Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.156
Filter
Add more filters

Publication year range
1.
Chem Rev ; 124(7): 4124-4257, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38512066

ABSTRACT

Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.


Subject(s)
Hydrogen Sulfide , Hydrogen Sulfide/chemistry , Fluorescent Dyes/chemistry , Diagnostic Imaging , Sulfur , Disulfides
2.
J Biol Chem ; 300(5): 107149, 2024 May.
Article in English | MEDLINE | ID: mdl-38479599

ABSTRACT

Persulfides (RSSH/RSS-) participate in sulfur metabolism and are proposed to transduce hydrogen sulfide (H2S) signaling. Their biochemical properties are poorly understood. Herein, we studied the acidity and nucleophilicity of several low molecular weight persulfides using the alkylating agent, monobromobimane. The different persulfides presented similar pKa values (4.6-6.3) and pH-independent rate constants (3.2-9.0 × 103 M-1 s-1), indicating that the substituents in persulfides affect properties to a lesser extent than in thiols because of the larger distance to the outer sulfur. The persulfides had higher reactivity with monobromobimane than analogous thiols and putative thiols with the same pKa, providing evidence for the alpha effect (enhanced nucleophilicity by the presence of a contiguous atom with high electron density). Additionally, we investigated two enzymes from the human mitochondrial H2S oxidation pathway that form catalytic persulfide intermediates, sulfide quinone oxidoreductase and thiosulfate sulfurtransferase (TST, rhodanese). The pH dependence of the activities of both enzymes was measured using sulfite and/or cyanide as sulfur acceptors. The TST half-reactions were also studied by stopped-flow fluorescence spectroscopy. Both persulfidated enzymes relied on protonated groups for reaction with the acceptors. Persulfidated sulfide quinone oxidoreductase appeared to have a pKa of 7.8 ± 0.2. Persulfidated TST presented a pKa of 9.38 ± 0.04, probably due to a critical active site residue rather than the persulfide itself. The TST thiol reacted in the anionic state with thiosulfate, with an apparent pKa of 6.5 ± 0.1. Overall, our study contributes to a fundamental understanding of persulfide properties and their modulation by protein environments.


Subject(s)
Sulfides , Thiosulfate Sulfurtransferase , Humans , Bridged Bicyclo Compounds , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Quinone Reductases/metabolism , Quinone Reductases/chemistry , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Sulfides/chemistry , Sulfides/metabolism , Thiosulfate Sulfurtransferase/metabolism , Thiosulfate Sulfurtransferase/chemistry , Quinones/chemistry , Quinones/metabolism , Substrate Specificity
3.
Nature ; 571(7766): 546-549, 2019 07.
Article in English | MEDLINE | ID: mdl-31292542

ABSTRACT

Amide bond formation is one of the most important reactions in both chemistry and biology1-4, but there is currently no chemical method of achieving α-peptide ligation in water that tolerates all of the 20 proteinogenic amino acids at the peptide ligation site. The universal genetic code establishes that the biological role of peptides predates life's last universal common ancestor and that peptides played an essential part in the origins of life5-9. The essential role of sulfur in the citric acid cycle, non-ribosomal peptide synthesis and polyketide biosynthesis point towards thioester-dependent peptide ligations preceding RNA-dependent protein synthesis during the evolution of life5,9-13. However, a robust mechanism for aminoacyl thioester formation has not been demonstrated13. Here we report a chemoselective, high-yielding α-aminonitrile ligation that exploits only prebiotically plausible molecules-hydrogen sulfide, thioacetate12,14 and ferricyanide12,14-17 or cyanoacetylene8,14-to yield α-peptides in water. The ligation is extremely selective for α-aminonitrile coupling and tolerates all of the 20 proteinogenic amino acid residues. Two essential features enable peptide ligation in water: the reactivity and pKaH of α-aminonitriles makes them compatible with ligation at neutral pH and N-acylation stabilizes the peptide product and activates the peptide precursor to (biomimetic) N-to-C peptide ligation. Our model unites prebiotic aminonitrile synthesis and biological α-peptides, suggesting that short N-acyl peptide nitriles were plausible substrates during early evolution.


Subject(s)
Evolution, Chemical , Nitriles/chemistry , Nitriles/chemical synthesis , Origin of Life , Peptides/chemistry , Peptides/chemical synthesis , Water/chemistry , Acetylene/analogs & derivatives , Acetylene/chemistry , Dipeptides/chemical synthesis , Dipeptides/chemistry , Ferricyanides/chemistry , Hydrogen Sulfide/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Sulfhydryl Compounds/chemistry , Sulfides/chemistry
4.
Anal Chem ; 96(19): 7687-7696, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38693877

ABSTRACT

Smart theranostic nanoprobes with the integration of multiple therapeutic modalities are preferred for precise diagnosis and efficient therapy of tumors. However, it remains a big challenge to arrange the imaging and two or more kinds of therapeutic agents without weakening the intended performances. In addition, most existing fluorescence (FL) imaging agents suffer from low spatiotemporal resolution due to the short emission wavelength (<900 nm). Here, novel three-in-one Ag2S quantum dot (QD)-based smart theranostic nanoprobes were proposed for in situ ratiometric NIR-II FL imaging-guided ion/gas combination therapy of tumors. Under the acidic tumor microenvironment, three-in-one Ag2S QDs underwent destructive degradation, generating toxic Ag+ and H2S. Meanwhile, their FL emission at 1270 nm was weakened. Upon introduction of a downconversion nanoparticle (DCNP) as the delivery carrier and NIR-II FL reference signal unit, the formed Ag2S QD-based theranostic nanoprobes could achieve precise diagnosis of tumors through ratiometric NIR-II FL signals. Also, the generated Ag+ and H2S enabled specific ion/gas combination therapy toward tumors. By combining the imaging and therapeutic functions, three-in-one Ag2S QDs may open a simple yet reliable avenue to design theranostic nanoprobes.


Subject(s)
Optical Imaging , Quantum Dots , Silver Compounds , Quantum Dots/chemistry , Silver Compounds/chemistry , Humans , Animals , Mice , Infrared Rays , Theranostic Nanomedicine , Hydrogen Sulfide/analysis , Hydrogen Sulfide/chemistry , Hydrogen-Ion Concentration
5.
Small ; 20(22): e2309529, 2024 May.
Article in English | MEDLINE | ID: mdl-38100303

ABSTRACT

Carbon monoxide shows great therapeutic potential in anti-cancer. In particular, the construction of multifunctional CO delivery systems can promote the precise delivery of CO and achieve ideal therapeutic effects, but there are still great challenges in design. In this work, a RSS and ROS sequentially activated CO delivery system is developed for boosting NIR imaging-guided on-demand photodynamic therapy. This designed system is composed of a CO releaser (BOD-CO) and a photosensitizer (BOD-I). BOD-CO can be specifically activated by hydrogen sulfide with simultaneous release of CO donor and NIR fluorescence that can identify H2S-rich tumors and guide light therapy, also depleting H2S in the process. Moreover, BOD-I generates 1O2 under long-wavelength light irradiation, enabling both PDT and precise local release of CO via a photooxidation mechanism. Such sequential activation of CO release by RSS and ROS ensured the safety and controllability of CO delivery, and effectively avoided leakage during delivery. Importantly, cytotoxicity and in vivo studies reveal that the release of CO combined with the depletion of endogenous H2S amplified PDT, achieving ideal anticancer results. It is believed that such theranostic nanoplatform can provide a novel strategy for the precise CO delivery and combined therapy involved in gas therapy and PDT.


Subject(s)
Carbon Monoxide , Photochemotherapy , Reactive Oxygen Species , Photochemotherapy/methods , Carbon Monoxide/chemistry , Reactive Oxygen Species/metabolism , Humans , Animals , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Mice , Infrared Rays , Hydrogen Sulfide/chemistry
6.
Analyst ; 149(4): 1280-1288, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38226660

ABSTRACT

In this work, a fluorescent probe, TPABF-HS, was developed for detecting hydrogen sulfide (H2S) using a human serum albumin (HSA)-binding-based approach for amplifying the fluorescence signal and extending the linear correlation range. Compared to the most recent probes for H2S, the most interesting feature of the detection system developed herein was the especially wide linear range (0-1000 µM (0-100 eq.)), which covered the physiological and pathological levels of H2S. TPABF-HS could be used in applications high sensitivity and selectivity with an LOD value of 0.42 µM. Further, site-competition experiments and molecular docking simulation experiments indicated that signal amplification was realized by the binding of the TPABF fluorophore to the naproxen-binding site of HSA. Moreover, the extension of the measurement span could allow for applications in living cells and Caenorhabditis elegans for imaging both exogenous and endogenous H2S. This work brings new information to the strategy of signal processing by exploiting fluorescent probes.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Humans , Fluorescent Dyes/toxicity , Fluorescent Dyes/chemistry , Hydrogen Sulfide/chemistry , Molecular Docking Simulation , HeLa Cells , Microscopy, Fluorescence
7.
Nat Rev Mol Cell Biol ; 13(8): 499-507, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22781905

ABSTRACT

Hydrogen sulfide (H(2)S) has recently emerged as a mammalian gaseous messenger molecule, akin to nitric oxide and carbon monoxide. H(2)S is predominantly formed from Cys or its derivatives by the enzymes cystathionine ß-synthase and cystathionine γ-lyase. One of the mechanisms by which H(2)S signals is by sulfhydration of reactive Cys residues in target proteins. Although analogous to protein nitrosylation, sulfhydration is substantially more prevalent and usually increases the catalytic activity of targeted proteins. Physiological actions of sulfhydration include the regulation of inflammation and endoplasmic reticulum stress signalling as well as of vascular tension.


Subject(s)
Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/metabolism , Cysteine , Hydrogen Sulfide/metabolism , Proteins , Animals , Cystathionine beta-Synthase/chemistry , Cystathionine gamma-Lyase/chemistry , Cysteine/chemistry , Cysteine/metabolism , Endoplasmic Reticulum Stress/physiology , Gases/chemistry , Gases/metabolism , Humans , Hydrogen Sulfide/chemistry , Inflammation/metabolism , Proteins/chemistry , Proteins/metabolism , Signal Transduction , Vasodilation/physiology
8.
Environ Sci Technol ; 58(25): 11128-11139, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857430

ABSTRACT

Hydrogen sulfide (H2S), an environmentally harmful pollutant, is a byproduct of geothermal energy production. To reduce the H2S emissions, H2S-charged water is injected into the basaltic subsurface, where it mineralizes to iron sulfides. Here, we couple geophysical induced polarization (IP) measurements in H2S injection wells and geochemical reactive transport models (RTM) to monitor the H2S storage efforts in the subsurface of Nesjavellir, one of Iceland's most productive geothermal fields. An increase in the IP response after 40 days of injection indicates iron-sulfide formation near the injection well. Likewise, the RTM shows that iron sulfides readily form at circumneutral to alkaline pH conditions, and the iron supply from basalt dissolution limits its formation. Agreement in the trends of the magnitude and distribution of iron-sulfide formation between IP and RTM suggests that coupling the methods can improve the monitoring of H2S mineralization by providing insight into the parameters influencing iron-sulfide formation. In particular, accurate fluid flow parameters in RTMs are critical to validate the predictions of the spatial distribution of subsurface iron-sulfide formation over time obtained through IP observations. This work establishes a foundation for expanding H2S sequestration monitoring efforts and a framework for coupling geophysical and geochemical site evaluations in environmental studies.


Subject(s)
Hydrogen Sulfide , Hydrogen Sulfide/chemistry , Environmental Monitoring/methods , Iceland , Iron/chemistry
9.
Environ Sci Technol ; 58(24): 10515-10523, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38622088

ABSTRACT

Hydrogen sulfide (H2S), a toxic gas abundant in natural gas fields and refineries, is currently being removed mainly via the Claus process. However, the emission of sulfur-containing pollutants is hard to be prevented and the hydrogen element is combined to water. Herein, we report an electron-mediated off-field electrocatalysis approach (OFEC) for complete splitting of H2S into H2 and S under ambient conditions. Fe(III)/Fe(II) and V(II)/V(III) redox mediators are used to fulfill the cycles for H2S oxidation and H2 production, respectively. Fe(III) effectively removes H2S with almost 100% conversion during its oxidation process. The H+ ions are reduced by V(II) on a nonprecious metal catalyst, tungsten carbide. The mediators are regenerated in an electrolyzer at a cell voltage of 1.05 V, close to the theoretical potential difference (1.02 V) between Fe(III)/Fe(II) and V(II)/V(III). In a laboratory bench-scale plant, the energy consumption for the production of H2 from H2S is estimated to be 2.8 kWh Nm-3 H2 using Fe(III)/Fe(II) and V(II)/V(III) mediators and further reduced to about 0.5 kWh Nm-3 H2 when employing well-designed heteropolyacid/quinone mediators. OFEC presents a cost-effective approach for the simultaneous production of H2 and elemental sulfur from H2S, along with the complete removal of H2S from industrial processes. It also provides a practical platform for electrochemical reactions involving solid precipitation and organic synthesis.


Subject(s)
Hydrogen Sulfide , Hydrogen , Sulfur , Hydrogen Sulfide/chemistry , Hydrogen/chemistry , Catalysis , Sulfur/chemistry , Oxidation-Reduction , Electrochemistry , Electrochemical Techniques
10.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33627407

ABSTRACT

Anticytotoxic T lymphocyte-associated protein 4 (CTLA4) antibodies have shown potent antitumor activity, but systemic immune activation leads to severe immune-related adverse events, limiting clinical usage. We developed novel, conditionally active biologic (CAB) anti-CTLA4 antibodies that are active only in the acidic tumor microenvironment. In healthy tissue, this binding is reversibly inhibited by a novel mechanism using physiological chemicals as protein-associated chemical switches (PaCS). No enzymes or potentially immunogenic covalent modifications to the antibody are required for activation in the tumor. The novel anti-CTLA4 antibodies show similar efficacy in animal models compared to an analog of a marketed anti-CTLA4 biologic, but have markedly reduced toxicity in nonhuman primates (in combination with an anti-PD1 checkpoint inhibitor), indicating a widened therapeutic index (TI). The PaCS encompass mechanisms that are applicable to a wide array of antibody formats (e.g., ADC, bispecifics) and antigens. Examples shown here include antibodies to EpCAM, Her2, Nectin4, CD73, and CD3. Existing antibodies can be engineered readily to be made sensitive to PaCS, and the inhibitory activity can be optimized for each antigen's varying expression level and tissue distribution. PaCS can modulate diverse physiological molecular interactions and are applicable to various pathologic conditions, enabling differential CAB antibody activities in normal versus disease microenvironments.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Neoplasm/pharmacology , B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Colonic Neoplasms/therapy , Immunotherapy/methods , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/genetics , 5'-Nucleotidase/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Neoplasm/chemistry , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Bicarbonates/chemistry , CD3 Complex/antagonists & inhibitors , CD3 Complex/genetics , CD3 Complex/immunology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/immunology , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Epithelial Cell Adhesion Molecule/antagonists & inhibitors , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/immunology , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression , Humans , Hydrogen Sulfide/chemistry , Hydrogen-Ion Concentration , Macaca fascicularis , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Protein Engineering/methods , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , Tumor Burden/drug effects , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
11.
J Environ Manage ; 351: 119784, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081091

ABSTRACT

During the long-term stabilization process of landfills, the pressure field undergoes constant changes. This study constructed dynamic pressure changes scenarios of high-pressure differentials (0.6 MPa) and low-pressure differentials (0.2 MPa) in the landfill pressure field at 25 °C and 50 °C, and investigated the sulfate reduction behavior in response to landfill dynamic pressure changes. The results showed that the pressurization or depressurization of high-pressure differentials caused more significant differences in sulfate reduction behavior than that of low-pressure differentials. The lowest hydrogen sulfide (H2S) release peak concentration under pressurization was only 29.67% of that under initial pressure condition; under depressurization, the highest peak concentration of H2S was up to 21,828 mg m-3, posing a serious risk of H2S pollution. Microbial community and correlation analysis showed that pressure had a negative impact on the sulfate-reducing bacteria (SRB) community, and the SRB community adjusted its structure to adapt to pressure changes. Specific SRBs were further enriched with pressure changes. Differential H2S release behavior under pressure changes in the 25 °C pressure environments were mediated by Desulfofarcimen (ASV343) and Desulfosporosinus (ASV1336), while Candidatus Desulforudis (ASV24) and Desulfohalotomaculum (ASV94) played a key role at 50 °C. This study is helpful in the formulation of control strategies for the source of odor pollution in landfills.


Subject(s)
Desulfovibrio , Hydrogen Sulfide , Hydrogen Sulfide/chemistry , Waste Disposal Facilities , Sulfates/chemistry
12.
AAPS PharmSciTech ; 25(5): 132, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849590

ABSTRACT

Hydrogen sulfide (H2S) is a multifaceted gasotransmitter molecule which has potential applications in many pathological conditions including in lowering intraocular pressure and providing retinal neuroprotection. However, its unique physicochemical properties pose several challenges for developing its efficient and safe delivery method system. This study aims to overcome challenges related to H2S toxicity, gaseous nature, and narrow therapeutic concentrations range by developing polymeric microparticles to sustain the release of H2S for an extended period. Various formulation parameters and their interactions are quantitatively identified using Quality-by-Design (QbD) approach to optimize the microparticle-based H2S donor (HSD) delivery system. Microparticles were prepared using a solvent-evaporation coacervation process by using polycaprolactone (PCL), soy lecithin, dichloromethane, Na2S.9H2O, and silicone oil as polymer, surfactant, solvent, HSD, and dispersion medium, respectively. The microparticles were characterized for size, size distribution, entrapment efficiency, and H2S release profile. A Main Effects Screening (MES) and a Response Surface Design (RSD) model-based Box-Behnken Design (BBD) was developed to establish the relationship between critical process parameters (CPPs) and critical quality attributes (CQAs) qualitatively and quantitatively. The MES model identified polymer to drug ratio and dispersion medium quantity as significant CPPs among others, while the RSD model established their quantitative relationship. Finally, the target product performance was validated by comparing predicted and experimental outcomes. The QbD approach helped in achieving overall desired microparticle characteristics with fewer trials and provided a mathematical relationship between the CPPs and the CQAs useful for further manipulation and optimization of release profile up to at least 30 days.


Subject(s)
Hydrogen Sulfide , Particle Size , Polymers , Hydrogen Sulfide/chemistry , Polymers/chemistry , Chemistry, Pharmaceutical/methods , Solvents/chemistry , Polyesters/chemistry , Microspheres , Drug Delivery Systems/methods , Drug Liberation , Drug Carriers/chemistry , Surface-Active Agents/chemistry , Drug Compounding/methods
13.
Angew Chem Int Ed Engl ; 63(24): e202402353, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38578835

ABSTRACT

Hydrogen sulfide (H2S) is an important reactive sulfur species that is involved in many biological functions, and H2S imbalances have been indicated as a potential biomarker for various diseases. Different H2S donors have been developed to deliver H2S directly to biological systems, but few reports include donors with optical responses that allow for tracking of H2S release. Moreover, donor systems that use the same chemistry to deliver H2S across a palette of fluorescent responses remain lacking. Here we report five thiol-activated fluorescence turn-on COS/H2S donors that utilize blue, yellow, orange, red, and near infrared-emitting dyes functionalized with an H2S-releasing sulfenyl thiocarbonate scaffold. Upon treatment with thiols, each donor provides a fluorescence turn-on response (3-310-fold) and high H2S release efficiencies (>60 %). Using combined electrode and fluorescence experiments, we directly correlate the measured H2S release with the fluorescence response. All donors are biocompatible and release H2S in live cell environments. In addition, we demonstrate that the NIR donor allows for imaging H2S release in live rats via subcutaneous injection of the donor loaded into an alginate gel, which to the best of our knowledge is the first in vivo tracking of H2S release from a fluorogenic donor in non-transparent organisms.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Hydrogen Sulfide/chemistry , Hydrogen Sulfide/analysis , Fluorescent Dyes/chemistry , Animals , Rats , Humans , Optical Imaging , Molecular Structure , Sulfhydryl Compounds/chemistry
14.
Angew Chem Int Ed Engl ; 63(27): e202401003, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38808693

ABSTRACT

The gasotransmitter hydrogen sulfide (H2S) is thought to be involved in the post-translational modification of cysteine residues to produce reactive persulfides. A persulfide-specific chemoselective proteomics approach with mammalian cells has identified a broad range of zinc finger (ZF) proteins as targets of persulfidation. Parallel studies with isolated ZFs show that persulfidation is mediated by ZnII, O2, and H2S, with intermediates involving oxygen- and sulfur-based radicals detected by mass spectrometry and optical spectroscopies. A small molecule ZnII complex exhibits analogous reactivity with H2S and O2, giving a persulfidated product. These data show that ZnII is not just a biological structural element, but also plays a critical role in mediating H2S-dependent persulfidation. ZF persulfidation appears to be a general post-translational modification and a possible conduit for H2S signaling. This work has implications for our understanding of H2S-mediated signaling and the regulation of ZFs in cellular physiology and development.


Subject(s)
Hydrogen Sulfide , Proteomics , Sulfides , Zinc Fingers , Zinc , Hydrogen Sulfide/chemistry , Hydrogen Sulfide/metabolism , Zinc/chemistry , Humans , Sulfides/chemistry , Protein Processing, Post-Translational
15.
J Biol Chem ; 298(10): 102402, 2022 10.
Article in English | MEDLINE | ID: mdl-35988644

ABSTRACT

Hydrogen sulfide (H2S) is produced endogenously by several enzymatic pathways and modulates physiological functions in mammals. Quantification of H2S in biochemical systems remains challenging because of the presence of interferents with similar reactivity, particularly thiols. Herein, we present a new quantification method based on the formation of pyrene excimers in solution. We synthesized the probe 2-(maleimido)ethyl 4-pyrenylbutanoate (MEPB) and determined that MEPB reacted with H2S in a two-step reaction to yield the thioether-linked dimer (MEPB)2S, which formed excimers upon excitation, with a broad peak of fluorescence emission centered at 480 nm. In contrast, we found that the products formed with thiols showed peaks at 378 and 398 nm. The difference in emission between the products prevented the interference. Furthermore, we showed that the excimer fluorescence signal yielded a linear response to H2S, with a limit of detection of 54 nM in a fluorometer. Our quantification method with MEPB was successfully applied to follow the reaction of H2S with glutathione disulfide and to quantify the production of H2S from cysteine by Escherichia coli. In conclusion, this method represents an addition to the toolkit of biochemists to quantify H2S specifically and sensitively in biochemical systems.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Pyrenes , Cysteine , Fluorescent Dyes/chemistry , Hydrogen Sulfide/analysis , Hydrogen Sulfide/chemistry , Pyrenes/chemistry , Sulfhydryl Compounds/chemistry , Fluorescence
16.
J Am Chem Soc ; 145(46): 25486-25494, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37950698

ABSTRACT

Hydrogen sulfide (H2S), an endogenous signaling molecule, is known to play a pivotal role in neuroprotection, vasodilation, and hormonal regulation. To further explore the biological effects of H2S, refined donors that facilitate its biological delivery, especially under specific (patho) physiological conditions, are needed. In the present study, we demonstrate that ortho-substituted, aryl boronate esters provide two unique and distinct pathways for H2S release from thioamide-based donors: Lewis acid-facilitated hydrolysis and reactive oxygen species (ROS)-induced oxidation/cyclization. Through a detailed structure-activity relationship study, donors that resist hydrolysis and release H2S solely via the latter mechanism were identified, which have the added benefit of providing a potentially useful heterocycle as the lone byproduct of this novel chemistry. To highlight this, we developed an ROS-activated donor (QH642) that simultaneously synthesizes a benzoxazole-based fluorophore en route to its H2S delivery. A distinct advantage of this design over earlier self-reporting donors is that fluorophore formation is possible only if H2S has been discharged from the donor. This key feature eliminates the potential for false positives and provides a more accurate depiction of reaction progress and donor delivery of H2S, including in complex cellular environments.


Subject(s)
Hydrogen Sulfide , Humans , Reactive Oxygen Species , Self Report , Hydrogen Sulfide/chemistry , Signal Transduction , Structure-Activity Relationship
17.
Anal Chem ; 95(12): 5443-5453, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36930753

ABSTRACT

The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.


Subject(s)
Hydrogen Sulfide , Pancreatitis , Rats , Animals , Hydrogen Sulfide/chemistry , Luminescence , Electrochemistry , Acute Disease , Silicon Dioxide , Microspheres
18.
Chemistry ; 29(66): e202302197, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37665099

ABSTRACT

Stimuli-responsive fluorogenic prodrugs are advantageous for the targeted drug delivery enabling real-time non-invasive monitoring with turn-on fluorescence. We report herein the dual-stimuli (ROS and CA)-responsive thiocarbamate-based prodrug (AM-TCB) for the turn-on fluorogenic delivery of the naphthalimide-based anticancer agent amonafide along with the gasotransmitter hydrogen sulfide (H2 S). A carbamate-based prodrug AM-CB was also designed, capable of releasing the anticancer agent amonafide without any H2 S. The prodrugs were synthesized using multi-step organic synthesis. UV-Vis and fluorescence spectroscopic studies revealed selective reactivity of the boronate ester group of prodrugs towards ROS (primarily H2 O2 ) with the release of amonafide and COS/CO2 via self-immolative processes. Hydrolysis of the generated COS by carbonic anhydrase (CA) produces H2 S. While the prodrug AM-TCB retained the anticancer activity of free amonafide in cancer cells (MDA-MB-231 and HeLa), unlike amonafide, it enhanced the cellular viability of the non-malignant cells (HEK-293). Fluorescence imaging in HeLa cells revealed the simultaneous delivery of the anticancer agent and H2 S from AM-TCB with turn-on fluorescence. Western blot studies further revealed the cytoprotective effects of the released H2 S from AM-TCB. The present adjuvant strategy therefore would be helpful in future for ameliorating the anticancer drug-induced side-effects.


Subject(s)
Antineoplastic Agents , Hydrogen Sulfide , Prodrugs , Humans , Prodrugs/pharmacology , Prodrugs/chemistry , Hydrogen Sulfide/chemistry , HeLa Cells , Fluorescence , Reactive Oxygen Species , HEK293 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
19.
J Nanobiotechnology ; 21(1): 483, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104180

ABSTRACT

Salmonellosis is a globally extensive food-borne disease, which threatens public health and results in huge economic losses in the world annually. The rising prevalence of antibiotic resistance in Salmonella poses a significant global concern, emphasizing an imperative to identify novel therapeutic agents or methodologies to effectively combat this predicament. In this study, self-assembly hydrogen sulfide (H2S)-responsive nanoprodrugs were fabricated with poly(α-lipoic acid)-polyethylene glycol grafted rhein and geraniol (PPRG), self-assembled into core-shell nanoparticles via electrostatic, hydrophilic and hydrophobic interactions, with hydrophilic exterior and hydrophobic interior. The rhein and geraniol are released from self-assembly nanoprodrugs PPRG in response to Salmonella infection, which is known to produce hydrogen sulfide (H2S). PPRG demonstrated stronger antibacterial activity against Salmonella compared with rhein or geraniol alone in vitro and in vivo. Additionally, PPRG was also able to suppress the inflammation and modulate gut microbiota homeostasis. In conclusion, the as-prepared self-assembly nanoprodrug sheds new light on the design of natural product active ingredients and provides new ideas for exploring targeted therapies for specific Enteropathogens. Graphical  illustration for construction of self-assembly nanoprodrugs PPRG and its antibacterial and anti-inflammatory activities on experimental Salmonella infection in mice.


Subject(s)
Hydrogen Sulfide , Salmonella Infections , Animals , Mice , Salmonella typhimurium , Hydrogen Sulfide/chemistry , Salmonella Infections/drug therapy , Salmonella Infections/microbiology , Anti-Bacterial Agents/pharmacology
20.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108682

ABSTRACT

Naphthoquinone (1,4-NQ) and its derivatives (NQs, juglone, plumbagin, 2-methoxy-1,4-NQ, and menadione) have a variety of therapeutic applications, many of which are attributed to redox cycling and the production of reactive oxygen species (ROS). We previously demonstrated that NQs also oxidize hydrogen sulfide (H2S) to reactive sulfur species (RSS), potentially conveying identical benefits. Here we use RSS-specific fluorophores, mass spectroscopy, EPR and UV-Vis spectrometry, and oxygen-sensitive optodes to examine the effects of thiols and thiol-NQ adducts on H2S-NQ reactions. In the presence of glutathione (GSH) and cysteine (Cys), 1,4-NQ oxidizes H2S to both inorganic and organic hydroper-/hydropolysulfides (R2Sn, R=H, Cys, GSH; n = 2-4) and organic sulfoxides (GSnOH, n = 1, 2). These reactions reduce NQs and consume oxygen via a semiquinone intermediate. NQs are also reduced as they form adducts with GSH, Cys, protein thiols, and amines. Thiol, but not amine, adducts may increase or decrease H2S oxidation in reactions that are both NQ- and thiol-specific. Amine adducts also inhibit the formation of thiol adducts. These results suggest that NQs may react with endogenous thiols, including GSH, Cys, and protein Cys, and that these adducts may affect both thiol reactions as well as RSS production from H2S.


Subject(s)
Hydrogen Sulfide , Naphthoquinones , Sulfhydryl Compounds/chemistry , Thiosulfates , Cysteine/metabolism , Hydrogen Sulfide/chemistry , Oxidation-Reduction , Glutathione/metabolism , Proteins/metabolism , Oxygen , Naphthoquinones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL