aimed at controlling the transmission of Chagas disease.


Subject(s)
Hemoglobins , Peptide Hydrolases , Rhodnius , Rhodnius/metabolism , Animals , Hemoglobins/metabolism , Peptide Hydrolases/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Proteomics/methods , Trypanosoma cruzi/metabolism
11.
Semin Immunol ; 59: 101618, 2022 01.
Article in English | MEDLINE | ID: mdl-35764467

ABSTRACT

The treatment of paroxysmal nocturnal hemoglobinuria (PNH) was revolutionized by the introduction of the anti-C5 agent eculizumab, which resulted in sustained control of intravascular hemolysis, leading to transfusion avoidance and hemoglobin stabilization in at least half of all patients. Nevertheless, extravascular hemolysis mediated by C3 has emerged as inescapable phenomenon in PNH patients on anti-C5 treatment, frequently limiting its hematological benefit. More than 10 years ago we postulated that therapeutic interception of the complement cascade at the level of C3 should improve the clinical response in PNH. Compstatin is a 13-residue disulfide-bridged peptide binding to both human C3 and C3b, eventually disabling the formation of C3 convertases and thereby preventing complement activation via all three of its activating pathways. Several generations of compstatin analogs have been tested in vitro, and their clinical evaluation has begun in PNH and other complement-mediated diseases. Pegcetacoplan, a pegylated form of the compstatin analog POT-4, has been investigated in two phase I/II and one phase III study in PNH patients. In the phase III study, PNH patients with residual anemia already on eculizumab were randomized to receive either pegcetacoplan or eculizumab in a head-to-head comparison. At week 16, pegcetacoplan was superior to eculizumab in terms of hemoglobin change from baseline (the primary endpoint), as well as in other secondary endpoints tracking intravascular and extravascular hemolysis. Pegcetacoplan showed a good safety profile, even though breakthrough hemolysis emerged as a possible risk requiring additional attention. Here we review all the available data regarding this innovative treatment that has recently been approved for the treatment of PNH.


Subject(s)
Hemoglobinuria, Paroxysmal , Humans , Hemoglobinuria, Paroxysmal/drug therapy , Hemolysis , Complement C3/metabolism , Complement Activation , Hemoglobins/therapeutic use , Randomized Controlled Trials as Topic
12.
Proc Natl Acad Sci U S A ; 120(5): e2211939120, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36693107

ABSTRACT

Streptococcus pyogenes (group A Streptococcus) is a clinically important microbial pathogen that requires iron in order to proliferate. During infections, S. pyogenes uses the surface displayed Shr receptor to capture human hemoglobin (Hb) and acquires its iron-laden heme molecules. Through a poorly understood mechanism, Shr engages Hb via two structurally unique N-terminal Hb-interacting domains (HID1 and HID2) which facilitate heme transfer to proximal NEAr Transporter (NEAT) domains. Based on the results of X-ray crystallography, small angle X-ray scattering, NMR spectroscopy, native mass spectrometry, and heme transfer experiments, we propose that Shr utilizes a "cap and release" mechanism to gather heme from Hb. In the mechanism, Shr uses the HID1 and HID2 modules to preferentially recognize only heme-loaded forms of Hb by contacting the edges of its protoporphyrin rings. Heme transfer is enabled by significant receptor dynamics within the Shr-Hb complex which function to transiently uncap HID1 from the heme bound to Hb's ß subunit, enabling the gated release of its relatively weakly bound heme molecule and subsequent capture by Shr's NEAT domains. These dynamics may maximize the efficiency of heme scavenging by S. pyogenes, enabling it to preferentially recognize and remove heme from only heme-loaded forms of Hb that contain iron.


Subject(s)
Hemoglobins , Streptococcus pyogenes , Humans , Hemoglobins/metabolism , Streptococcus pyogenes/chemistry , Carrier Proteins/metabolism , Heme/metabolism , Iron/metabolism
13.
Proc Natl Acad Sci U S A ; 120(9): e2220769120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36812211

ABSTRACT

S-Nitrosohemoglobin (SNO-Hb) is unique among vasodilators in coupling blood flow to tissue oxygen requirements, thus fulfilling an essential function of the microcirculation. However, this essential physiology has not been tested clinically. Reactive hyperemia following limb ischemia/occlusion is a standard clinical test of microcirculatory function, which has been ascribed to endothelial nitric oxide (NO). However, endothelial NO does not control blood flow governing tissue oxygenation, presenting a major quandary. Here we show in mice and humans that reactive hyperemic responses (i.e., reoxygenation rates following brief ischemia/occlusion) are in fact dependent on SNO-Hb. First, mice deficient in SNO-Hb (i.e., carrying C93A mutant Hb refractory to S-nitrosylation) showed blunted muscle reoxygenation rates and persistent limb ischemia during reactive hyperemia testing. Second, in a diverse group of humans-including healthy subjects and patients with various microcirculatory disorders-strong correlations were found between limb reoxygenation rates following occlusion and both arterial SNO-Hb levels (n = 25; P = 0.042) and SNO-Hb/total HbNO ratios (n = 25; P = 0.009). Secondary analyses showed that patients with peripheral artery disease had significantly reduced SNO-Hb levels and blunted limb reoxygenation rates compared with healthy controls (n = 8 to 11/group; P < 0.05). Low SNO-Hb levels were also observed in sickle cell disease, where occlusive hyperemic testing was deemed contraindicated. Altogether, our findings provide both genetic and clinical support for the role of red blood cells in a standard test of microvascular function. Our results also suggest that SNO-Hb is a biomarker and mediator of blood flow governing tissue oxygenation. Thus, increases in SNO-Hb may improve tissue oxygenation in patients with microcirculatory disorders.


Subject(s)
Hyperemia , Humans , Mice , Animals , Microcirculation , Hemoglobins/genetics , Erythrocytes/physiology , Oxygen , Research Subjects , Nitric Oxide/physiology
14.
Crit Rev Biochem Mol Biol ; 58(2-6): 132-157, 2023 12.
Article in English | MEDLINE | ID: mdl-38189101

ABSTRACT

Hemoglobin (Hb) has been identified in at least 14 molluscan taxa so far. Research spanning over 130 years on molluscan Hbs focuses on their genes, protein structures, functions, and evolution. Molluscan Hbs are categorized into single-, two-, and multiple-domain chains, including red blood cell, gill, and extracellular Hbs, based on the number of globin domains and their respective locations. These Hbs exhibit variation in assembly, ranging from monomeric and dimeric to higher-order multimeric forms. Typically, molluscan Hbs display moderately high oxygen affinity, weak cooperativity, and varying pH sensitivity. Hb's potential role in antimicrobial pathways could augment the immune defense of bivalves, which may be a complement to their lack of adaptive immunity. The role of Hb as a respiratory protein in bivalves likely originated from the substitution of hemocyanin. Molluscan Hbs demonstrate adaptive evolution in response to environmental changes via various strategies (e.g. increasing Hb types, multimerization, and amino acid residue substitutions at key sites), enhancing or altering functional properties for habitat adaptation. Concurrently, an increase in Hb assembly diversity, coupled with a downward trend in oxygen affinity, is observed during molluscan differentiation and evolution. Hb in Protobranchia, Heteroconchia, and Pteriomorphia bivalves originated from separate ancestors, with Protobranchia inheriting a relative ancient molluscan Hb gene. In bivalves, extracellular Hbs share a common origin, while gill Hbs likely emerged from convergent evolution. In summary, research on molluscan Hbs offers valuable insights into the origins, biological variations, and adaptive evolution of animal Hbs.


Subject(s)
Hemoglobins , Mollusca , Animals , Hemoglobins/genetics , Hemoglobins/chemistry , Hemoglobins/metabolism , Mollusca/genetics , Mollusca/metabolism , Oxygen/metabolism
15.
Annu Rev Med ; 74: 473-487, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36067800

ABSTRACT

Sickle cell disease (SCD) results from a single base pair change in the sixth codon of the ß-globin chain of hemoglobin, which promotes aggregation of deoxyhemoglobin, increasing rigidity of red blood cells and causing vaso-occlusive and hemolytic complications. Allogeneic transplant of hematopoietic stem cells (HSCs) can eliminate SCD manifestations but is limited by absence of well-matched donors and immune complications. Gene therapy with transplantation of autologous HSCs that are gene-modified may provide similar benefits without the immune complications. Much progress has been made, and patients are realizing significant clinical improvements in multiple trials using different approaches with lentiviral vector-mediated gene addition to inhibit hemoglobin aggregation. Gene editing approaches are under development to provide additional therapeutic opportunities. Gene therapy for SCD has advanced from an attractive concept to clinical reality.


Subject(s)
Anemia, Sickle Cell , Hematopoietic Stem Cell Transplantation , Humans , Hematopoietic Stem Cell Transplantation/methods , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Genetic Therapy/methods , Hematopoietic Stem Cells , Hemoglobins/genetics
16.
N Engl J Med ; 386(7): 617-628, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34898139

ABSTRACT

BACKGROUND: Sickle cell disease is characterized by the painful recurrence of vaso-occlusive events. Gene therapy with the use of LentiGlobin for sickle cell disease (bb1111; lovotibeglogene autotemcel) consists of autologous transplantation of hematopoietic stem and progenitor cells transduced with the BB305 lentiviral vector encoding a modified ß-globin gene, which produces an antisickling hemoglobin, HbAT87Q. METHODS: In this ongoing phase 1-2 study, we optimized the treatment process in the initial 7 patients in Group A and 2 patients in Group B with sickle cell disease. Group C was established for the pivotal evaluation of LentiGlobin for sickle cell disease, and we adopted a more stringent inclusion criterion that required a minimum of four severe vaso-occlusive events in the 24 months before enrollment. In this unprespecified interim analysis, we evaluated the safety and efficacy of LentiGlobin in 35 patients enrolled in Group C. Included in this analysis was the number of severe vaso-occlusive events after LentiGlobin infusion among patients with at least four vaso-occlusive events in the 24 months before enrollment and with at least 6 months of follow-up. RESULTS: As of February 2021, cell collection had been initiated in 43 patients in Group C; 35 received a LentiGlobin infusion, with a median follow-up of 17.3 months (range, 3.7 to 37.6). Engraftment occurred in all 35 patients. The median total hemoglobin level increased from 8.5 g per deciliter at baseline to 11 g or more per deciliter from 6 months through 36 months after infusion. HbAT87Q contributed at least 40% of total hemoglobin and was distributed across a mean (±SD) of 85±8% of red cells. Hemolysis markers were reduced. Among the 25 patients who could be evaluated, all had resolution of severe vaso-occlusive events, as compared with a median of 3.5 events per year (range, 2.0 to 13.5) in the 24 months before enrollment. Three patients had a nonserious adverse event related or possibly related to LentiGlobin that resolved within 1 week after onset. No cases of hematologic cancer were observed during up to 37.6 months of follow-up. CONCLUSIONS: One-time treatment with LentiGlobin resulted in sustained production of HbAT87Q in most red cells, leading to reduced hemolysis and complete resolution of severe vaso-occlusive events. (Funded by Bluebird Bio; HGB-206 ClinicalTrials.gov number, NCT02140554.).


Subject(s)
Anemia, Sickle Cell/therapy , Genetic Therapy , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Hemoglobins/genetics , Lentivirus , Stem Cell Transplantation , beta-Globins/genetics , Adolescent , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/complications , Child , Female , Fetal Hemoglobin , Hemoglobins/analysis , Hemoglobins/metabolism , Humans , Male , Middle Aged , Vascular Patency , Young Adult
17.
N Engl J Med ; 386(15): 1432-1442, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35417638

ABSTRACT

BACKGROUND: Pyruvate kinase deficiency is a rare, hereditary, chronic condition that is associated with hemolytic anemia. In a phase 2 study, mitapivat, an oral, first-in-class activator of erythrocyte pyruvate kinase, increased the hemoglobin level in patients with pyruvate kinase deficiency. METHODS: In this global, phase 3, randomized, placebo-controlled trial, we evaluated the efficacy and safety of mitapivat in adults with pyruvate kinase deficiency who were not receiving regular red-cell transfusions. The patients were assigned to receive either mitapivat (5 mg twice daily, with potential escalation to 20 or 50 mg twice daily) or placebo for 24 weeks. The primary end point was a hemoglobin response (an increase from baseline of ≥1.5 g per deciliter in the hemoglobin level) that was sustained at two or more scheduled assessments at weeks 16, 20, and 24. Secondary efficacy end points were the average change from baseline in the hemoglobin level, markers of hemolysis and hematopoiesis, and the change from baseline at week 24 in two pyruvate kinase deficiency-specific patient-reported outcome measures. RESULTS: Sixteen of the 40 patients (40%) in the mitapivat group had a hemoglobin response, as compared with none of the 40 patients in the placebo group (adjusted difference, 39.3 percentage points; 95% confidence interval, 24.1 to 54.6; two-sided P<0.001). Patients who received mitapivat had a greater response than those who received placebo with respect to each secondary end point, including the average change from baseline in the hemoglobin level. The most common adverse events were nausea (in 7 patients [18%] in the mitapivat group and 9 patients [23%] in the placebo group) and headache (in 6 patients [15%] and 13 patients [33%], respectively). Adverse events of grade 3 or higher occurred in 10 patients (25%) who received mitapivat and 5 patients (13%) who received placebo. CONCLUSIONS: In patients with pyruvate kinase deficiency, mitapivat significantly increased the hemoglobin level, decreased hemolysis, and improved patient-reported outcomes. No new safety signals were identified in the patients who received mitapivat. (Funded by Agios Pharmaceuticals; ACTIVATE ClinicalTrials.gov number, NCT03548220.).


Subject(s)
Piperazines , Pyruvate Kinase , Quinolines , Adult , Anemia, Hemolytic, Congenital Nonspherocytic/drug therapy , Double-Blind Method , Hemoglobins/analysis , Hemoglobins/drug effects , Hemolysis/drug effects , Humans , Piperazines/pharmacology , Piperazines/therapeutic use , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors/drug therapy , Quinolines/pharmacology , Quinolines/therapeutic use
18.
N Engl J Med ; 386(5): 415-427, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34891223

ABSTRACT

BACKGROUND: Betibeglogene autotemcel (beti-cel) gene therapy for transfusion-dependent ß-thalassemia contains autologous CD34+ hematopoietic stem cells and progenitor cells transduced with the BB305 lentiviral vector encoding the ß-globin (ßA-T87Q) gene. METHODS: In this open-label, phase 3 study, we evaluated the efficacy and safety of beti-cel in adult and pediatric patients with transfusion-dependent ß-thalassemia and a non-ß0/ß0 genotype. Patients underwent myeloablation with busulfan (with doses adjusted on the basis of pharmacokinetic analysis) and received beti-cel intravenously. The primary end point was transfusion independence (i.e., a weighted average hemoglobin level of ≥9 g per deciliter without red-cell transfusions for ≥12 months). RESULTS: A total of 23 patients were enrolled and received treatment, with a median follow-up of 29.5 months (range, 13.0 to 48.2). Transfusion independence occurred in 20 of 22 patients who could be evaluated (91%), including 6 of 7 patients (86%) who were younger than 12 years of age. The average hemoglobin level during transfusion independence was 11.7 g per deciliter (range, 9.5 to 12.8). Twelve months after beti-cel infusion, the median level of gene therapy-derived adult hemoglobin (HbA) with a T87Q amino acid substitution (HbAT87Q) was 8.7 g per deciliter (range, 5.2 to 10.6) in patients who had transfusion independence. The safety profile of beti-cel was consistent with that of busulfan-based myeloablation. Four patients had at least one adverse event that was considered by the investigators to be related or possibly related to beti-cel; all events were nonserious except for thrombocytopenia (in 1 patient). No cases of cancer were observed. CONCLUSIONS: Treatment with beti-cel resulted in a sustained HbAT87Q level and a total hemoglobin level that was high enough to enable transfusion independence in most patients with a non-ß0/ß0 genotype, including those younger than 12 years of age. (Funded by Bluebird Bio; HGB-207 ClinicalTrials.gov number, NCT02906202.).


Subject(s)
Biological Products/therapeutic use , Genetic Therapy/methods , beta-Globins/genetics , beta-Thalassemia/therapy , Adolescent , Adult , Biological Products/adverse effects , Busulfan/therapeutic use , Child , Erythrocyte Transfusion/adverse effects , Erythropoiesis , Female , Genetic Vectors , Genotype , Hemoglobins/analysis , Humans , Iron Overload/prevention & control , Lentivirus/genetics , Male , Middle Aged , Myeloablative Agonists/therapeutic use , beta-Thalassemia/blood , beta-Thalassemia/genetics
19.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37332016

ABSTRACT

Trans-ethnic genome-wide association studies have revealed that many loci identified in European populations can be reproducible in non-European populations, indicating widespread trans-ethnic genetic similarity. However, how to leverage such shared information more efficiently in association analysis is less investigated for traits in underrepresented populations. We here propose a statistical framework, trans-ethnic genetic risk score informed gene-based association mixed model (GAMM), by hierarchically modeling single-nucleotide polymorphism effects in the target population as a function of effects of the same trait in well-studied populations. GAMM powerfully integrates genetic similarity across distinct ancestral groups to enhance power in understudied populations, as confirmed by extensive simulations. We illustrate the usefulness of GAMM via the application to 13 blood cell traits (i.e. basophil count, eosinophil count, hematocrit, hemoglobin concentration, lymphocyte count, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular volume, monocyte count, neutrophil count, platelet count, red blood cell count and total white blood cell count) in Africans of the UK Biobank (n = 3204) while utilizing genetic overlap shared in Europeans (n = 746 667) and East Asians (n = 162 255). We discovered multiple new associated genes, which had otherwise been missed by existing methods, and revealed that the trans-ethnic information indirectly contributed much to the phenotypic variance. Overall, GAMM represents a flexible and powerful statistical framework of association analysis for complex traits in underrepresented populations by integrating trans-ethnic genetic similarity across well-studied populations, and helps attenuate health inequities in current genetics research for people of minority populations.


Subject(s)
Genome-Wide Association Study , Models, Genetic , Multifactorial Inheritance , Humans , Genome-Wide Association Study/methods , Hemoglobins/genetics , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Blood Cells , United Kingdom , African People/genetics , East Asian People/genetics , European People/genetics
20.
Blood ; 141(17): 2127-2140, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36758212

ABSTRACT

JAK 2-V617F mutation causes myeloproliferative neoplasms (MPNs) that can manifest as polycythemia vera (PV), essential thrombocythemia (ET), or primary myelofibrosis. At diagnosis, patients with PV already exhibited iron deficiency, whereas patients with ET had normal iron stores. We examined the influence of iron availability on MPN phenotype in mice expressing JAK2-V617F and in mice expressing JAK2 with an N542-E543del mutation in exon 12 (E12). At baseline, on a control diet, all JAK2-mutant mouse models with a PV-like phenotype displayed iron deficiency, although E12 mice maintained more iron for augmented erythropoiesis than JAK2-V617F mutant mice. In contrast, JAK2-V617F mutant mice with an ET-like phenotype had normal iron stores comparable with that of wild-type (WT) mice. On a low-iron diet, JAK2-mutant mice and WT controls increased platelet production at the expense of erythrocytes. Mice with a PV phenotype responded to parenteral iron injections by decreasing platelet counts and further increasing hemoglobin and hematocrit, whereas no changes were observed in WT controls. Alterations of iron availability primarily affected the premegakaryocyte-erythrocyte progenitors, which constitute the iron-responsive stage of hematopoiesis in JAK2-mutant mice. The orally administered ferroportin inhibitor vamifeport and the minihepcidin PR73 normalized hematocrit and hemoglobin levels in JAK2-V617F and E12 mutant mouse models of PV, suggesting that ferroportin inhibitors and minihepcidins could be used in the treatment for patients with PV.


Subject(s)
Iron Deficiencies , Myeloproliferative Disorders , Polycythemia Vera , Thrombocythemia, Essential , Mice , Animals , Iron , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/diagnosis , Polycythemia Vera/genetics , Janus Kinase 2/genetics , Thrombocythemia, Essential/genetics , Mutation , Phenotype , Hemoglobins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL