Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Language
Journal subject
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 278: 116442, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728946

ABSTRACT

Gadolinium (Gd) is among the rare earth elements extensively utilized in both industrial and medical applications. The latter application appears to contribute to the rise in Gd levels in aquatic ecosystems, as it is excreted via urine from patients undergoing MRI scans and often not captured by wastewater treatment systems. The potential environmental and biological hazards posed by gadolinium exposure are still under investigation. This study aimed to assess the teratogenic risk posed by a gadolinium chelate on the freshwater cnidarian Hydra vulgaris. The experimental design evaluated the impact of pure Gadodiamide (25 µg/l, 50 µg/l, 100 µg/l, 500 µg/l) and its commercial counterpart compound (Omniscan®; 100 µg/l, 500 µg/l, 782.7 mg/l) at varying concentrations using the Teratogenic Risk Index (TRI). Here we showed a moderate risk (Class III of TRI) following exposure to both tested formulations at concentrations ≥ 100 µg/l. Given the potential for similar concentrations in aquatic environments, particularly near wastewater discharge points, a teratogenic risk assessment using the Hydra regeneration assay was conducted on environmental samples collected from three rivers (Tiber, Almone, and Sacco) in Central Italy. Additionally, chemical analysis of field samples was performed using ICP-MS. Analysis of freshwater samples revealed low Gd concentrations (≤ 0.1 µg/l), despite localized increases near domestic and/or industrial wastewater discharge sites. Although teratogenic risk in environmental samples ranged from high (Class IV of TRI) to negligible (Class I of TRI), the low Gd concentrations, particularly when compared to higher levels of other contaminants like arsenic and heavy metals, preclude establishing a direct cause-effect relationship between Gd and observed teratogenic risks in environmental samples. Nevertheless, the teratogenic risks observed in laboratory tests warrant further investigation.


Subject(s)
Fresh Water , Hydra , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Animals , Risk Assessment , Hydra/drug effects , Fresh Water/chemistry , Gadolinium/toxicity , Gadolinium/analysis , Italy , Teratogens/toxicity , Gadolinium DTPA/toxicity , Environmental Monitoring/methods , Rivers/chemistry
2.
Sci Total Environ ; 932: 172868, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714257

ABSTRACT

The use of bioplastics (e.g., polyhydroxybutyrate) emerged as a solution to help reduce plastic pollution caused by conventional plastics. Nevertheless, bioplastics share many characteristics with their conventional counterparts, such as degradation to nano-sized particles and the ability to sorb environmental pollutants, like metals. This study aimed to assess the potential impacts of the interaction of metals (cadmium - Cd, copper - Cu, and zinc - Zn) with polyhydroxybutyrate nanoplastics (PHB-NPLs; ~200 nm) on the freshwater cnidarian Hydra viridissima in terms of mortality rates, morphological alterations, and feeding behavior. The metal concentrations selected for the combined exposures corresponded to concentrations causing 20 %, 50 %, and 80 % of mortality (LC20, LC50, and LC80, respectively) and the PHB-NPLs concentrations ranged from 0.01 to 1000 µg/L. H. viridissima sensitivity to the metals, based on the LC50's, can be ordered as: Zn < Cd < Cu. Combined exposure to metals and PHB-NPLs yielded distinct outcomes concerning mortality, morphological changes, and feeding behavior, uncovering metal- and dose-specific responses. The interaction between Cd-LCx and PHB-NPLs progressed from no effect at LC20,96h to an ameliorative effect at Cd-LC50,96h. Cu-LCx revealed potential mitigation effects (LC20,96h and LC50,96h) but at Cu-LC80,96h the response shifts to a potentiating effect. For Zn-LCx, response patterns across the combinations with PHB-NPLs were like those induced by the metal alone. PHB-NPLs emerged as a key factor capable of modulating the toxicity of metals. This study highlights the context-dependent interactions between metals and PHB-NPLs in freshwater environments while supporting the need for further investigation of the underlying mechanisms and ecological consequences in forthcoming research.


Subject(s)
Hydra , Nanoparticles , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity , Hydra/drug effects , Hydroxybutyrates/toxicity , Polyesters , Metals, Heavy/toxicity
3.
Braz. j. microbiol ; 48(1): 25-31, Jan.-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-839353

ABSTRACT

Abstract Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds.


Subject(s)
Animals , Cyanobacteria/metabolism , Coloring Agents/metabolism , Seeds/drug effects , Textiles , Allium/drug effects , Brazil , Biotransformation , Lactuca/drug effects , Aerobiosis , Coloring Agents/toxicity , Chlorophyta/drug effects , X-Ray Absorption Spectroscopy , Hydra/drug effects , Anaerobiosis , Industrial Waste , Mutagens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL