ABSTRACT
The ability to recognize information that is incongruous with previous experience is critical for survival. Novelty signals have therefore evolved in the mammalian brain to enhance attention, perception and memory1,2. Although the importance of regions such as the ventral tegmental area3,4 and locus coeruleus5 in broadly signalling novelty is well-established, these diffuse monoaminergic transmitters have yet to be shown to convey specific information on the type of stimuli that drive them. Whether distinct types of novelty, such as contextual and social novelty, are differently processed and routed in the brain is unknown. Here we identify the supramammillary nucleus (SuM) as a novelty hub in the hypothalamus6. The SuM region is unique in that it not only responds broadly to novel stimuli, but also segregates and selectively routes different types of information to discrete cortical targets-the dentate gyrus and CA2 fields of the hippocampus-for the modulation of mnemonic processing. Using a new transgenic mouse line, SuM-Cre, we found that SuM neurons that project to the dentate gyrus are activated by contextual novelty, whereas the SuM-CA2 circuit is preferentially activated by novel social encounters. Circuit-based manipulation showed that divergent novelty channelling in these projections modifies hippocampal contextual or social memory. This content-specific routing of novelty signals represents a previously unknown mechanism that enables the hypothalamus to flexibly modulate select components of cognition.
Subject(s)
Hippocampus/cytology , Hippocampus/physiology , Memory/physiology , Neural Pathways/physiology , Animals , CA2 Region, Hippocampal/cytology , CA2 Region, Hippocampal/physiology , Cognition , Dentate Gyrus/cytology , Dentate Gyrus/physiology , Female , Hypothalamus, Posterior/cytology , Hypothalamus, Posterior/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Social InteractionABSTRACT
The posterior hypothalamic area (PHa), including the supramammillary nucleus (SuM) and posterior hypothalamic nuclei, forms a crucial part of the ascending brainstem hippocampal synchronizing pathway, that is involved in the frequency programming and modulation of rhythmic theta activity generated in limbic structures. Recent investigations show that in addition to being a modulator of limbic theta activity, the PHa is capable of producing well-synchronized local theta field potentials by itself. The purpose of this study was to examine the ability of the PHa to generate theta field potentials and accompanying cell discharges in response to glutamatergic stimulation under both in vitro and in vivo conditions. The second objective was to examine the electrophysiological properties of neurons located in the SuM and posterior hypothalamic nuclei. Extracellular in vivo and in vitro as well as intracellular in vitro experiments revealed that glutamatergic stimulation of PHa with kainic acid induces well-synchronized local theta field oscillations in both the supramammillary and posterior hypothalamic nuclei. Furthermore, the glutamatergic PHa theta rhythm recorded extracellularly was accompanied by the activity of specific subtypes of theta-related neurons. We identify, for the first time, a subpopulation of supramammillary and posterior hypothalamic neurons that express clear subthreshold membrane potential oscillations in the theta frequency range.
Subject(s)
Hypothalamus, Posterior , Neurons , Theta Rhythm , Rats , Rats, Wistar , Electroencephalography , Hypothalamus, Posterior/physiology , Theta Rhythm/physiology , Neurons/physiology , Electrophysiology , AnimalsABSTRACT
It is now well-established that the hippocampal CA2 region plays an important role in social recognition memory in adult mice. The CA2 is also important for the earliest social memories, including those that mice have for their mothers and littermates, which manifest themselves as a social preference for familiarity over novelty. The role of the CA2 in the development of social memory for recently encountered same-age conspecifics, that is, peers, has not been previously reported. Here, we used a direct social interaction test to characterize the emergence of novelty preference for peers during development and found that at the end of the second postnatal week, pups begin to significantly prefer novel over familiar peers. Using chemogenetic inhibition at this time, we showed that CA2 activity is necessary for the emergence of novelty preference and for the ability to distinguish never encountered from recently encountered peers. In adulthood, the CA2 region is known to integrate a large number of inputs from various sources, many of which participate in social recognition memory, but previous studies have not determined whether these afferents are present at adult levels by the end of the second postnatal week. To explore the development of CA2 inputs, we used immunolabeling and retrograde adenovirus circuit tracing and found that, by the end of the second postnatal week, the CA2 is innervated by many regions, including the dentate gyrus, supramammillary nucleus of the hypothalamus, the lateral entorhinal cortex, and the median raphe nucleus. Using retroviral labeling of postnatally generated granule cells in the dentate gyrus, we found that mossy fiber projections to the CA2 mature faster during development than those generated in adulthood. Together, our findings indicate that the CA2 is partially mature in afferent connectivity by the end of the second postnatal week, connections that likely facilitate the emergence of social recognition memory and preference for novel peers.
Subject(s)
CA2 Region, Hippocampal , Hippocampus , Mice , Animals , Hippocampus/physiology , CA2 Region, Hippocampal/physiology , Neurons/physiology , Entorhinal Cortex/physiology , Hypothalamus, Posterior/physiologyABSTRACT
OBJECTIVE: We present long-term follow-up results and analysis of stimulation sites of a prospective cohort study of six patients with chronic cluster headaches undergoing deep brain stimulation of the ipsilateral posterior hypothalamic region. METHODS: The primary endpoint was the postoperative change in the composite headache severity score "headache load" after 12 months of chronic stimulation. Secondary endpoints were the changes in headache attack frequency, headache attack duration and headache intensity, quality of life measures at 12, 24, and 48 months following surgery. Stimulating contact positions were analysed and projected onto the steroetactic atlas of Schaltenbrand and Wahren. RESULTS: There was a significant reduction of headache load of over 93% on average at 12 months postoperatively that persisted over the follow-up period of 48 months (p = 0.0041) and that was accompanied by a significant increase of reported quality of life measures (p = 0.03). Anatomical analysis revealed that individual stimulating electrodes were located in the red nucleus, posterior hypothalamic region, mesencephalic pretectal area and centromedian nucleus of the thalamus. CONCLUSIONS: Our findings confirming long-term effectiveness of deep brain stimulation for chronic cluster headaches suggest that the neuroanatomical substrate of deep brain stimulation-induced headache relief is probably not restricted to the posterior hypothalamic area but encompasses a more widespread area.
Subject(s)
Cluster Headache/therapy , Deep Brain Stimulation/methods , Treatment Outcome , Adult , Female , Follow-Up Studies , Humans , Hypothalamus, Posterior/physiology , Male , Middle Aged , Time , Ventral Tegmental Area/physiologyABSTRACT
This study investigated behavioral, anatomical and electrophysiological effects produced by electrical stimulation of posterior hypothalamic (PH) or median raphe (MR) nuclei, independently and during combined stimulation of both PH and MR. These three stimulation conditions were applied during spontaneous behavior in an open field and during PH stimulation-induced wheel running, while simultaneously recording hippocampal (HPC) field activity. An additional objective was to determine the effects of MR stimulation on Type 1 movement related theta and Type 2 sensory processing related theta. To achieve the latter, when behavioral studies were completed we studied the same rats under urethane anesthesia and then during urethane anesthesia with the addition of atropine sulfate (ATSO4). Here we demonstrated that electrical stimulation of a localized region of the MR nucleus resulted in a profound inhibition of both spontaneously occurring theta related motor behaviors and the theta related motor behaviors induced by electrical stimulation of the PH nucleus. Furthermore, this motor inhibition occurred concurrently with strong suppression of hippocampal theta field oscillations in the freely moving rat, a condition where the theta recorded is Type 2 sensory processing theta occurring coincidently with Type 1 movement related theta (Bland, 1986). Our results indicate that motor inhibition resulted from stimulation of neurons located in the mid central region of the MR, while stimulation in adjacent regions produced variable responses, including movements and theta activity. The present study provided evidence that the pharmacological basis of the suppression of Type 2 sensory processing HPC theta was cholinergic. However, MR inhibition of PH-induced wheel running was not affected by cholinergic blockade, which blocks Type 2 theta, indicating that MR stimulation-induced motor inhibition also requires the suppression of Type 1 theta.
Subject(s)
Dorsal Raphe Nucleus/physiology , Hippocampus/physiology , Motor Activity/physiology , Running/physiology , Theta Rhythm/physiology , Analgesics, Opioid/pharmacology , Animals , Atropine/pharmacology , Diphenoxylate/pharmacology , Dorsal Raphe Nucleus/drug effects , Dose-Response Relationship, Drug , Drug Combinations , Electric Stimulation , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Hypothalamus, Posterior/physiology , Male , Motor Activity/drug effects , Muscarinic Antagonists/pharmacology , Neural Pathways/physiology , Rats , Rats, Long-Evans , Theta Rhythm/drug effects , Urethane/pharmacologyABSTRACT
Kowalczyk et al. (Hippocampus 2014; 24:7-20) were probably the first to conduct a systemic study of posterior hypothalamic area (PHa) theta rhythm in anesthetized rats. They demonstrated that local PHa theta field potentials were tail-pinch resistant and could be generated in urethane-anesthetized rats independently of ongoing hippocampal formation theta rhythm. These in vivo data were also confirmed in PHa slice preparations perfused with cholinergic agonist, carbachol. In the current experiments we extend our earlier observations concerning PHa theta rhythm. Specifically, PHa field potentials were analyzed in relation to the ongoing local cell firing repertoire. Single-unit discharge patterns of cells localized in the posterior hypothalamic and supramammillary nuclei were characterized according to the criteria that was developed previously to classify theta-related cells in the hippocampal formation. The present study demonstrated that in addition to the earlier described theta-related cells (theta-on, theta-off and gating cells) the PHa also contains cells discharging in a very regular manner, which were labelled "timing cells". This type of neuron has not been previously documented. We suggest that "timing cells" form a part of the ascending brainstem synchronizing pathway, provideing a regular rhythmic signal which facilitates the transduction of tonic discharges of cells localized in the brain stem into theta-frequency rhythmic discharges. © 2016 Wiley Periodicals, Inc.
Subject(s)
Action Potentials/physiology , Hypothalamus, Posterior/physiology , Neurons/physiology , Theta Rhythm/physiology , Action Potentials/drug effects , Anesthesia , Animals , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Electrocorticography , Hypothalamus, Posterior/drug effects , Male , Microelectrodes , Neurons/drug effects , Rats, Wistar , Theta Rhythm/drug effects , Tissue Culture TechniquesABSTRACT
A distributed network of neurons regulates wake, non-rapid eye movement (NREM) sleep, and REM sleep. However, there are also glia in the brain, and there is growing evidence that neurons and astroglia communicate intimately to regulate behaviour. To identify the effect of optogenetic stimulation of astrocytes on sleep, the promoter for the astrocyte-specific cytoskeletal protein, glial fibrillary acidic protein (GFAP) was used to direct the expression of channelrhodopsin-2 (ChR2) and the linked reporter gene, enhanced yellow fluorescent protein (EYFP), in astrocytes. rAAV-GFAP-ChR2 (H134R)-EYFP or rAAV-GFAP-EYFP was microinjected (750 nL) into the posterior hypothalamus (bilateral) of mice. Three weeks later baseline sleep was recorded (0 Hz) and 24 h later optogenetic stimulation applied during the first 6 h of the lights-off period. Mice with ChR2 were given 5, 10 or 30 Hz stimulation for 6 h (10-ms pulses; 1 mW; 1 min on 4 min off). At least 36 h elapsed between the stimulation periods (5, 10, 30 Hz) and although 0 Hz was always first, the order of the other three stimulation rates was randomised. In mice with ChR2 (n = 7), 10 Hz, but not 5 or 30 Hz stimulation increased both NREM and REM sleep during the 6-h period of stimulation. Delta power did not increase. In control mice (no ChR2; n = 5), 10 Hz stimulation had no effect. This study demonstrates that direct stimulation of astrocytes powerfully induces sleep during the active phase of the sleep-wake cycle and underlines the inclusion of astrocytes in network models of sleep-wake regulation.
Subject(s)
Astrocytes/physiology , Hypothalamus, Posterior/physiology , Optogenetics , Sleep , Animals , Female , Male , Mice , Mice, Inbred C57BL , Sleep, REMABSTRACT
Data obtained in in vitro experiments and urethane anaesthetized animals have revealed that the mechanisms responsible for the generation of hippocampal cholinergic theta rhythm are specifically affected by the administration of broad spectrum gap junctions (GJs) blocker - carbenoxolone (CBX). The aim of this study was to examine the effect of GJs modulation on the production of posterior hypothalamic theta. Specifically, we were interested in evaluating whether CBX could attenuate the theta rhythm recorded from the supramammillary nucleus and posterior hypothalamic nuclei, in both in vitro and in vivo preparations. The data we obtained from in vitro and in vivo preparations demonstrated that the administration of CBX did not suppress cholinergically induced theta in posterior hypothalamic area (PHa) slices nor the theta rhythm observed in the PHa of urethane anaesthetized rats. Moreover, the application of trimethylamine, while very effective in the enhancement of hippocampal theta rhythm, did not produce any changes in theta oscillations observed in either in vitro or in vivo posterior hypothalamic area preparations. These data show that electrical coupling via GJs is not involved in theta rhythm generation in the PHa. Surprisingly, we observed a significant enhancement of theta activity in response to the carbenoxolone administration in both in vitro and in vivo PHa preparations. The theta rhythm enhancement detected in those experiments was attenuated by the application of spironolactone (mineralocorticoid receptors antagonist). We suggest that the observed excitatory effects of CBX on posterior hypothalamic oscillatory activity in the theta band could be mediated by mineralocorticoid receptors.
Subject(s)
Hypothalamus, Posterior/physiology , Theta Rhythm , Animals , Carbenoxolone/pharmacology , Gap Junctions/drug effects , Hypothalamus, Posterior/drug effects , Male , Rats , Receptors, Mineralocorticoid/metabolism , Theta Rhythm/drug effectsABSTRACT
OBJECTIVES: The aim of this study was to analyze the impact of deep brain stimulation (DBS) of the posteromedial hypothalamus (pHyp) on seizure frequency in patients with drug-resistant epilepsy (DRE) associated with intractable aggressive behavior (IAB). METHODS: Data were collected retrospectively from nine patients, who received bilateral stereotactic pHyp-DBS for the treatment of medically intractable aggressive behavior, focusing on five patients who also had DRE. All patients were treated at the Colombian Center and Foundation of Epilepsy and Neurological Diseases-FIRE (Chapter of the International Bureau for Epilepsy), in Cartagena de Indias, Colombia from 2010 to 2014. Each case was evaluated previously by the institutional ethical committee, assessing the impact of aggressive behavior on the patient's family and social life, the humanitarian aspects of preserving the safety and physical integrity of caregivers, and the need to prevent self-harm. Epilepsy improvement was measured by a monthly seizure reduction percentage, comparing preoperative state and outcome. Additional response to epilepsy was defined by reduction of the antiepileptic drugs (AEDs). Aggressive behavior response was measured using the Overt Aggression Scale (OAS). RESULTS: All the patients with DRE associated with IAB presented a significant decrease of the rate of epileptic seizures after up to 4 years follow-up, achieving a general 89.6% average seizure reduction from the state before the surgery. Aggressiveness was significantly controlled, with evident improvement in the OAS, enhancing the quality of life of patients and families. SIGNIFICANCE: In well-selected patients, DBS of the pHyp seems to be a safe and effective procedure for treatment of DRE associated with refractory aggressive behavior. Larger and prospective series are needed to define the pHyp as a target for DRE in different contexts.
Subject(s)
Aggression/psychology , Deep Brain Stimulation , Hypothalamus, Middle/physiology , Hypothalamus, Posterior/physiology , Seizures/psychology , Seizures/therapy , Adolescent , Adult , Aggression/physiology , Deep Brain Stimulation/trends , Epilepsy/complications , Epilepsy/psychology , Epilepsy/therapy , Female , Humans , Male , Retrospective Studies , Seizures/complications , Treatment Outcome , Young AdultABSTRACT
Regulation of sexual reproduction and energy homeostasis are closely interconnected, but only few efforts were made to explore the impact of gonadotropic neurons on metabolic processes. We have used Nscl-2 mutant mice suffering from adult onset of obesity and hypogonadotropic hypogonadism to study effects of gonadotropin releasing hormone (GnRH) neurons on neuronal circuits controlling energy balance. Inactivation of Nscl-2 in GnRH neurons but not in pro-opiomelanocortin (POMC) neurons reduced POMC neurons and increased visceral fat mass, suggesting a critical role of GnRH cells in the regulation of POMC neurons. In contrast, absence of POMC processing in the majority of Nscl-2-deficient POMC neurons had no effect on energy homeostasis. Finally, we investigated the cellular basis of the reduction of GnRH neurons in NSCL-2 mutants using a lineage tracing approach. We found that loss of Nscl-2 results in aberrant migration of GnRH neurons in Nscl-2 mutant mice causing a lineage switch of ectopically located GnRH neurons.
Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/physiology , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/physiology , Hypothalamus/physiology , Neurons/physiology , Obesity/genetics , Pro-Opiomelanocortin/physiology , Adipose Tissue/growth & development , Adipose Tissue/physiology , Adrenocorticotropic Hormone/metabolism , Adrenocorticotropic Hormone/physiology , Animals , Blotting, Western , Cell Division/physiology , Estradiol/blood , Female , Homeostasis/genetics , Homeostasis/physiology , Hypothalamus, Posterior/physiology , Infertility/genetics , Mice , Mice, Knockout , Mutation/genetics , Mutation/physiology , Preoptic Area/physiology , Pro-Opiomelanocortin/biosynthesis , Pro-Opiomelanocortin/genetics , Reproduction/genetics , Reproduction/physiologyABSTRACT
Theta rhythm is the largest, most prominent, and well-documented electroencephalography activity present in a number of mammals, including humans. Spontaneous theta activity recorded locally in the posterior hypothalamic area (PHa) has never been the subject of detailed studies. The authors have shown that local theta field potentials could be generated in urethane-anesthetized rats in the supramammillary (SuM) nuclei and posterior hypothalamic (PH) nuclei. Theta recorded in the PHa was produced independently of simultaneously occurring hippocampal theta. These data were confirmed in the PHa maintained in vitro. Local theta field activity was recorded in the SuM and PH nuclei of PHa slice preparations perfused with cholinergic agonist carbachol. Both in vivo and in vitro recorded PHa theta rhythmicity had a cholinergic-muscarinic profile, that is, it was antagonized by muscarinic antagonist atropine sulfate.
Subject(s)
Atropine/pharmacology , Hypothalamus, Posterior/physiology , Theta Rhythm/physiology , Animals , Carbachol/pharmacology , Cholinergic Agents/pharmacology , Hypothalamus, Posterior/drug effects , Male , Muscarinic Antagonists/pharmacology , Rats , Rats, Wistar , Theta Rhythm/drug effectsABSTRACT
Orexin-A (OxA) is synthesized in posterior and lateral regions of the hypothalamus and contributes to homeostatic regulation of body functions including pain modulation. To determine if orexinergic mechanisms contribute to posterior hypothalamus (PH)-induced modulation of ocular input to subnucleus caudalis/upper cervical (Vc/C1) neurons, the orexin-1 receptor antagonist SB334867 was applied to the dorsal brainstem surface prior to PH disinhibition, by bicuculline methiodide, in male rats under isoflurane anesthesia. Ocular input to Vc/C1 units by bright light or hypertonic saline was markedly reduced by PH disinhibition and reversed completely by local Vc/C1 application of SB334867. OxA applied to the Vc/C1 surface mimicked the effects of PH disinhibition in a dose-dependent manner. OxA-induced inhibition was prevented by co-application of SB334867, but not by the orexin-2 receptor antagonist TCS Ox2 29. PH disinhibition and local OxA application also reduced the high threshold convergent cutaneous receptive field area of ocular units, suggesting widespread effects on somatic input to Vc/C1 ocular units. Vc/C1 application of OxA or SB334867 alone did not affect the background discharge of ocular units and suggested that the PH-OxA influence on ocular unit activity was not tonically active. Vc/C1 application of OxA or SB334867 alone also did not alter mean arterial pressure, whereas PH disinhibition evoked prompt and sustained increases. These results suggest that stimulus-evoked increases in PH outflow acts through OxA and orexin-1 receptors to alter the encoding properties of trigeminal brainstem neurons responsive to input from the ocular surface and deep tissues of the eye.
Subject(s)
Hypothalamus, Posterior/physiology , Neurons/physiology , Ocular Physiological Phenomena , Orexin Receptors/metabolism , Trigeminal Nuclei/physiology , Afferent Pathways/physiology , Animals , Male , Photic Stimulation , Physical Stimulation , Rats , Rats, Sprague-DawleyABSTRACT
Research suggests a causal link between estrogens and mood. Here, we began by examining the effects of estradiol (E2 ) on rat innate and conditioned defensive behaviors in response to cat odor. Second, we utilized whole-cell patch clamp electrophysiological techniques to assess noradrenergic effects on neurons within the dorsal premammillary nucleus of the hypothalamus (PMd), a nucleus implicated in fear reactivity, and their regulation by E2 . Our results show that E2 increased general arousal and modified innate defensive reactivity to cat odor. When ovariectomized females treated with E2 as opposed to oil were exposed to cat odor, they showed elevations in risk assessment and reductions in freezing, indicating a shift from passive to active coping. In addition, animals previously exposed to cat odor showed clear cue + context conditioning 24 h later. However, although E2 persisted in its effects on general arousal in the conditioning task, its effects on fear disappeared. In the patch clamp experiments noradrenergic compounds that typically induce fear clearly excited PMd neurons, producing depolarizations and action potentials. E2 treatment shifted some excitatory effects of noradrenergic agonists to inhibitory, possibly by differentially affecting α- and ß-adrenoreceptors. In summary, our results implicate E2 in general arousal and fear reactivity, and suggest these may be governed by changes in noradrenergic responsivity in the PMd. These effects of E2 may have ethological relevance, serving to promote mate seeking even in contexts of ambiguous threat and shed light on the involvement of estrogen in mood and its associated disorders.
Subject(s)
Anxiety/metabolism , Estradiol/pharmacology , Estrogens/pharmacology , Fear , Hypothalamus, Posterior/physiology , Action Potentials , Adrenergic Agonists/pharmacology , Animals , Anxiety/physiopathology , Conditioning, Classical , Female , Hypothalamus, Posterior/drug effects , Rats , Rats, Long-EvansABSTRACT
Threat-response neural circuits are conserved across species and play roles in normal behavior and psychiatric diseases. Maladaptive changes in these neural circuits contribute to stress, mood, and anxiety disorders. Active coping in response to stressors is a psychosocial factor associated with resilience against stress-induced mood and anxiety disorders. The neural circuitry underlying active coping is poorly understood, but the functioning of these circuits could be key for overcoming anxiety and related disorders. The supramammillary nucleus (SuM) has been suggested to be engaged by threat. SuM has many projections and a poorly understood diversity of neural populations. In studies using mice, we identified a unique population of glutamatergic SuM neurons (SuMVGLUT2+::POA) based on projection to the preoptic area of the hypothalamus (POA) and found SuMVGLUT2+::POA neurons have extensive arborizations. SuMVGLUT2+::POA neurons project to brain areas that mediate features of the stress and threat responses including the paraventricular nucleus thalamus (PVT), periaqueductal gray (PAG), and habenula (Hb). Thus, SuMVGLUT2+::POA neurons are positioned as a hub, connecting to areas implicated in regulating stress responses. Here we report SuMVGLUT2+::POA neurons are recruited by diverse threatening stressors, and recruitment correlated with active coping behaviors. We found that selective photoactivation of the SuMVGLUT2+::POA population drove aversion but not anxiety like behaviors. Activation of SuMVGLUT2+::POA neurons in the absence of acute stressors evoked active coping like behaviors and drove instrumental behavior. Also, activation of SuMVGLUT2+::POA neurons was sufficient to convert passive coping strategies to active behaviors during acute stress. In contrast, we found activation of GABAergic (VGAT+) SuM neurons (SuMVGAT+) neurons did not alter drive aversion or active coping, but termination of photostimulation was followed by increased mobility in the forced swim test. These findings establish a new node in stress response circuitry that has projections to many brain areas and evokes flexible active coping behaviors.
Subject(s)
Adaptation, Psychological , Neurons , Stress, Psychological , Animals , Neurons/physiology , Neurons/metabolism , Mice , Adaptation, Psychological/physiology , Male , Glutamic Acid/metabolism , Hypothalamus, Posterior/physiology , Neural Pathways/physiology , Mice, Inbred C57BLABSTRACT
Deep brain stimulation targeting the posterior hypothalamus (pHyp-DBS) is being investigated as a treatment for refractory aggressive behavior, but its mechanisms of action remain elusive. We conducted an integrated imaging analysis of a large multi-centre dataset, incorporating volume of activated tissue modeling, probabilistic mapping, normative connectomics, and atlas-derived transcriptomics. Ninety-one percent of the patients responded positively to treatment, with a more striking improvement recorded in the pediatric population. Probabilistic mapping revealed an optimized surgical target within the posterior-inferior-lateral region of the posterior hypothalamic area. Normative connectomic analyses identified fiber tracts and functionally connected with brain areas associated with sensorimotor function, emotional regulation, and monoamine production. Functional connectivity between the target, periaqueductal gray and key limbic areas - together with patient age - were highly predictive of treatment outcome. Transcriptomic analysis showed that genes involved in mechanisms of aggressive behavior, neuronal communication, plasticity and neuroinflammation might underlie this functional network.
Subject(s)
Deep Brain Stimulation , Child , Humans , Deep Brain Stimulation/methods , Brain , Aggression/psychology , Hypothalamus, Posterior/physiology , Treatment Outcome , Magnetic Resonance ImagingABSTRACT
BACKGROUND: Cluster headache (CH) is the most common of the trigeminal autonomic cephalalgias (TAC), presenting with excruciatingly severe, short-lasting, unilateral headache accompanied by cranial autonomic symptoms. Chronic CH occurs in 10-15% of patients. Deep brain stimulation in the posterior hypothalamic region (hDBS) is successful in treating about 60% of patients otherwise refractory to medical treatment. CASE: A 28-year-old man had hDBS for medically refractory left-sided chronic CH, with a resultant reduction in frequency and severity of his attacks. He developed recurrent paroxysms of sneezing soon after the stimulation was started that have reduced after increasing the pulse width from 60 to 90 µs. DISCUSSION: Stimulation of the brain in the region of the posterior hypothalamus could produce sneezing from activation of facial nerve parasympathetic or trigeminal afferent pathway activation through the trigeminohypothalamic tract, or through other central mechanisms. DBS in general offers the opportunity to illuminate our understanding of brain function and for CH offers particular opportunities to understand a devastating primary headache syndrome.
Subject(s)
Cluster Headache/therapy , Deep Brain Stimulation/adverse effects , Hypothalamus, Posterior/physiology , Sneezing/physiology , Adult , Cluster Headache/diagnosis , Humans , MaleABSTRACT
Wakefulness and consciousness depend on perturbation of the cortical soliloquy. Ascending activation of the cerebral cortex is characteristic for both waking and paradoxical (REM) sleep. These evolutionary conserved activating systems build a network in the brainstem, midbrain, and diencephalon that contains the neurotransmitters and neuromodulators glutamate, histamine, acetylcholine, the catecholamines, serotonin, and some neuropeptides orchestrating the different behavioral states. Inhibition of these waking systems by GABAergic neurons allows sleep. Over the past decades, a prominent role became evident for the histaminergic and the orexinergic neurons as a hypothalamic waking center.
Subject(s)
Brain/physiology , Wakefulness/physiology , Animals , Arousal/physiology , Biogenic Monoamines/metabolism , Biogenic Monoamines/physiology , Histamine/metabolism , Histamine/physiology , Humans , Hypothalamus, Posterior/physiology , Models, BiologicalABSTRACT
Identification of active networks involved in behavior is central to understanding brain function as an emergent property. Functional magnetic resonance imaging (fMRI) allows the identification of areas with increased or decreased activity, but the cellular correlates to changes in fMRI response is still controversial. Deep brain stimulation of the posterior hypothalamic nucleus (PH) is known to facilitate locomotor behaviors and rescue locomotion in rodent models of parkinsonian akinesia by an unknown mechanism. Here, we performed 9.4 T fMRI during deep brain stimulation of PH in the anesthetized rat as a model system to explore the network substrates for its behavioral consequences. In addition, multi-unit and field potential recordings were made to examine the physiological correlates to changes in fMRI response. The most robust and reliable MR signal increases were observed in the somatosensory and motor cortices, with minor limbic and sparse thalamic activation. Electrophysiological experiments demonstrated that increased fMRI response in the neocortex corresponds to general increases in spiking activity, decreased slow oscillations and increased delta band activity. Forelimb movements evoked by intracortical microstimulation had reduced thresholds and larger representational (motor map) areas during and following PH stimulation. These findings identify the sensorimotor cortices as major contributors for behavioral effects of PH stimulation, and that coincident increase in spiking, synaptic activity and MR signal reflect functional facilitation of neocortical output.
Subject(s)
Brain Mapping/methods , Deep Brain Stimulation , Hypothalamus, Posterior/physiology , Magnetic Resonance Imaging/methods , Animals , Electrodes, Implanted , Electrophysiology , Image Processing, Computer-Assisted , Male , Rats , Rats, Long-EvansABSTRACT
BACKGROUND: The brain histaminergic system plays a critical role in maintenance of arousal. Previous studies suggest that histaminergic neurotransmission might be a potential mediator of general anesthetic actions. However, it is not clear whether histaminergic tuberomamillary nucleus (TMN) is necessarily involved in the sedative/hypnotic effects of general anesthetics. METHODS: Male Long Evans rats underwent either TMN orexin-saporin/sham lesion or implantation of intracerebroventricular cannula 2 weeks before the experiment. The behavioral endpoint of loss of righting reflex was used to assess the hypnotic property of isoflurane, propofol, pentobarbital, and ketamine in animals. Histaminergic cell loss was assessed by adenosine deaminase expression in the TMN using immunohistochemistry. RESULTS: Rats with bilateral TMN orexin-saporin lesion induced an average 72% loss of histaminergic cells compared with sham-lesion rats. TMN orexin-saporin lesion or intracerebroventricular administration of triprolidine (an H1 receptor antagonist) decreased the 50% effective concentration for loss of righting reflex value and prolonged emergence time to isoflurane anesthesia. However, TMN orexin-saporin lesion had no significant effect on the anesthetic sensitivity to propofol, pentobarbital, and ketamine. CONCLUSIONS: These findings suggest a role of the TMN histaminergic neurons in modulating isoflurane anesthesia and that the neural circuits for isoflurane-induced hypnosis may differ from those of γ-aminobutyric acid-mediated anesthetics and ketamine.