Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.187
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Pain ; 20: 17448069241259535, 2024.
Article in English | MEDLINE | ID: mdl-38773702

ABSTRACT

Methylene blue (MB) has been shown to reduce mortality and morbidity in vasoplegic patients after cardiac surgery. Though MB is considered to be safe, extravasation of MB leading to cutaneous toxicity has been reported. In this study, we sought to characterize MB-induced cutaneous toxicity and investigate the underlying mechanisms. To induce MB-induced cutaneous toxicity, we injected 64 adult male Sprague-Dawley rates with 200 µL saline (vehicle) or 1%, 0.1%, or 0.01% MB in the plantar hind paws. Paw swelling, skin histologic changes, and heat and mechanical hyperalgesia were measured. Injection of 1%, but not 0.1% or 0.01% MB, produced significant paw swelling compared to saline. Injection of 1% MB produced heat hyperalgesia but not mechanical hyperalgesia. Pain behaviors were unchanged following injections of 0.1% or 0.01% MB. Global transcriptomic analysis by RNAseq identified 117 differentially expressed genes (111 upregulated, 6 downregulated). Ingenuity Pathway Analysis showed an increased quantity of leukocytes, increased lipids, and decreased apoptosis of myeloid cells and phagocytes with activation of IL-1ß and Fos as the two major regulatory hubs. qPCR showed a 16-fold increase in IL-6 mRNA. Thus, using a novel rat model of MB-induced cutaneous toxicity, we show that infiltration of 1% MB into cutaneous tissue causes a dose-dependent pro-inflammatory response, highlighting potential roles of IL-6, IL-1ß, and Fos. Thus, anesthesiologists should administer dilute MB intravenously through peripheral venous catheters. Higher concentrations of MB (1%) should be administered through a central venous catheter to minimize the risk of cutaneous toxicity.


Subject(s)
Disease Models, Animal , Hyperalgesia , Inflammation , Methylene Blue , Rats, Sprague-Dawley , Skin , Animals , Male , Methylene Blue/pharmacology , Methylene Blue/administration & dosage , Hyperalgesia/pathology , Hyperalgesia/chemically induced , Inflammation/pathology , Inflammation/chemically induced , Skin/drug effects , Skin/pathology , Dose-Response Relationship, Drug , Hot Temperature , Rats , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
2.
J Neuroinflammation ; 21(1): 23, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233858

ABSTRACT

BACKGROUND: Complex regional pain syndrome (CRPS) develops after injury and is characterized by disproportionate pain, oedema, and functional loss. CRPS has clinical signs of neuropathy as well as neurogenic inflammation. Here, we asked whether skin biopsies could be used to differentiate the contribution of these two systems to ultimately guide therapy. To this end, the cutaneous sensory system including nerve fibres and the recently described nociceptive Schwann cells as well as the cutaneous immune system were analysed. METHODS: We systematically deep-phenotyped CRPS patients and immunolabelled glabrous skin biopsies from the affected ipsilateral and non-affected contralateral finger of 19 acute (< 12 months) and 6 chronic (> 12 months after trauma) CRPS patients as well as 25 sex- and age-matched healthy controls (HC). Murine foot pads harvested one week after sham or chronic constriction injury were immunolabelled to assess intraepidermal Schwann cells. RESULTS: Intraepidermal Schwann cells were detected in human skin of the finger-but their density was much lower compared to mice. Acute and chronic CRPS patients suffered from moderate to severe CRPS symptoms and corresponding pain. Most patients had CRPS type I in the warm category. Their cutaneous neuroglial complex was completely unaffected despite sensory plus signs, e.g. allodynia and hyperalgesia. Cutaneous innate sentinel immune cells, e.g. mast cells and Langerhans cells, infiltrated or proliferated ipsilaterally independently of each other-but only in acute CRPS. No additional adaptive immune cells, e.g. T cells and plasma cells, infiltrated the skin. CONCLUSIONS: Diagnostic skin punch biopsies could be used to diagnose individual pathophysiology in a very heterogenous disease like acute CRPS to guide tailored treatment in the future. Since numbers of inflammatory cells and pain did not necessarily correlate, more in-depth analysis of individual patients is necessary.


Subject(s)
Complex Regional Pain Syndromes , Reflex Sympathetic Dystrophy , Humans , Animals , Mice , Complex Regional Pain Syndromes/pathology , Skin/pathology , Hyperalgesia/etiology , Hyperalgesia/pathology , Pain/pathology , Schwann Cells/pathology
3.
Nature ; 561(7724): 547-550, 2018 09.
Article in English | MEDLINE | ID: mdl-30209395

ABSTRACT

Current models of somatosensory perception emphasize transmission from primary sensory neurons to the spinal cord and on to the brain1-4. Mental influence on perception is largely assumed to occur locally within the brain. Here we investigate whether sensory inflow through the spinal cord undergoes direct top-down control by the cortex. Although the corticospinal tract (CST) is traditionally viewed as a primary motor pathway5, a subset of corticospinal neurons (CSNs) originating in the primary and secondary somatosensory cortex directly innervate the spinal dorsal horn via CST axons. Either reduction in somatosensory CSN activity or transection of the CST in mice selectively impairs behavioural responses to light touch without altering responses to noxious stimuli. Moreover, such CSN manipulation greatly attenuates tactile allodynia in a model of peripheral neuropathic pain. Tactile stimulation activates somatosensory CSNs, and their corticospinal projections facilitate light-touch-evoked activity of cholecystokinin interneurons in the deep dorsal horn. This touch-driven feed-forward spinal-cortical-spinal sensitization loop is important for the recruitment of spinal nociceptive neurons under tactile allodynia. These results reveal direct cortical modulation of normal and pathological tactile sensory processing in the spinal cord and open up opportunities for new treatments for neuropathic pain.


Subject(s)
Neural Pathways/physiopathology , Neuralgia/physiopathology , Pyramidal Tracts/physiopathology , Touch/physiology , Animals , Axons , Cholecystokinin/metabolism , Female , Hindlimb/physiopathology , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Interneurons/metabolism , Male , Mice , Neuralgia/pathology , Nociception/physiology , Pyramidal Tracts/pathology , Somatosensory Cortex/pathology , Somatosensory Cortex/physiopathology , Spinal Cord Dorsal Horn/pathology , Spinal Cord Dorsal Horn/physiopathology
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431693

ABSTRACT

A cardinal, intractable symptom of neuropathic pain is mechanical allodynia, pain caused by innocuous stimuli via low-threshold mechanoreceptors such as Aß fibers. However, the mechanism by which Aß fiber-derived signals are converted to pain remains incompletely understood. Here we identify a subset of inhibitory interneurons in the spinal dorsal horn (SDH) operated by adeno-associated viral vectors incorporating a neuropeptide Y promoter (AAV-NpyP+) and show that specific ablation or silencing of AAV-NpyP+ SDH interneurons converted touch-sensing Aß fiber-derived signals to morphine-resistant pain-like behavioral responses. AAV-NpyP+ neurons received excitatory inputs from Aß fibers and transmitted inhibitory GABA signals to lamina I neurons projecting to the brain. In a model of neuropathic pain developed by peripheral nerve injury, AAV-NpyP+ neurons exhibited deeper resting membrane potentials, and their excitation by Aß fibers was impaired. Conversely, chemogenetic activation of AAV-NpyP+ neurons in nerve-injured rats reversed Aß fiber-derived neuropathic pain-like behavior that was shown to be morphine-resistant and reduced pathological neuronal activation of superficial SDH including lamina I. These findings suggest that identified inhibitory SDH interneurons that act as a critical brake on conversion of touch-sensing Aß fiber signals into pain-like behavioral responses. Thus, enhancing activity of these neurons may offer a novel strategy for treating neuropathic allodynia.


Subject(s)
Interneurons/physiology , Neuralgia/genetics , Spinal Cord Dorsal Horn/physiology , Touch Perception/physiology , Animals , Hyperalgesia/genetics , Hyperalgesia/pathology , Male , Mechanoreceptors/metabolism , Neuralgia/metabolism , Neuralgia/pathology , Nociception/physiology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/physiopathology , Posterior Horn Cells/metabolism , Posterior Horn Cells/pathology , Protein Kinase C/genetics , Protein Kinase C/metabolism , Rats , Spinal Cord Dorsal Horn/pathology , Touch/physiology , Touch Perception/genetics , gamma-Aminobutyric Acid/metabolism
5.
J Integr Neurosci ; 23(3): 64, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38538230

ABSTRACT

BACKGROUND: Pannexin1 (Panx1) is a membrane channel expressed in different cells of the nervous system and is involved in several pathological conditions, including pain and inflammation. At the central nervous system, the role of Panx1 is already well-established. However, in the periphery, there is a lack of information regarding the participation of Panx1 in neuronal sensitization. The dorsal root ganglion (DRG) is a critical structure for pain processing and modulation. For this reason, understanding the molecular mechanism in the DRG associated with neuronal hypersensitivity has become highly relevant to discovering new possibilities for pain treatment. Here, we aimed to investigate the role of Panx1 in acute nociception and peripheral inflammatory and neuropathic pain by using two different approaches. METHODS: Rats were treated with a selective Panx1 blocker peptide (10Panx) into L5-DRG, followed by ipsilateral intraplantar injection of carrageenan, formalin, or capsaicin. DRG neuronal cells were pre-treated with 10Panx and stimulated by capsaicin to evaluate calcium influx. Panx1 knockout mice (Panx1-KO) received carrageenan or capsaicin into the paw and paclitaxel intraperitoneally. The von Frey test was performed to measure the mechanical threshold of rats' and mice's paws before and after each treatment. RESULTS: Pharmacological blockade of Panx1 in the DRG of rats resulted in a dose-dependent decrease of mechanical allodynia triggered by carrageenan, and nociception decreased in the second phase of formalin. Nociceptive behavior response induced by capsaicin was significantly lower in rats treated with Panx1 blockade into DRG. Neuronal cells with Panx1 blockage showed lower intracellular calcium response than untreated cells after capsaicin administration. Accordingly, Panx1-KO mice showed a robust reduction in mechanical allodynia after carrageenan and a lower nociceptive response to capsaicin. A single dose of paclitaxel promoted acute mechanical pain in wildtype (WT) but not in Panx1-KO mice. Four doses of chemotherapy promoted chronic mechanical allodynia in both genotypes, although Panx1-KO mice had significant ablation in the first eight days. CONCLUSION: Our findings suggest that Panx1 is critical for developing peripheral inflammatory pain and acute nociception involving transient receptor potential vanilloid subtype 1 (TRPV1) but is not essential for neuropathic pain chronicity.


Subject(s)
Hyperalgesia , Neuralgia , Rats , Mice , Animals , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Capsaicin/pharmacology , Capsaicin/therapeutic use , Paclitaxel/adverse effects , Carrageenan/adverse effects , Calcium , Neuralgia/chemically induced , Neuralgia/drug therapy , Formaldehyde/adverse effects , Ganglia, Spinal , Nerve Tissue Proteins , Connexins/genetics , Connexins/therapeutic use
6.
Brain ; 145(5): 1632-1640, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35661858

ABSTRACT

The axon initial segment is a specialized compartment of the proximal axon of CNS neurons where action potentials are initiated. However, it remains unknown whether this domain is assembled in sensory dorsal root ganglion neurons, in which spikes are initiated in the peripheral terminals. Here we investigate whether sensory neurons have an axon initial segment and if it contributes to spontaneous activity in neuropathic pain. Our results demonstrate that myelinated dorsal root ganglion neurons assemble an axon initial segment in the proximal region of their stem axon, enriched in the voltage-gated sodium channels Nav1.1 and Nav1.7. Using correlative immunofluorescence and calcium imaging, we demonstrate that the Nav1.7 channels at the axon initial segment are associated with spontaneous activity. Computer simulations further indicate that the axon initial segment plays a key role in the initiation of spontaneous discharges by lowering their voltage threshold. Finally, using a Cre-based mouse model for time-controlled axon initial segment disassembly, we demonstrate that this compartment is a major source of spontaneous discharges causing mechanical allodynia in neuropathic pain. Thus, an axon initial segment domain is present in sensory neurons and facilitates their spontaneous activity. This study provides a new insight in the cellular mechanisms that cause pathological pain and identifies a new potential target for chronic pain management.


Subject(s)
Axon Initial Segment , Neuralgia , Animals , Ganglia, Spinal/pathology , Humans , Hyperalgesia/pathology , Mice , Neuralgia/pathology , Sensory Receptor Cells
7.
Pflugers Arch ; 474(4): 397-403, 2022 04.
Article in English | MEDLINE | ID: mdl-35048187

ABSTRACT

High-impact chronic pain is suffered by 1 in 5 patients in the USA and globally. Effective, non-addictive, non-opioid therapeutics are urgently needed for the treatment of chronic pain. Slc7a5 (Lat1), also known as system L-neutral amino acid transporter, is involved in a number of physiological processes related to inflammation. Transcriptomics studies have shown that Slc7a5 and its binding partner Slc3a2 are expressed in neurons of the dorsal root ganglia (DRG) and spinal dorsal horn, which are critical to the initiation and maintenance of nociception and pathophysiology of chronic pain. In addition, Slc7a5 is a transporter for the first-line anti-allodynic gabapentinoid drugs and binds to ion channels implicated in nociception and chronic pain including the voltage-gated sodium channel Nav1.7 and the voltage-gated potassium channels Kv1.1 and Kv1.2. We found that blocking Slc7a5 with intrathecal administration of the drug JPH203 alleviated allodynia in the spared nerve injury (SNI) rodent model of neuropathic pain. Western blot and immunohistochemistry studies revealed an increase in Slc7a5 protein levels in the spinal cord and DRGs of SNI mice compared to control mice. Using whole-cell current-clamp electrophysiology, we observed that JPH203 treatment reduced excitability of small-diameter (< 30 µm) DRG neurons from SNI mice, in agreement with its behavioral effects. Voltage-clamp recordings from JPH203-treated naïve rat DRGs identified an effect on tetrodotoxin-resistant (TTX-R) sodium currents. Altogether, these results demonstrate that Slc7a5 is dysregulated in chronic neuropathic pain and can be targeted to provide relief of hypersensitivity.


Subject(s)
Hyperalgesia , Large Neutral Amino Acid-Transporter 1 , Neuralgia , Animals , Ganglia, Spinal/metabolism , Humans , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Hyperalgesia/pathology , Large Neutral Amino Acid-Transporter 1/metabolism , Mice , Neuralgia/drug therapy , Neuralgia/metabolism , Neuralgia/pathology , Neurons/metabolism , Neurons/pathology , Rats , Rats, Sprague-Dawley , Rodentia , Spinal Cord Dorsal Horn/metabolism , Spinal Cord Dorsal Horn/pathology
8.
J Transl Med ; 20(1): 583, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503542

ABSTRACT

BACKGROUND: Growing evidence shows that C-Type Lectin Domain Containing 7A (Clec7a) may be involved into neuroinflammatory injury of various neurological diseases. However, its roles in neuropathic pain remain unclear. METHODS: A chronic constriction injury (CCI) rat model was constructed, and gene expression profilings in spinal cord tissues of CCI-insulted rats were detected by both microarray and RNA-seq studies. A series of bioinformatics analyses identified C/EBPß-Clec7a to be a candidate axis involved into neuropathic pain. Then, its roles in mechanical allodynia, and pathological and molecular changes during CCI progression were determined by various gain-of-function and loss-of-function experiments in vivo and in vitro. RESULTS: Significant upregulation of Clec7a at both mRNA and protein levels were verified in spinal cord tissues of CCI-insulted rats. Clec7a knockdown markedly attenuated CCI-induced mechanical allodynia, obstructed Syk, ERK and JNK phosphorylation, inhibited NLRP3 inflammasome and caspase-1 activation, GSDMD cleavage, and consequently reduced the release of pro-inflammatory cytokines (all P < 0.05). Mechanically, the rat Clec7a promoter was predicted to bind with transcription factor C/EBPß, confirmed by Luciferase assay and ChIP-qPCR. Both in vivo and in vitro assays demonstrated that C/EBPß knockdown significantly suppressed CCI- or LPS/ATP-induced Clec7a upregulation, and subsequently reduced Syk, ERK and JNK phosphorylation, NLRP3 oligomerization, caspase-1 activation, GSDMD expression and pyroptosis, which were markedly reversed by the co-transfection of Clec7a expression vector. CONCLUSIONS: This pre-clinical investigation reveals that C/EBPß-Clec7a axis may be a potential target for relieving neuropathic pain through alleviating neuroinflammation, paving its way for clinical translation as a promising approach for neuropathic pain therapy.


Subject(s)
Inflammasomes , Neuralgia , Rats , Animals , Inflammasomes/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Rats, Sprague-Dawley , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Hyperalgesia/pathology , Caspases , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
FASEB J ; 35(10): e21852, 2021 10.
Article in English | MEDLINE | ID: mdl-34499774

ABSTRACT

Postoperative pain and delayed healing in surgical wounds, which require complex management strategies have understudied complicated mechanisms. Here we investigated temporal changes in behavior, tissue structure, and transcriptomic profiles in a rat model of a surgical incision, using hyperalgesic behavioral tests, histological analyses, and next-generation RNA sequencing, respectively. The most rapidly (1 hour) expressed genes were the chemokines, Cxcl1 and Cxcl2. Consequently, infiltrating leukocytes were abundantly observed starting at 6 and peaking at 24 hours after incising which was supported by histological analysis and appearance of the neutrophil markers, S100a8 and S100a9. At this time, hyperalgesia was at a peak and overall transcriptional activity was most highly activated. At the 1-day timepoint, Nppb, coding for natriuretic peptide precursor B, was the most strongly upregulated gene and was localized by in situ hybridization to the epidermal keratinocytes at the margins of the incision. Nppb was basically unaffected in a peripheral inflammation model transcriptomic dataset. At the late phase of wound healing, five secreted, incision-specific peptidases, Mmp2, Aebp1, Mmp23, Adamts7, and Adamtsl1, showed increased expression, supporting the idea of a sustained tissue remodeling process. Transcripts that are specifically upregulated at each timepoint in the incision model may be potential candidates for either biomarkers or therapeutic targets for wound pain and wound healing. This study incorporates the examination of longitudinal temporal molecular responses, corresponding anatomical localization, and hyperalgesic behavioral alterations in the surgical incision model that together provide important and novel foundational knowledge to understand mechanisms of wound pain and wound healing.


Subject(s)
Hyperalgesia/pathology , Pain, Postoperative/pathology , Plantar Plate/physiology , RNA-Seq/methods , Surgical Wound/complications , Transcriptome , Wound Healing , Animals , Behavior, Animal , Edema/etiology , Edema/metabolism , Edema/pathology , Hyperalgesia/etiology , Hyperalgesia/metabolism , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Male , Pain, Postoperative/etiology , Pain, Postoperative/metabolism , Rats , Rats, Sprague-Dawley
10.
Headache ; 62(10): 1365-1375, 2022 11.
Article in English | MEDLINE | ID: mdl-36321946

ABSTRACT

OBJECTIVE: To establish a new rat model of craniofacial myalgia, and to clarify which central nervous system pathways are activated in the model. BACKGROUND: Craniofacial myalgia, represented by myogenous temporomandibular disorder and tension-type headache with pericranial tenderness, is more common in female patients. The pain is thought to be a type of multifactorial disorder with several coexisting causes. To our knowledge, there are no models of craniofacial muscle hyperalgesia caused by multiple types of stimuli. METHODS: We injected nerve growth factor into the trapezius muscle of female and male rats and repeatedly stimulated the masseter muscle (MM) electrically for 10 days. We determined the mechanical head-withdrawal threshold of MM and extent of phosphorylated extracellular signal-related kinase 1/2 (pERK) immunoreactivity in various regions of the lower brainstem. We conducted retrograde tract-tracing to determine the projection of mechanosensitive MM-innervating secondary neurons to the lateral parabrachial nucleus. Finally, we administered morphine in rats to determine whether increases of pERK immunoreactivity were dependent on noxious inputs. RESULTS: In female rats, but not male rats, the mechanical head-withdrawal threshold was decreased significantly from days 9 to 12. The number of pERK-immunoreactive neurons in the brainstem was increased significantly in female rats in the group with both stimuli compared to rats in other groups with a single stimulus. Mechanosensitive MM-innervating neurons in the brainstem projected to the parabrachial nucleus. Morphine administration blocked the increase in the number of pERK-immunoreactive neurons in both the brainstem and parabrachial nucleus. CONCLUSIONS: We established a model of craniofacial myalgia by combining trapezius and MM stimuli in female rats. We found mechanical hyperalgesia of the MM and activation of the pain pathway from the brainstem to parabrachial nucleus. The model reflects the characteristics of patients with craniofacial myalgia and might be helpful to clarify the pathogenic mechanisms underlying these disorders.


Subject(s)
Masseter Muscle , Parabrachial Nucleus , Rats , Female , Animals , Parabrachial Nucleus/metabolism , Rats, Sprague-Dawley , Hyperalgesia/etiology , Hyperalgesia/pathology , Muscle Contraction , Extracellular Signal-Regulated MAP Kinases/metabolism , Myalgia
11.
J Formos Med Assoc ; 121(4): 802-814, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34531102

ABSTRACT

BACKGROUND/PURPOSE: We investigated the protective efficacy of l-theanine (LT), the major amino acid components of green tea, on chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain (NP) development and neuronal functional changes in rats. METHODS: Rats with NP induced by CCI of the left sciatic nerve and sham-operated rats received LT or saline solution, with pain sensitive tests of thermal hyperalgesia and mechanical allodynia. Motor and sensory nerve conduction velocities were measured after surgery. Subsequently, the rats were sacrificed; the sciatic nerve was excised, homogenized, prepared and subjected for estimation of nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), myeloperoxidase (MPO), and caspase-3. RESULTS: CCI produced a significant increase in hyperalgesia and allodynia, an increase in SFI, a decrease in nerve conduction velocity, increases in NO, MDA, TNF-α, IL-1ß, IL-6, MPO, and caspase-3 levels, as well as reduction of GSH, SOD, and CAT in the rat sciatic nerve. LT treatment significantly and dose-dependently alleviated CCI-induced nociceptive pain thresholds and ameliorated abnormal nerve conduction and functional loss in rats with CCI. Moreover, LT treatment reduced NO and MDA levels, increased antioxidative strength, and markedly suppressed the levels of neuroinflammatory and apoptotic markers in injured sciatic nerves. CONCLUSION: This is the first report on the ameliorative effect of LT in CCI-induced NP in rats. This effect might be attributed to its anti-oxidative, anti-inflammatory, anti-apoptotic, and neuroprotective, thus making it potentially useful as an adjuvant to conventional treatment.


Subject(s)
Neuralgia , Neuroprotective Agents , Animals , Constriction , Glutamates , Humans , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Hyperalgesia/prevention & control , Neuralgia/drug therapy , Neuroprotective Agents/pharmacology , Rats , Sciatic Nerve/injuries , Sciatic Nerve/pathology
12.
Inflammopharmacology ; 30(3): 981-990, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35303234

ABSTRACT

Epoxyeicosatrienoic acids (EETs) are endogenous molecules that exerts effective antinociceptive and resolutive actions. However, because of their rapid metabolism by the soluble epoxide hydrolase (sEH), EETs are unable to remain bioavailable. Therefore, the aim of this study was to investigate whether local sEH inhibition could prevent inflammatory hyperalgesia in the temporomandibular joint (TMJ) of rats. For that, rats were pre-treated with an intra-TMJ injection of TPPU, followed by the noxious stimulus (1.5% of formalin intra-articular) to evaluate nociceptive behavior. Histological analysis was conducted to explore the inflammatory exudate and mast cell degranulation. Periarticular tissue over the TMJ was used to measure inflammatory lipids and cytokines/chemokine by Enzyme-Linked Immunosorbent Assay (ELISA). We demonstrated that peripheral pretreatment with TPPU prevents formalin-induced inflammatory hyperalgesia in the TMJ, and this effect is strictly local. Moreover, TPPU mitigates the leukocyte exudate in the TMJ, as well as inflammatory lipids mediators. Mast cell number and degranulation were abrogated by TPPU, and the inflammatory cytokine levels were decreased by TPPU. On the other hand, TPPU up-regulated the release of interleukin 10 (IL-10), an anti-inflammatory cytokine. We provide evidence that locally sEH by intra-TMJ injection of TPPU produces an antinociceptive and anti-inflammatory effect on rats' TMJ.


Subject(s)
Epoxide Hydrolases , Hyperalgesia , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Epoxide Hydrolases/metabolism , Formaldehyde/pharmacology , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Lipids , Phenylurea Compounds/toxicity , Piperidines/pharmacology , Rats , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology
13.
J Neurosci ; 40(41): 7837-7854, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32958568

ABSTRACT

As one of the thalamic midline nuclei, the thalamic paraventricular nucleus (PVT) is considered to be an important signal integration site for many descending and ascending pathways that modulate a variety of behaviors, including feeding, emotions, and drug-seeking. A recent study has demonstrated that the PVT is implicated in the acute visceral pain response, but it is unclear whether the PVT plays a critical role in the central processing of chronic pain. Here, we report that the neurons in the posterior portion of the PVT (pPVT) and their downstream pathway are involved in descending nociceptive facilitation regarding the development of neuropathic pain conditions in male rats. Lesions or inhibition of pPVT neurons alleviated mechanical allodynia induced by spared nerve injury (SNI). The excitability of pPVT-central amygdala (CeA) projection neurons was significantly increased in SNI rats. Importantly, selective optogenetic activation of the pPVT-CeA pathway induced obvious mechanical hypersensitivity in naive rats. In addition, we used rabies virus (RV)-based and cell-type-specific retrograde transsynaptic tracing techniques to define a novel neuronal circuit in which glutamatergic neurons in the vlPAG were the target of the pPVT-CeA descending facilitation pathway. Our data suggest that this pPVTGlu+-CeA-vlPAGGlu+ circuit mediates central mechanisms of descending pain facilitation underlying persistent pain conditions.SIGNIFICANCE STATEMENT Studies have shown that the interactions between the posterior portion of the thalamic paraventricular nucleus (pPVT) and central amygdala (CeA) play a critical role in pain-related emotional regulation. However, most reports have associated this circuit with fear and anxiety behaviors. Here, an integrative approach of behavioral tests, electrophysiology, and immunohistochemistry was used to advance the novel concept that the pPVT-CeA pathway activation facilitates neuropathic pain processing. Using rabies virus (RV)-based and cell-type-specific retrograde transsynaptic tracing techniques, we found that glutamatergic neurons in the vlPAG were the target of the pPVT-CeA pathway. Thus, this study indicates the involvement of a pPVTGlu+-CeA-vlPAGGlu+ pathway in a descending facilitatory mechanism underlying neuropathic pain.


Subject(s)
Central Amygdaloid Nucleus/pathology , Midline Thalamic Nuclei/pathology , Neural Pathways/pathology , Neuralgia/pathology , Animals , Behavior, Animal , Electrophysiological Phenomena , Hyperalgesia/pathology , Image Processing, Computer-Assisted , Male , Neuralgia/psychology , Neurons/pathology , Nociception , Optogenetics , Periaqueductal Gray/pathology , Rats , Rats, Sprague-Dawley
14.
J Neurochem ; 158(5): 1110-1130, 2021 09.
Article in English | MEDLINE | ID: mdl-34254317

ABSTRACT

Bone cancer pain (BCP) is a clinical pathology that urgently needs to be solved, but research on the mechanism of BCP has so far achieved limited success. Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) has been shown to be involved in pain, but its involvement in BCP and the specific mechanism have yet to be examined. This study aimed to test the hypothesis that BCP induces the transfer of Nrf2 from the cytoplasm to the nucleus and further promotes nuclear transcription to activate heme oxygenase-1 (HO-1) and inhibit the activation of nuclear factor-kappa B (NF-κB) signalling, ultimately regulating the neuroinflammatory response. Von-Frey was used for behavioural analysis in rats with BCP, whereas western blotting, real-time quantitative PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect molecular expression changes, and immunofluorescence was used to detect cellular localization. We demonstrated that BCP induced increased Nrf2 nuclear protein expression with decreased cytoplasmic protein expression in the spinal cord. Further increases in Nrf2 nuclear protein expression can alleviate hyperalgesia and activate HO-1 to inhibit the expression of NF-κB nuclear protein and inflammatory factors. Strikingly, intrathecal administration of the corresponding siRNA reversed the above effects. In addition, the results of double immune labelling revealed that Nrf2 and NF-κB were coexpressed in spinal cord neurons of rats with BCP. In summary, these findings suggest that the entry of Nrf2 into the nucleus promotes the expression of HO-1, inhibiting activation of the NF-κB signalling pathway, reducing neuroinflammation and ultimately exerting an anti-nociceptive effect.


Subject(s)
Bone Neoplasms/metabolism , Cancer Pain/metabolism , Hyperalgesia/metabolism , NF-E2-Related Factor 2/biosynthesis , NF-kappa B/metabolism , Spinal Cord/metabolism , Active Transport, Cell Nucleus/physiology , Animals , Bone Neoplasms/pathology , Cancer Pain/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Female , Hyperalgesia/pathology , NF-kappa B/antagonists & inhibitors , Neurons/metabolism , Neurons/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord/pathology
15.
J Neurochem ; 159(3): 512-524, 2021 11.
Article in English | MEDLINE | ID: mdl-34338322

ABSTRACT

Studies have verified that Fragile X mental retardation protein (FMRP), an RNA-binding protein, plays a potential role in the pathogenesis of formalin- and (RS)-3,5-dihydroxyphenylglycine-induced abnormal pain sensations. However, the role of FMRP in inflammatory pain has not been reported. Here, we showed an increase in FMRP expression in the spinal dorsal horn (SDH) in a rat model of inflammatory pain induced by complete Freund's adjuvant (CFA). Double immunofluorescence staining revealed that FMRP was mainly expressed in spinal neurons and colocalized with proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)]. After consecutive intrathecal injection of fragile X mental retardation 1 small interfering RNA for 3 days post-CFA injection, FMRP expression in the SDH was reduced, and CFA-induced hyperalgesia was decreased. In addition, the CFA-induced increase in spinal TNF-α and IL-6 production was significantly suppressed by intrathecal administration of fragile X mental retardation 1 small interfering RNA. Together, these results suggest that FMRP regulates TNF-α and IL-6 levels in the SDH and plays an important role in inflammatory pain.


Subject(s)
Cytokines/biosynthesis , Fragile X Mental Retardation Protein/physiology , Inflammation/genetics , Inflammation/pathology , Pain/pathology , Spinal Cord/metabolism , Spinal Cord/pathology , Animals , Fragile X Mental Retardation Protein/genetics , Freund's Adjuvant , Hyperalgesia/chemically induced , Hyperalgesia/pathology , Injections, Spinal , Interleukin-6/metabolism , Male , Pain/chemically induced , Pain/genetics , Posterior Horn Cells/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
16.
Mol Pain ; 17: 1744806921996520, 2021.
Article in English | MEDLINE | ID: mdl-33626986

ABSTRACT

Microglia activation and subsequent pro-inflammatory responses play a key role in the development of neuropathic pain. The process of microglia polarization towards pro-inflammatory phenotype often occurs during neuroinflammation. Recent studies have demonstrated an active role for the gut microbiota in promoting microglial full maturation and inflammatory capabilities via the production of Short-Chain Fatty Acids (SCFAs). However, it remains unclear whether SCFAs is involved in pro-inflammatory/anti-inflammatory phenotypes microglia polarization in the neuropathic pain. In the present study, chronic constriction injury (CCI) was used to induce neuropathic pain in mice, the mechanical withdrawal threshold, thermal hyperalgesia were accomplished. The levels of microglia markers including ionized calcium-binding adaptor molecule 1 (Iba1), cluster of differentiation 11b (CD11b), pro-inflammatory phenotype markers including CD68, interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and anti-inflammatory phenotype markers including CD206, IL-4 in the hippocampus and spinal cord were determined on day 21 after CCI. The results showed that CCI produced mechanical allodynia and thermal hyperalgesia, and also increased the expressions of microglia markers (Iba1, CD11b) and pro-inflammatory phenotype markers (CD68, IL-1ß, and TNF-α), but not anti-inflammatory phenotype marker (CD206, IL-4) in the hippocampus and spinal cord, accompanied by increased SCFAs in the gut. Notably, antibiotic administration reversed these abnormalities, and its effects was also bloked by SCFAs administration. In conclusion, data from our study suggest that CCI can lead to mechanical and thermal hyperalgesia, while SCFAs play a key role in the pathogenesis of neuropathic pain by regulating microglial activation and subsequent pro-inflammatory phenotype polarization. Antibiotic administration may be a new treatment for neuropathic pain by reducing the production of SCFAs and further inhibiting the process of microglia polarization.


Subject(s)
Cell Polarity , Fatty Acids, Volatile/adverse effects , Microglia/pathology , Neuralgia/pathology , Animals , Anti-Bacterial Agents/pharmacology , Biomarkers/metabolism , Cell Polarity/drug effects , Chronic Disease , Constriction, Pathologic , Cytokines/metabolism , Fatty Acids, Volatile/administration & dosage , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Gene Expression Regulation/drug effects , Hippocampus/pathology , Hyperalgesia/complications , Hyperalgesia/pathology , Inflammation/genetics , Inflammation/pathology , Male , Mice, Inbred C57BL , Microglia/drug effects , Nociception/drug effects , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spinal Cord/pathology
17.
Mol Pain ; 17: 1744806921990934, 2021.
Article in English | MEDLINE | ID: mdl-33590786

ABSTRACT

Chronic pain is highly prevalent worldwide and severely affects daily lives of patients and family members. Praeruptorin C (Pra-C) is a main active ingredient derived from Peucedanum praeruptorum Dunn, traditionally used as antibechic, anti-bronchitis and anti-hypertension drug. Here, we evaluated the effects of Pra-C in a chronic inflammatory pain mouse model induced by complete Freund's adjuvant (CFA) injection. Pra-C (3 mg/kg) treatment for just 3 days after CFA challenge relieved CFA-induced mechanical allodynia and hindpaw edema in mice. In the anterior cingulate cortex (ACC), Pra-C treatment inhibited microglia activation and reduced levels of proinflammatory cytokines, TNF-α and IL-1ß, and suppressed upregulation of glutamate receptors caused by CFA injection. In addition, Pra-C attenuated neuronal hyperexcitability in ACC of CFA-injected mice. In vitro studies confirmed the analgesic effect of Pra-C was due to its inhibitory ability on microglial activation. In conclusion, Pra-C administration had a certain effect on relieving chronic pain by inhibiting microglial activation, attenuating proinflammatory cytokine releasing and regulating excitatory synaptic proteins in the ACC of the CFA-injected mice.


Subject(s)
Analgesics/pharmacology , Coumarins/pharmacology , Gyrus Cinguli/pathology , Microglia/pathology , Analgesics/therapeutic use , Animals , Cell Line , Chronic Pain/complications , Chronic Pain/drug therapy , Chronic Pain/physiopathology , Coumarins/chemistry , Coumarins/therapeutic use , Cytokines/metabolism , Disease Models, Animal , Edema/complications , Edema/pathology , Edema/physiopathology , Freund's Adjuvant , Hyperalgesia/complications , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Inflammation/complications , Inflammation/drug therapy , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects , Up-Regulation/drug effects
18.
Biochem Biophys Res Commun ; 547: 36-43, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33592377

ABSTRACT

Pain is a major complication of cancer and significantly affects the quality of life. Cerebrospinal fluid-contacting nucleus (CSF-CN) has been reported to be involved in the development of neuropathic pain and inflammatory pain. However, whether CSF-CN contributes to cancer-induced bone pain (CIBP) remains unknown. In this study, we aimed to illustrate the role of CSF-CN in the pathogenesis of CIBP and identify its potential mechanism via the MKP-1-mediated MAPK pathway. The Walker 256 cancer cells were injected into the tibia cavity of female Sprague-Dawley rats to induce CIBP models. Intracerebroventricular injection of cholera toxin subunit B- saporin (CB-SAP) was performed to "knockout" the CSF-CN. Morphine and LV-MKP-1 were applied. Mechanical and thermal hyperalgesia behaviors, double immunofluorescence staining and Western blot were conducted after CIBP induction. The results revealed that CIBP significantly reduced the mechanical withdrawal threshold and the thermal threshold. Double immunofluorescence staining revealed that c-Fos-positive neurons in CSF-CN were significantly higher in the CIBP group than that in the sham group. Targeted ablation of CSF-CN dramatically aggravated pain sensitivity. Moreover, MKP-1 was down-regulated in the CSF-CN after CIBP induction. Pharmacological intervention with morphine significantly ameliorated the mechanical and thermal hyperalgesia through reversing the down-expression of MKP-1 in the CSF-CN on day 14 after CIBP induction. Mechanically, overexpression of MKP-1 by LV-MKP-1 injection significantly relieved CIBP via inhibiting the expression of phosphorylated p38, which subsequently decreased the protein levels of Bax, cleaved caspase-3 and Iba-1, and reduced the mRNA levels of IL-1ß, TNF-α and IL-6 in CSF-CN. In conclusion, CSF-CN contributed to CIBP via regulating the MKP-1-mediated p38-MAPK pathway. Future therapy targeting the expression of MKP-1 in the CSF-CN may be a promising new choice.


Subject(s)
Bone Neoplasms/cerebrospinal fluid , Cancer Pain/cerebrospinal fluid , Cerebrospinal Fluid/metabolism , Dual Specificity Phosphatase 1/metabolism , Hyperalgesia/cerebrospinal fluid , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cancer Pain/etiology , Cancer Pain/metabolism , Cancer Pain/pathology , Cell Nucleus/metabolism , Disease Models, Animal , Dual Specificity Phosphatase 1/genetics , Female , Hyperalgesia/etiology , Hyperalgesia/metabolism , Hyperalgesia/pathology , Mitogen-Activated Protein Kinases/genetics , Pain Threshold , Rats , Rats, Sprague-Dawley
19.
FASEB J ; 34(4): 5951-5966, 2020 04.
Article in English | MEDLINE | ID: mdl-32157739

ABSTRACT

Neuron-immune interaction in the dorsal root ganglia (DRG) plays a pivotal role in the neuropathic pain development after nerve injury. Sigma-1 receptor (Sig-1R) is expressed by DRG neurons but its role in neuropathic pain is not fully understood. We investigated the effect of peripheral Sig-1R on neuroinflammation in the DRG after spared (sciatic) nerve injury (SNI) in mice. Nerve injury induced a decrease in NeuN staining along with the nuclear eccentricity and ATF3 expression in the injured DRG. Sig-1R was present in all DRG neurons examined, and after SNI this receptor translocated to the periphery of the soma and the vicinity of the nucleus, especially in injured ATF3 + neurons. In WT mice, injured DRG produced the chemokine CCL2, and this was followed by massive infiltration of macrophages/monocytes, which clustered mainly around sensory neurons with translocated Sig-1R, accompanied by robust IL-6 increase and mechanical allodynia. In contrast, Sig-1R knockout (Sig-1R-KO) mice showed reduced levels of CCL2, decreased macrophage/monocyte infiltration into DRG, and less IL-6 and neuropathic mechanical allodynia after SNI. Our findings point to an important role of peripheral Sig-1R in sensory neuron-macrophage/monocyte communication in the DRG after peripheral nerve injury; thus, these receptors may contribute to the neuropathic pain phenotype.


Subject(s)
Ganglia, Spinal/pathology , Hyperalgesia/pathology , Macrophages/pathology , Neuralgia/pathology , Neurons/pathology , Peripheral Nerve Injuries/complications , Receptors, sigma/physiology , Animals , Behavior, Animal , Disease Models, Animal , Female , Ganglia, Spinal/immunology , Ganglia, Spinal/metabolism , Hyperalgesia/etiology , Hyperalgesia/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Neuralgia/etiology , Neuralgia/metabolism , Neurons/immunology , Neurons/metabolism , Sigma-1 Receptor
20.
FASEB J ; 34(8): 10948-10965, 2020 08.
Article in English | MEDLINE | ID: mdl-32598099

ABSTRACT

Nogo-A is a key inhibitory molecule to axon regeneration, and plays diverse roles in other pathological conditions, such as stroke, schizophrenia, and neurodegenerative diseases. Nogo-66 and Nogo-Δ20 fragments are two known functional domains of Nogo-A, which act through the Nogo-66 receptor (NgR1) and sphingosine-1-phosphate receptor 2 (S1PR2), respectively. Here, we reported a new functional domain of Nogo-A, Nogo-A aa 846-861, was identified in the Nogo-A-specific segment that promotes complete Freund's adjuvant (CFA)-induced inflammatory pain. Intrathecal injection of its antagonist peptide 846-861PE or the specific antibody attenuated the CFA-induced inflammatory heat hyperalgesia. The 846-861 PE reduced the content of transient receptor potential vanilloid subfamily member 1 (TRPV1) in dorsal root ganglia (DRG) and decreased the response of DRG neurons to capsaicin. These effects were accompanied by a reduction in LIMK/cofilin phosphorylation and actin polymerization. GST pull-down and fluorescence resonance energy transfer (FRET) assays both showed that Nogo-A aa 846-861 bound to NgR1. Moreover, we demonstrated that Nogo-A aa 846-861 inhibited neurite outgrowth from cortical neurons and DRG explants. We concluded that Nogo-A aa 846-861 is a novel ligand of NgR1, which activates the downstream signaling pathways that inhibit axon growth and promote inflammatory pain.


Subject(s)
Inflammation/metabolism , Nerve Regeneration/physiology , Neurites/metabolism , Neuronal Outgrowth/physiology , Nogo Proteins/metabolism , Nogo Receptor 1/metabolism , Pain/metabolism , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Animals , Axons/metabolism , Axons/physiology , Cell Line , Female , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , HEK293 Cells , Humans , Hyperalgesia/metabolism , Hyperalgesia/pathology , Inflammation/pathology , Lim Kinases/metabolism , Male , Mice , Mice, Inbred ICR , Neurites/pathology , Neurogenesis/physiology , Neurons/metabolism , Neurons/pathology , Pain/pathology , Rats , Rats, Sprague-Dawley , TRPV Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL