Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Nat Immunol ; 20(9): 1138-1149, 2019 09.
Article in English | MEDLINE | ID: mdl-31427775

ABSTRACT

Interleukin (IL)-1R3 is the co-receptor in three signaling pathways that involve six cytokines of the IL-1 family (IL-1α, IL-1ß, IL-33, IL-36α, IL-36ß and IL-36γ). In many diseases, multiple cytokines contribute to disease pathogenesis. For example, in asthma, both IL-33 and IL-1 are of major importance, as are IL-36 and IL-1 in psoriasis. We developed a blocking monoclonal antibody (mAb) to human IL-1R3 (MAB-hR3) and demonstrate here that this antibody specifically inhibits signaling via IL-1, IL-33 and IL-36 in vitro. Also, in three distinct in vivo models of disease (crystal-induced peritonitis, allergic airway inflammation and psoriasis), we found that targeting IL-1R3 with a single mAb to mouse IL-1R3 (MAB-mR3) significantly attenuated heterogeneous cytokine-driven inflammation and disease severity. We conclude that in diseases driven by multiple cytokines, a single antagonistic agent such as a mAb to IL-1R3 is a therapeutic option with considerable translational benefit.


Subject(s)
Antibodies, Blocking/pharmacology , Antibodies, Monoclonal/pharmacology , Interleukin-1 Receptor Accessory Protein/antagonists & inhibitors , Peritonitis/immunology , Pneumonia/immunology , Psoriasis/immunology , A549 Cells , Animals , Cell Line, Tumor , Disease Models, Animal , HEK293 Cells , Humans , Imiquimod/toxicity , Inflammation/pathology , Interleukin-1/immunology , Interleukin-1 Receptor Accessory Protein/immunology , Interleukin-1beta/immunology , Interleukin-33/immunology , Male , Mice , Mice, Inbred C57BL , Ovalbumin/toxicity , Peritonitis/drug therapy , Peritonitis/pathology , Pneumonia/drug therapy , Pneumonia/pathology , Psoriasis/drug therapy , Psoriasis/pathology , Signal Transduction/immunology , Uric Acid/toxicity
2.
Immunity ; 48(4): 787-798.e4, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29653697

ABSTRACT

Psoriasis is a chronic autoinflammatory skin disease. Although interleukin-17, derived from lymphocytes, has been shown to be critical in psoriasis, the initiation and maintenance of chronic skin inflammation has not been well understood. IL-25 (also called IL-17E), another IL-17 family cytokine, is well known to regulate allergic responses and type 2 immunity. Here we have shown that IL-25, also highly expressed in the lesional skin of psoriasis patients, was regulated by IL-17 in murine skin of a imiquimod (IMQ)-induced psoriasis model. IL-25 injection induced skin inflammation, whereas germline or keratinocyte-specific deletion of IL-25 caused resistance to IMQ-induced psoriasis. Via IL-17RB expression in keratinocytes, IL-25 stimulated the proliferation of keratinocytes and induced the production of inflammatory cytokines and chemokines, via activation of the STAT3 transcription factor. Thus, our data demonstrate that an IL-17-induced autoregulatory circuit in keratinocytes is mediated by IL-25 and suggest that this circuit could be targeted in the treatment of psoriasis patients.


Subject(s)
Interleukin-17/immunology , Psoriasis/immunology , Receptors, Interleukin-17/immunology , Receptors, Interleukin/immunology , STAT3 Transcription Factor/metabolism , Skin/pathology , Animals , Cell Line , Cell Proliferation , Enzyme Activation , HEK293 Cells , Humans , Imiquimod/toxicity , Inflammation/immunology , Inflammation/pathology , Interleukin-17/genetics , Keratinocytes/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Psoriasis/chemically induced , Psoriasis/pathology , Skin/immunology
3.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893287

ABSTRACT

Psoriasis is a common chronic immune-mediated inflammatory skin disorder. Sophora flavescens Alt. (S. flavescens) has been widely acknowledged in the prevention and treatment of psoriasis. Kushenol F (KSCF) is a natural isopentenyl flavonoid extracted from the root of S. flavescens. We aimed to investigate the effect and mechanism of KSCF on imiquimod (IMQ)-induced psoriasis-like skin lesions in mice. A mouse model of psoriasis was induced with 5% IMQ for 5 days, and the mice were given KSCF dermally for 5 days. Changes in skin morphology, the psoriasis area, the severity index (PASI), and inflammatory factors of psoriasis-like skin lesions were evaluated. Metabolites in the psoriasis-like skin lesions were analyzed with ultra-high-performance liquid chromatography/mass spectrometry followed by a multivariate statistical analysis to identify the differential metabolites and metabolic pathway. The results of the present study confirmed that KSCF significantly reduced PASI scores, epidermal thickening, and epidermal cell proliferation and differentiation. KSCF also reduced the levels of interleukin (IL)-1ß, IL-6, IL-8, IL-17A, IL-22, IL-23, and tumor necrosis factor (TNF)-α in the injured skin tissues while increasing IL-10 content. KSCF significantly regulated metabolites in the skin samples, and a total of 161 significant metabolites were identified. These differential metabolites involved sphingolipid and linoleic acid metabolism and steroid hormone biosynthesis. Collectively, KSCF inhibited the inflammatory response to prevent IMQ-induced psoriasis-like skin lesions in mice by call-backing the levels of 161 endogenous metabolites and affecting their related metabolic pathways. KSCF has the potential to be developed as a topical drug for treating psoriasis symptoms.


Subject(s)
Disease Models, Animal , Imiquimod , Metabolomics , Psoriasis , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/metabolism , Psoriasis/pathology , Animals , Imiquimod/toxicity , Mice , Chromatography, High Pressure Liquid , Metabolomics/methods , Metabolome/drug effects , Cytokines/metabolism , Flavonoids/pharmacology , Mass Spectrometry , Skin/metabolism , Skin/drug effects , Skin/pathology , Male
4.
Toxicol Appl Pharmacol ; 479: 116707, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37783235

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP), which is a widely used phthalate (PAE), has recently received public attention owing to it causing health problems. The aim of this study was to elucidate the aggravating effects of DEHP on psoriasis and skin toxicity. Human keratinocyte (HaCaT) cells were treated with gradient concentrations of DEHP, and mice with imiquimod (IMQ)-induced psoriasiform dermatitis were hypodermically injected with 40 µg/kg/day of DEHP for seven consecutive days. The skin condition was assessed based on the psoriasis area and severity index score, which indicated the deterioration of IMQ-induced psoriasis-like skin lesions after DEHP exposure. To further analyze the effect of DEHP on psoriasis, the proliferation, inflammation, and tight junction (TJ) damage were examined, which correlated with the development and severity of psoriasis. The results showed that DEHP promoted proliferation both in vivo and in vitro, which manifested as epidermal thickening; an increase in cell viability; upregulation of Ki67, CDK2, cyclinD1, and proliferating cell nuclear antigen; and downregulation of p21. An excessive inflammatory response is an important factor that exacerbates psoriasis, and our results showed that DEHP can trigger the release of inflammatory cytokines as well as the infiltration of T cells. TJ disorders were found in mice and cells after DEHP treatment. Additionally, p38 mitogen-activated protein kinase (MAPK) was strongly activated during this process, which may have contributed to skin toxicity caused by DEHP. In conclusion, DEHP treatment promotes proliferation, inflammation, TJ disruption, and p38 MAPK activation in HaCaT cells and psoriasis-like skin lesions.


Subject(s)
Diethylhexyl Phthalate , Psoriasis , Skin Diseases , Mice , Animals , Humans , Diethylhexyl Phthalate/toxicity , Psoriasis/metabolism , Skin Diseases/chemically induced , Imiquimod/toxicity , Inflammation/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Skin
5.
J Appl Toxicol ; 43(9): 1284-1292, 2023 09.
Article in English | MEDLINE | ID: mdl-36908085

ABSTRACT

Citrinin, a mycotoxin produced by Penicillium citrinum and Penicillium verrucosum, mainly contaminates cereals. The aim of study was to investigate the novel immunoreactive effect of citrinin using a mouse model of psoriasis. A mouse model of psoriasis was generated by topical application of 5% imiquimod in female BALB/c mice. Standard rodent diet and rice samples with 3 ppm of citrinin were mixed to obtain a final citrinin concentration of 0.3 ppm, and a citrinin-contaminated diet was fed to mice daily. Skin thickness, scratching behavior, and trans epidermal water loss (TEWL) were monitored continuously during the imiquimod application. Immediately after the final imiquimod application, ear skin and auricular lymph node (LN) were sampled for further analysis. Only a slight increase was observed in skin thickness in the citrinin exposure group; however, citrinin exposure significantly exacerbated hyperkeratinization and inflammatory cell infiltration in histological evaluation. TEWL, which is representative of cutaneous barrier function, was significantly increased by citrinin exposure. In terms of immune function, the number of immune cells in LN (T cells and dendritic cells) and gene expression of interleukin (IL)-17 in skin tissue were significantly increased by citrinin exposure. Direct interaction of dendritic cells (DCs) in citrinin-induced psoriasis development was further examined by proinflammatory cytokine determination in THP-1 cells and murine bone marrow derived DCs. IL-6 and/or tumor necrosis factor α were significantly increased by citrinin exposure. Taken together, our results imply that oral exposure to citrinin exacerbates the symptoms of a mouse model of psoriasis via direct activation of DCs.


Subject(s)
Citrinin , Psoriasis , Female , Animals , Mice , Imiquimod/toxicity , Citrinin/toxicity , Citrinin/metabolism , Aminoquinolines/toxicity , Aminoquinolines/metabolism , Dendritic Cells , Psoriasis/chemically induced , Skin , Disease Models, Animal , Mice, Inbred BALB C
6.
Ecotoxicol Environ Saf ; 266: 115570, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37844410

ABSTRACT

Although numerous studies imply a correlation between chemical contamination and an impaired immunocompetence of wildlife populations, the assessment of immunomodulatory modes of action is currently not covered in the regulatory requirements for the approval of new substances. This is not least due to the complexity of the immune system and a lack of standardised methods and validated biomarkers. To tackle this issue, in this study, the transcriptomic profiles of zebrafish embryos were analysed in response to the immunosuppressive compound clobetasol propionate, a synthetic glucocorticoid, and/or the immunostimulatory compound imiquimod (IMQ), a TLR-7 agonist. Using IMQ, known for its potential to induce psoriasis-like effects in mice and human, this study additionally aimed at evaluating the usability of the zebrafish embryo model as an alternative and 3R conform system for the IMQ-induced psoriasis mouse model. Our study substantiates the suitability of previously proposed genes as possible biomarkers for immunotoxicity, such as socs3, nfkbia, anxa1c, fkbp5 and irg1l. Likewise, however, our findings indicate that these genes may be less suitable to distinguish a suppressive from stimulating fashion of action. In contrast, based on a differential regulation in opposite direction in response to both compounds, krt17, rtn4a, and1, smhyc1 and gmpr were identified as potential novel biomarkers with said power to differentiate. Observed IMQ-induced alterations in the expression of genes previously associated with the pathogenesis of psoriasis such as krt17, nfkbia, parp1, pparg, nfil3-6, per2, stat4, klf2, rtn4a, anxa1c and nr1d2 indicate the inducibility of psoriatic effects in the zebrafish embryo. Our work contributes to the establishment of an approach for a 3R-compliant investigation of immunotoxic mechanisms of action in aquatic vertebrates. The validated and newly identified biomarker candidates of specific immunotoxic effects can be used in future studies in the context of environmental hazard assessment of substances or also for human-relevant immunotoxicological questions.


Subject(s)
Glucocorticoids , Psoriasis , Humans , Animals , Mice , Glucocorticoids/toxicity , Glucocorticoids/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Toll-Like Receptor 7/metabolism , Transcriptome , Psoriasis/pathology , Imiquimod/toxicity , Immunosuppression Therapy , Biomarkers/metabolism , Skin/metabolism
7.
Immunopharmacol Immunotoxicol ; 45(2): 133-139, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36305632

ABSTRACT

BACKGROUND: Psoriasis is a chronic inflammatory skin disease that is currently incurable and causes long-term distress to patients. Therefore, there is an urgent need to develop safe and effective psoriatic drugs. Eupatilin is a natural flavone, that has a variety of pharmacological effects. However, the anti-psoriatic effect of eupatilin and its underlying mechanism remain unclear. METHODS: HaCaT cells were treated with 20 µg/mL LPS for 24 h to establish the proliferation model of HaCaT cells. Cell viability was measured by MTT assay. Western blotting was used to detect the expression of p-p38 MAPK, p38 MAPK, p-NF-κB p65 and NF-κB p65 in HaCaT cells. Imiquimod (IMQ) was used to induce psoriasis-like mouse model. Psoriasis Area Severity Index (PASI) score was used to evaluate the degree of skin injury, H&E staining was used to observe the pathological damage of skin tissues, and the expression levels of TNF-α, IL-6, IL-23 and IL-17 in the serum were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: Eupatilin could inhibit the hyperproliferation of LPS-stimulated HaCaT cells through p38 MAPK/NF-κB signaling pathway in vitro. In psoriatic mice, eupatilin could significantly reduce skin erythema, scales and thickening scores, ameliorate skin histopathological lesions, and decrease the levels of TNF-α, IL-6, IL-23 and IL-17 in the serum. CONCLUSION: Eupatilin had a good anti-proliferative effect in LPS-stimulated HaCaT cells, and significantly alleviated IMQ-induced psoriasis-like lesions in mice. Eupatilin was a promising drug for the treatment of psoriasis.


Subject(s)
Psoriasis , Skin Diseases , Animals , Mice , Imiquimod/toxicity , NF-kappa B/metabolism , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Interleukin-6/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Skin , MAP Kinase Signaling System , Keratinocytes , Cell Proliferation , p38 Mitogen-Activated Protein Kinases/metabolism , Interleukin-23 , Mice, Inbred BALB C , Disease Models, Animal
8.
Mediators Inflamm ; 2022: 5782922, 2022.
Article in English | MEDLINE | ID: mdl-35069008

ABSTRACT

Itch is one of the major clinical manifestations of psoriasis, which is closely related with neurogenic inflammation and difficult to control. Colquhounia Root (CR) is a Chinese herb exhibiting broad bioactivities on anti-inflammation. This study was designed to explore the antipsoriatic and anti-itch potential of CR and its underlying mechanisms. Mice in a model of imiquimod-induced psoriasiform dermatitis were treated topically with CR for 7 days, and the severity of skin lesions and itch was significantly ameliorated. CR reduced the inflammatory cell infiltration, as well as mast cells in skins. Particularly, the expression of inflammatory cytokines and chemokine including Il17a, Il22, and Ccl20 and itch-related molecules such as SP, CGRP, and NGF in lesions were decreased in diseased mice upon application with CR. The normal human epidermal keratinocytes were stimulated with the M5 cytokine cocktail, the mixture of IL-17A, IL-22, Oncostatin M, IL-1α, and TNF-α, and cell viability and mRNA expression levels of inflammatory factors and itch-related molecules were measured after being treated with CR. We found that CR inhibited both cell hyperproliferation and overexpression of inflammatory cytokines and itch-related molecules in vitro. Altogether, we conclude that CR relieves psoriatic lesions and itch via controlling immunological and neurogenic inflammation.


Subject(s)
Eczema , Psoriasis , Animals , Disease Models, Animal , Imiquimod/toxicity , Inflammation/metabolism , Mice , Psoriasis/chemically induced , Psoriasis/drug therapy , Skin/metabolism
9.
Ecotoxicol Environ Saf ; 243: 114008, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36029575

ABSTRACT

Exposure to fine particulate matter (PM2.5) has significant effects on human skin health, mainly disrupting skin homeostasis and accelerating aging. To date, the effects of PM2.5 on psoriasis (PSO) have not been elucidated. An ambient particulate matter exposed and well characterized imiquimod (IMQ)-induced psoriasis mouse model was established. Thirty male C57BL/6 mice aged 8 weeks were randomly divided into three groups: filtered air (FA) group (Control group), PSO+ FA group and PSO + PM2.5 group. A KRT17 knockdown (KRT17-KD) mouse model was simultaneously established by subcutaneously injecting KRT17-KD lentivirus. Forty male C57BL/6 mice were randomly divided into four groups: PSO + FA + KRT17-RNAi negative control lentivirus (KRT17-NC) group, PSO+ FA+ KRT17-KD group, PSO + PM2.5 + KRT17-NC group and PSO + PM2.5 + KRT17-KD group. PM2.5 exposure continued for 8 weeks. Psoriasis was induced by topically applying IMQ on the dorsal skin of the mice for 6 days during week 8. Morphometric and histological analyses were performed to investigate the changes in psoriatic lesions. Differentially expressed genes and enriched pathways were explored using bioinformatics analysis and showed that KRT17 gene and the vascular endothelial growth factor receptor signaling pathway were associated with psoriasis. HaCaT cells were stimulated with interleukin-17A and infected with KRT17-KD lentivirus to establish an in vitro KRT17 knockdown psoriasis cell model. Notably, PM2.5 exposure increased the expression of KRT17 protein and activated AKT/mTOR/HIF-1α signaling pathway in vivo. Moreover, specific agonist of AKT (740Y-P) reversed the decreased neovascularization induced by KRT17 knockdown through AKT/mTOR/HIF-1α signaling pathway in vitro. Consequently, PM2.5 exposure could promote the development and progression of psoriasis through KRT17-dependent activation of AKT/mTOR/HIF-1α signaling pathway.


Subject(s)
Proto-Oncogene Proteins c-akt , Psoriasis , Animals , Male , Mice , Imiquimod/toxicity , Inflammation/chemically induced , Mice, Inbred C57BL , Particulate Matter/toxicity , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Psoriasis/chemically induced , Psoriasis/genetics , Psoriasis/pathology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Vascular Endothelial Growth Factor A
10.
Int J Mol Sci ; 23(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35562873

ABSTRACT

Dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) has been used as an adjunct therapy for psoriasis due to its anti-inflammatory properties. Free fatty acid receptor 4 (FFA4 or GPR120) is a receptor-sensing n-3 PUFA. In the present study, we examined whether FFA4 acted as a therapeutic target for n-3 PUFA in psoriasis therapy. Experimentally, psoriasis-like skin lesions were induced by treatment with imiquimod for 6 consecutive days. A selective FFA4 agonist, Compound A (30 mg/kg), was used in FFA4 WT and FFA4 KO mice. Imiquimod-induced psoriasis-like skin lesions, which present as erythematous papules and plaques with silver scaling, as well as markedly elevated IL-17/IL-23 cytokine levels in skin tissues, were significantly suppressed by Compound A in FFA4 WT mice, but not in FFA4 KO mice. Enlarged lymph nodes and spleens, as well as imiquimod-induced, elevated IL-17/IL-23 cytokine levels, were also strongly suppressed by Compound A in FFA4 WT mice, but not in FFA4 KO mice. Imiquimod-induced increases in the CD4+IL-17A+ T cell population in lymph nodes and spleens were suppressed by Compound A treatment in FFA4 WT mice; however, this was not seen in FFA4 KO mice. Furthermore, compound A suppressed the differentiation of CD4+ naïve T cells from splenocytes into TH17 cells in an FFA4-dependent manner. In conclusion, we demonstrated that the activation of FFA4 ameliorates imiquimod-induced psoriasis, and the suppression of the differentiation of TH17 cells may partly contribute to its efficacy. Therefore, we suggest that FFA4 could be a therapeutic target for psoriasis therapy.


Subject(s)
Fatty Acids, Omega-3 , Psoriasis , Animals , Cytokines/therapeutic use , Disease Models, Animal , Fatty Acids, Nonesterified/therapeutic use , Fatty Acids, Omega-3/therapeutic use , Imiquimod/toxicity , Interleukin-17/genetics , Interleukin-23 , Mice , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Skin/pathology
11.
Pharmazie ; 77(2): 48-53, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35209963

ABSTRACT

Psoriasis is a complex chronic skin inflammatory disease characterized by abnormal proliferation, differentiation of keratinocytes and infiltration of lymphocytes and neutrophils. The tripeptide KdPT, structurally derived from the C-terminal amino acid of alpha-melanocyte-stimulating hormone, has shown a significant anti-inflammatory effect on mild-to-moderate active ulcerative colitis in previous reports. In this research, we investigated whether KdPT could consistently ameliorate disease in a mouse model of imiquimod (IMQ)-induced psoriasis by inhibiting proliferation and inflammation response. We demonstrated that KdPT in vitro significantly inhibited the proliferation of human keratinocytes and endothelial cells, and also downgraded the expression of inflammatory factors in LPS-induced RAW264.7, including IL-6, TNF-α and NO. In vivo, KdPT attenuates the severity of IMQ-induced psoriasis-like phenotype in mice. Such an effect was achieved by downregulating the expression of the inflammatory cytokines interleukin (IL)-6, TNF-α, and the proliferation marker Ki67. These results suggested that KdPT might be useful in the treatment for psoriasis.


Subject(s)
Psoriasis , Tumor Necrosis Factor-alpha , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Proliferation , Cytokines , Disease Models, Animal , Endothelial Cells , Imiquimod/toxicity , Inflammation/chemically induced , Inflammation/drug therapy , Interleukin-6/pharmacology , Keratinocytes , Mice , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/drug therapy , Skin
12.
Int J Mol Sci ; 22(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884834

ABSTRACT

Extracellular vesicles (EVs) are evaginations of the cytoplasmic membrane, containing nucleic acids, proteins, lipids, enzymes, and toxins. EVs participate in various bacterial physiological processes. Staphylococcus epidermidis interacts and communicates with the host skin. S. epidermidis' EVs may have an essential role in this communication mechanism, modulating the immunological environment. This work aimed to evaluate if S. epidermidis' EVs can modulate cytokine production by keratinocytes in vitro and in vivo using the imiquimod-induced psoriasis murine model. S. epidermidis' EVs were obtained from a commensal strain (ATC12228EVs) and a clinical isolated strain (983EVs). EVs from both origins induced IL-6 expression in HaCaT keratinocyte cultures; nevertheless, 983EVs promoted a higher expression of the pro-inflammatory cytokines VEGF-A, LL37, IL-8, and IL-17F than ATCC12228EVs. Moreover, in vivo imiquimod-induced psoriatic skin treated with ATCC12228EVs reduced the characteristic psoriatic skin features, such as acanthosis and cellular infiltrate, as well as VEGF-A, IL-6, KC, IL-23, IL-17F, IL-36γ, and IL-36R expression in a more efficient manner than 983EVs; however, in contrast, Foxp3 expression did not significantly change, and IL-36 receptor antagonist (IL-36Ra) was found to be increased. Our findings showed a distinctive immunological profile induction that is dependent on the clinical or commensal EV origin in a mice model of skin-like psoriasis. Characteristically, proteomics analysis showed differences in the EVs protein content, dependent on origin of the isolated EVs. Specifically, in ATCC12228EVs, we found the proteins glutamate dehydrogenase, ornithine carbamoyltransferase, arginine deiminase, carbamate kinase, catalase, superoxide dismutase, phenol-soluble ß1/ß2 modulin, and polyglycerol phosphate α-glucosyltransferase, which could be involved in the reduction of lesions in the murine imiquimod-induced psoriasis skin. Our results show that the commensal ATCC12228EVs have a greater protective/attenuating effect on the murine imiquimod-induced psoriasis by inducing IL-36Ra expression in comparison with EVs from a clinical isolate of S. epidermidis.


Subject(s)
Extracellular Vesicles/metabolism , Psoriasis/therapy , Staphylococcus epidermidis/metabolism , Animals , Antigens, Ly/metabolism , Cell Line , Disease Models, Animal , Extracellular Vesicles/chemistry , Extracellular Vesicles/transplantation , Humans , Imiquimod/toxicity , Interleukin-1/antagonists & inhibitors , Interleukin-1/genetics , Interleukin-1/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Neutrophil Infiltration , Psoriasis/chemically induced , Psoriasis/pathology , Skin/metabolism , Skin/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
13.
Int J Mol Sci ; 22(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34639115

ABSTRACT

Psoriasis is a chronic inflammatory skin disease. Recently, lysophosphatidic acid (LPA)/LPAR5 signaling has been reported to be involved in both NLRP3 inflammasome activation in macrophages and keratinocyte activation to produce inflammatory cytokines, contributing to psoriasis pathogenesis. However, the effect and molecular mechanisms of LPA/LPAR signaling in keratinocyte proliferation in psoriasis remain unclear. In this study, we investigated the effects of LPAR1/3 inhibition on imiquimod (IMQ)-induced psoriasis-like mice. Treatment with the LPAR1/3 antagonist, ki16425, alleviated skin symptoms in IMQ-induced psoriasis-like mouse models and decreased keratinocyte proliferation in the lesion. It also decreased LPA-induced cell proliferation and cell cycle progression via increased cyclin A2, cyclin D1, cyclin-dependent kinase (CDK)2, and CDK4 expression and decreased p27Kip1 expression in HaCaT cells. LPAR1 knockdown in HaCaT cells reduced LPA-induced proliferation, suppressed cyclin A2 and CDK2 expression, and restored p27Kip1 expression. LPA increased Rho-associated protein kinase 2 (ROCK2) expression and PI3K/AKT activation; moreover, the pharmacological inhibition of ROCK2 and PI3K/AKT signaling suppressed LPA-induced cell cycle progression. In conclusion, we demonstrated that LPAR1/3 antagonist alleviates IMQ-induced psoriasis-like symptoms in mice, and in particular, LPAR1 signaling is involved in cell cycle progression via ROCK2/PI3K/AKT pathways in keratinocytes.


Subject(s)
Cell Proliferation , Gene Expression Regulation/drug effects , Imiquimod/toxicity , Keratinocytes/cytology , Lysophospholipids/pharmacology , Psoriasis/drug therapy , Animals , Apoptosis , Biomarkers/metabolism , Cell Cycle , Cells, Cultured , Humans , Interferon Inducers/toxicity , Keratinocytes/metabolism , Male , Mice , Mice, Inbred BALB C , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Psoriasis/chemically induced , Psoriasis/metabolism , Psoriasis/pathology , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
14.
Int J Mol Sci ; 22(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921372

ABSTRACT

Recently, the mTOR signaling has emerged as an important player in the pathogenesis of psoriasis. We previously found that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced psoriatic skin inflammation was related to the inhibition of autophagy in keratinocytes. However, the effects and detailed molecular mechanisms of the mTOR inhibitor rapamycin and TCDD on psoriasis in vivo remain to be elucidated. In this study, we aimed to evaluate the effects of rapamycin and TCDD on skin lesions in imiquimod (IMQ)-induced psoriasis using a mouse model. TCDD aggravated skin inflammation in an IMQ-induced psoriatic mouse model. Furthermore, TCDD increased the expression of aryl hydrocarbon receptor (AHR), CYP1A1, proinflammatory cytokines, oxidative stress markers (NADPH oxidase (Nox) 2, Nox4), and phosphorylated P65NF-ĸB, whereas the expression of autophagy-related factors and the antioxidant marker nuclear factor-erythroid 2-related factor 2 (NRF2) decreased. Rapamycin reduced the aggravated skin inflammation induced by TCDD and restored TCDD-induced autophagy suppression and the increase of AHR expression, oxidative stress, and inflammatory response in the skin lesions of a psoriatic mouse model. In conclusion, we demonstrated that rapamycin alleviates TCDD-induced aggravated dermatitis in mice with imiquimod-induced psoriasis-like dermatitis through AHR and autophagy modulation.


Subject(s)
Dermatitis/drug therapy , Inflammation/drug therapy , Psoriasis/drug therapy , Sirolimus/pharmacology , Animals , Autophagy/drug effects , Autophagy/genetics , Cell Differentiation/drug effects , Cells, Cultured , Cytochrome P-450 CYP1A1/genetics , Dermatitis/etiology , Dermatitis/pathology , Gene Expression Regulation/drug effects , Humans , Imiquimod/toxicity , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Keratinocytes/drug effects , Mice , NADPH Oxidase 4/genetics , NF-E2-Related Factor 2/genetics , Polychlorinated Dibenzodioxins/toxicity , Psoriasis/chemically induced , Psoriasis/genetics , Psoriasis/pathology , Receptors, Aryl Hydrocarbon/genetics
15.
Alcohol Clin Exp Res ; 44(9): 1728-1733, 2020 09.
Article in English | MEDLINE | ID: mdl-32583876

ABSTRACT

BACKGROUND: A relationship between alcohol consumption and psoriasis has been reported, but it is unclear whether alcohol consumption aggravates psoriasis. Here, we studied the effect of chronic ethanol (EtOH) consumption in the murine model of Aldara-induced psoriasiform dermatitis. METHODS: C57BL/6 mice received 5% EtOH in their drinking water for 10 weeks. Dermatitis was induced from weeks 9 to 10, by applying Aldara to the shaved patch of skin on the back. Inflammation was characterized by histological and transcriptomic analyses. RESULTS: EtOH consumption aggravated Aldara-induced dermatitis. The scales were more severe, epidermal thickening was more pronounced, and cutaneous expression of Th17-related cytokines was exacerbated. Control mice simply receiving EtOH displayed minimal cutaneous inflammation, characterized by epidermal infiltrates of T lymphocytes and the overexpression of IL-17A and the Th17-recruiting chemokine CCL20. In vitro studies showed that low concentrations of EtOH induce the expression of CCL20 by murine epidermal keratinocytes. CONCLUSION: Alcohol consumption leads to subliminar skin inflammation, which is revealed by the exacerbation of Aldara-induced experimental psoriasiform dermatitis, likely through Th17-type minimal skin inflammation. These results favor the systematic management of alcohol consumption in psoriatic patients.


Subject(s)
Alcohol Drinking , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Psoriasis/pathology , Skin/drug effects , Animals , Chemokine CCL20/drug effects , Chemokine CCL20/metabolism , Gene Expression Profiling , Imiquimod/toxicity , Interferon Inducers/toxicity , Interleukin-17/genetics , Interleukin-23/genetics , Interleukins/genetics , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice , Psoriasis/genetics , Skin/metabolism , Skin/pathology , Th17 Cells/drug effects , Th17 Cells/metabolism , Interleukin-22
16.
J Immunol ; 201(1): 167-182, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29794016

ABSTRACT

IL-36α (gene symbol Il1f6), a member of the IL-36 family, is closely associated with inflammatory diseases, including colitis and psoriasis. In this study, we found that Il1f6-/- mice developed milder psoriasiform dermatitis upon treatment with imiquimod, a ligand for TLR ligand 7 (TLR7) and TLR8, whereas Il1f6-/- mice showed similar susceptibility to dextran sodium sulfate-induced colitis to wild-type mice. These effects were observed in both cohoused and separately housed conditions, and antibiotic treatment did not cancel the resistance of Il1f6-/- mice to imiquimod-induced dermatitis. Bone marrow (BM) cell transfer revealed that IL-36α expression in skin-resident cells is important for the pathogenesis of dermatitis in these mice. Following stimulation with IL-36α, the expression of Il1f6 and Il1f9 (IL-36γ), but not Il1f8 (IL-36ß), was enhanced in murine BM-derived Langerhans cells (BMLCs) and murine primary keratinocytes but not in fibroblasts from mice. Upon stimulation with agonistic ligands of TLRs and C-type lectin receptors (CLRs), Il1f6 expression was induced in BMLCs and BM-derived dendritic cells. Furthermore, IL-36α stimulation resulted in significantly increased gene expression of psoriasis-associated Th17-related cytokines and chemokines such as IL-1α, IL-1ß, IL-23, CXCL1, and CXCL2 in BMLCs and fibroblasts, and IL-1α, IL-1ß, IL-17C, and CXCL2 in keratinocytes. Collectively, these results suggest that TLR/CLR signaling-induced IL-36α plays an important role for the development of psoriasiform dermatitis by enhancing Th17-related cytokine/chemokine production in skin-resident cells via a local autoamplification loop.


Subject(s)
Adjuvants, Immunologic/toxicity , Chemokines/biosynthesis , Colitis/pathology , Imiquimod/toxicity , Interleukin-1/metabolism , Keratinocytes/metabolism , Psoriasis/pathology , Skin/pathology , Th17 Cells/immunology , Animals , Bone Marrow Cells/cytology , Bone Marrow Transplantation , Cells, Cultured , Colitis/chemically induced , Dendritic Cells/metabolism , Dextran Sulfate/toxicity , Fibroblasts/metabolism , Interleukin-1/genetics , Langerhans Cells/metabolism , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Psoriasis/drug therapy , Psoriasis/genetics , Skin/cytology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism
17.
J Appl Toxicol ; 40(10): 1353-1361, 2020 10.
Article in English | MEDLINE | ID: mdl-32368827

ABSTRACT

Our recent study has reported that estrogen receptors (ERs) are involved in several types of allergy development. This study aims to investigate the possible relationship between ER activation and development of imiquimod-induced psoriasis-like dermatitis. A mouse model of imiquimod-induced psoriasis-like dermatitis was generated by 5 days of topical application of 5% of imiquimod cream on the back of the ear and the shaved back skin of male BALB/c mice. From the second day of applying 5% imiquimod cream, either ERα selective agonist (propylpyrazoletriol [PPT] 2.5 mg/kg) or ERß selective agonist (diarylpropionitrile, DPN; 2.5 mg/kg) was administered orally for four consecutive days. Immediately after the final imiquimod cream application, scratching behavior was video monitored for 2 hours. The ear-swelling response was determined by comparing ear thickness before and after the final application of imiquimod cream. Twenty-four hours after the final imiquimod application, back skin tissue and auricular lymph nodes were isolated under isoflurane anesthesia. Oral administration of PPT significantly induced itch behavior and proinflammatory responses, including the levels of interleukin (IL)-17 and IL-22, whereas DPN treatment did not influence either pruritic or proinflammatory responses. In addition, IL-23 contribution by dendritic cells was identified using ER agonists on pretreated lipopolysaccharide (LPS)-stimulated murine bone marrow derived dendritic cells (BMDCs). PPT also significantly enhanced IL-23 secretion by LPS-stimulated BMDCs. Our findings indicate that the activation of ERα, but not ERß, is directly associated with inflammatory and pruritic responses in a mouse model of the imiquimod-induced psoriasis by enhancing the secretion of IL-23 by dendritic cells.


Subject(s)
Dendritic Cells/drug effects , Estrogen Receptor alpha/metabolism , Imiquimod/toxicity , Inflammation/chemically induced , Interleukin-23/metabolism , Pruritus/chemically induced , Psoriasis/chemically induced , Psoriasis/physiopathology , Animals , Humans , Male , Mice , Models, Animal
18.
Int J Mol Sci ; 21(5)2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32106600

ABSTRACT

Four transglutaminase (TG) isoforms have been detected in epidermal keratinocytes: TG1, TG2, TG3, and TG5. Except for TG1 and TG3, their contribution to keratinocyte development and structure remains undefined. In this paper, we focused on the roles of TG2 and TG3 in imiquimod-induced psoriasis in mouse skin. We evaluated the severity of psoriasis markers in the skin of imiquimod-treated TG3 null and TG2 null mice. Our results showed that compromised TG3KO mouse skin was more responsive than WT or TG2KO mouse skin to the action of the pro-inflammatory drug imiquimod.


Subject(s)
GTP-Binding Proteins/metabolism , Psoriasis/metabolism , Transglutaminases/metabolism , Animals , GTP-Binding Proteins/genetics , Imiquimod/toxicity , Keratinocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Glutamine gamma Glutamyltransferase 2 , Psoriasis/etiology , Psoriasis/genetics , Transglutaminases/genetics
19.
Int J Mol Sci ; 21(19)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007963

ABSTRACT

Psoriasis is a common chronic inflammatory skin condition manifested by T cell responses and characterized by preferential recurrence at previously inflamed sites upon withdrawal of treatment. The site-specific disease memory in psoriasis has been linked to CD8+CD103+ tissue-resident memory T cells (Trm) in the epidermis which were previously thought to only provide "frontline" protection against pathogens and immunosurveillance during cancer development. In this study, we correlated the presence of a subset of the Trm cells which are also CD49a+ with disease severity in human psoriatic lesions with acute and chronic disease. Using an imiquimod (IMQ)-induced murine model of psoriasiform dermatitis, we also investigated the level of CD49a+ Trm cells in acute, chronic and resolved psoriatic lesions. Investigation of clinical human samples showed that patient disease severity highly correlated with the numbers of epidermal CD49a+ Trm cells. Additionally, this subset of Trm cells was shown to persist in resolved lesions of murine psoriasiform dermatitis once clinical disease features had subsided. Importantly, these CD49a+ Trm cells showed significantly higher levels of granzyme B (GzmB) production compared to acute disease, suggesting a potential role of CD49a+ Trm cells for psoriatic re-occurrence in resolved patients. Better understanding of epidermal CD49a+ Trm cell activity is necessary for development of advanced treatment strategies for psoriasis to permit long-term, continuous disease control.


Subject(s)
Epidermis/drug effects , Immunologic Memory/immunology , Psoriasis/immunology , T-Lymphocytes/immunology , Animals , Cell Lineage/genetics , Disease Models, Animal , Epidermis/metabolism , Epidermis/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Granzymes/genetics , Humans , Imiquimod/toxicity , Immunologic Memory/drug effects , Integrin alpha1/immunology , Mice , Psoriasis/chemically induced , Psoriasis/pathology , T-Lymphocytes/drug effects
20.
Int J Mol Sci ; 21(10)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456211

ABSTRACT

Interferon regulatory factors (IRFs) play diverse roles in the regulation of the innate and adaptive immune responses in various diseases. In psoriasis, IRF2 is known to be involved in pathogenesis, while studies on other IRFs are limited. In this study, we investigated the role of IRF5 in psoriasis using imiquimod-induced psoriasis-like dermatitis. Although IRF5 is known to play a critical role in the induction of proinflammatory cytokines by immune cells, such as dendritic cells (DCs), macrophages, and monocytes, IRF5 deficiency unexpectedly exacerbated psoriasiform skin inflammation. The interferon-α and tumor necrosis factor-α mRNA expression levels were decreased, while levels of Th17 cytokines including IL-17, IL-22, and IL-23 were increased in IRF5-deficient mice. Furthermore, IL-23 expression in DCs from IRF5-deficient mice was upregulated both in steady state and after toll-like receptor 7/8 agonist stimulation. Importantly, the expression of IRF4, which is also important for the IL-23 production in DCs, was augmented in DCs from IRF5-deficient mice. Taken together, our results suggest that IRF5 deficiency induces the upregulation of IRF4 in DCs followed by augmented IL-23 production, resulting in the amplification of Th17 responses and the exacerbation of imiquimod-induced psoriasis-like skin inflammation. The regulation of IRF4 or IRF5 expression may be a novel therapeutic approach to psoriasis.


Subject(s)
Interferon Regulatory Factors/genetics , Interleukins/metabolism , Psoriasis/metabolism , Animals , Cells, Cultured , Dendritic Cells/metabolism , Female , Imiquimod/toxicity , Interferon Inducers/toxicity , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/metabolism , Interferons/genetics , Interferons/metabolism , Interleukins/genetics , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Psoriasis/etiology , Psoriasis/genetics , Skin/drug effects , Skin/metabolism , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL