Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29.395
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 41: 39-71, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36525691

ABSTRACT

Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.


Subject(s)
Immune System Diseases , Immunity , Phenotype , Animals , Humans , Mice , Immunity/genetics , Immune System Diseases/genetics
2.
Annu Rev Immunol ; 41: 317-342, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37126419

ABSTRACT

Over the last decade, immunometabolism has emerged as a novel interdisciplinary field of research and yielded significant fundamental insights into the regulation of immune responses. Multiple classical approaches to interrogate immunometabolism, including bulk metabolic profiling and analysis of metabolic regulator expression, paved the way to appreciating the physiological complexity of immunometabolic regulation in vivo. Studying immunometabolism at the systems level raised the need to transition towards the next-generation technology for metabolic profiling and analysis. Spatially resolved metabolic imaging and computational algorithms for multi-modal data integration are new approaches to connecting metabolism and immunity. In this review, we discuss recent studies that highlight the complex physiological interplay between immune responses and metabolism and give an overview of technological developments that bear the promise of capturing this complexity most directly and comprehensively.


Subject(s)
Allergy and Immunology , Immunity , Metabolism , Animals , Humans , Systems Biology
3.
Annu Rev Immunol ; 41: 153-179, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36696570

ABSTRACT

Modulation of the immune system is an important therapeutic strategy in a wide range of diseases, and is fundamental to the development of vaccines. However, optimally safe and effective immunotherapy requires precision in the delivery of stimulatory cues to the right cells at the right place and time, to avoid toxic overstimulation in healthy tissues or incorrect programming of the immune response. To this end, biomaterials are being developed to control the location, dose, and timing of vaccines and immunotherapies. Here we discuss fundamental concepts of how biomaterials are used to enhance immune modulation, and evidence from preclinical and clinical studies of how biomaterials-mediated immune engineering can impact the development of new therapeutics. We focus on immunological mechanisms of action and in vivo modulation of the immune system, and we also discuss challenges to be overcome to speed translation of these technologies to the clinic.


Subject(s)
Neoplasms , Vaccines , Humans , Animals , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Immunotherapy , Immune System , Immunity
4.
Annu Rev Immunol ; 40: 615-649, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35134315

ABSTRACT

Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection.


Subject(s)
Alphavirus Infections , Alphavirus , Interferon Type I , Alphavirus Infections/pathology , Animals , Humans , Immunity , Tropism
5.
Annu Rev Immunol ; 38: 727-757, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32075461

ABSTRACT

Immune cells are characterized by diversity, specificity, plasticity, and adaptability-properties that enable them to contribute to homeostasis and respond specifically and dynamically to the many threats encountered by the body. Single-cell technologies, including the assessment of transcriptomics, genomics, and proteomics at the level of individual cells, are ideally suited to studying these properties of immune cells. In this review we discuss the benefits of adopting single-cell approaches in studying underappreciated qualities of immune cells and highlight examples where these technologies have been critical to advancing our understanding of the immune system in health and disease.


Subject(s)
Immune System/immunology , Immune System/metabolism , Immunity , Single-Cell Analysis , Animals , Biomarkers , Disease Susceptibility , Homeostasis , Humans , Immune System/cytology , Molecular Imaging , Single-Cell Analysis/methods
6.
Annu Rev Immunol ; 38: 289-313, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31986069

ABSTRACT

A striking change has happened in the field of immunology whereby specific metabolic processes have been shown to be a critical determinant of immune cell activation. Multiple immune receptor types rewire metabolic pathways as a key part of how they promote effector functions. Perhaps surprisingly for immunologists, the Krebs cycle has emerged as the central immunometabolic hub of the macrophage. During proinflammatory macrophage activation, there is an accumulation of the Krebs cycle intermediates succinate and citrate, and the Krebs cycle-derived metabolite itaconate. These metabolites have distinct nonmetabolic signaling roles that influence inflammatory gene expression. A key bioenergetic target for the Krebs cycle, the electron transport chain, also becomes altered, generating reactive oxygen species from Complexes I and III. Similarly, alternatively activated macrophages require α-ketoglutarate-dependent epigenetic reprogramming to elicit anti-inflammatory gene expression. In this review, we discuss these advances and speculate on the possibility of targeting these events therapeutically for inflammatory diseases.


Subject(s)
Citric Acid Cycle , Immunity , Macrophages/immunology , Macrophages/metabolism , Animals , Disease Susceptibility , Energy Metabolism , Humans , Immunomodulation , Macrophage Activation/immunology , Signal Transduction
7.
Annu Rev Immunol ; 38: 597-620, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340575

ABSTRACT

Neuroimmunology, albeit a relatively established discipline, has recently sparked numerous exciting findings on microglia, the resident macrophages of the central nervous system (CNS). This review addresses meningeal immunity, a less-studied aspect of neuroimmune interactions. The meninges, a triple layer of membranes-the pia mater, arachnoid mater, and dura mater-surround the CNS, encompassing the cerebrospinal fluid produced by the choroid plexus epithelium. Unlike the adjacent brain parenchyma, the meninges contain a wide repertoire of immune cells. These constitute meningeal immunity, which is primarily concerned with immune surveillance of the CNS, and-according to recent evidence-also participates in postinjury CNS recovery, chronic neurodegenerative conditions, and even higher brain function. Meningeal immunity has recently come under the spotlight owing to the characterization of meningeal lymphatic vessels draining the CNS. Here, we review the current state of our understanding of meningeal immunity and its effects on healthy and diseased brains.


Subject(s)
Central Nervous System/immunology , Central Nervous System/metabolism , Disease Susceptibility , Homeostasis , Immunity , Meninges/physiology , Animals , Humans , Lymphatic Vessels/immunology , Lymphatic Vessels/metabolism , Neuroimmunomodulation , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
8.
Annu Rev Immunol ; 38: 455-485, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32004099

ABSTRACT

Immune cells use a variety of membrane-disrupting proteins [complement, perforin, perforin-2, granulysin, gasdermins, mixed lineage kinase domain-like pseudokinase (MLKL)] to induce different kinds of death of microbes and host cells, some of which cause inflammation. After activation by proteolytic cleavage or phosphorylation, these proteins oligomerize, bind to membrane lipids, and disrupt membrane integrity. These membrane disruptors play a critical role in both innate and adaptive immunity. Here we review our current knowledge of the functions, specificity, activation, and regulation of membrane-disrupting immune proteins and what is known about the mechanisms behind membrane damage, the structure of the pores they form, how the cells expressing these lethal proteins are protected, and how cells targeted for destruction can sometimes escape death by repairing membrane damage.


Subject(s)
Cytotoxicity, Immunologic , Host-Pathogen Interactions/immunology , Immunity , Pore Forming Cytotoxic Proteins/metabolism , Animals , Apoptosis/genetics , Apoptosis/immunology , Biomarkers , Cell Membrane/immunology , Cell Membrane/metabolism , Complement Membrane Attack Complex , Complement System Proteins/immunology , Complement System Proteins/metabolism , Gene Expression Regulation , Humans , Immune System/immunology , Immune System/metabolism , Lipid Metabolism , Necroptosis/genetics , Necroptosis/immunology , Necrosis/genetics , Necrosis/immunology , Necrosis/metabolism , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Structure-Activity Relationship
9.
Annu Rev Immunol ; 37: 571-597, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30698999

ABSTRACT

CRISPR technology has opened a new era of genome interrogation and genome engineering. Discovered in bacteria, where it protects against bacteriophage by cleaving foreign nucleic acid sequences, the CRISPR system has been repurposed as an adaptable tool for genome editing and multiple other applications. CRISPR's ease of use, precision, and versatility have led to its widespread adoption, accelerating biomedical research and discovery in human cells and model organisms. Here we review CRISPR-based tools and discuss how they are being applied to decode the genetic circuits that control immune function in health and disease. Genetic variation in immune cells can affect autoimmune disease risk, infectious disease pathogenesis, and cancer immunotherapies. CRISPR provides unprecedented opportunities for functional mechanistic studies of coding and noncoding genome sequence function in immunity. Finally, we discuss the potential of CRISPR technology to engineer synthetic cellular immunotherapies for a wide range of human diseases.


Subject(s)
Autoimmune Diseases/immunology , Cell- and Tissue-Based Therapy/methods , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Infections/immunology , Neoplasms/immunology , Animals , Autoimmune Diseases/genetics , CRISPR-Cas Systems , Gene Editing , Genetic Predisposition to Disease , Genetic Variation , Humans , Immunity , Infections/genetics , Neoplasms/genetics
10.
Annu Rev Immunol ; 36: 519-548, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29394121

ABSTRACT

Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.


Subject(s)
Genetic Predisposition to Disease , Immunity , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Biological Evolution , Genetic Loci , Genomics/methods , Haplotypes , Humans , Major Histocompatibility Complex/genetics , Receptors, KIR/genetics , Receptors, KIR/metabolism
11.
Annu Rev Immunol ; 36: 843-864, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29490162

ABSTRACT

Recent progress in both conceptual and technological approaches to human immunology have rejuvenated a field that has long been in the shadow of the inbred mouse model. This is a healthy development both for the clinical relevance of immunology and for the fact that it is a way to gain access to the wealth of phenomenology in the many human diseases that involve the immune system. This is where we are likely to discover new immunological mechanisms and principals, especially those involving genetic heterogeneity or environmental influences that are difficult to model effectively in inbred mice. We also suggest that there are likely to be novel immunological mechanisms in long-lived, less fecund mammals such as human beings since they must remain healthy far longer than short-lived rodents in order for the species to survive.


Subject(s)
Immune System/physiology , Immunity , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biological Evolution , Biological Variation, Population , Clonal Deletion/immunology , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory , Models, Animal , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
12.
Annu Rev Immunol ; 36: 783-812, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677475

ABSTRACT

The nervous system regulates immunity and inflammation. The molecular detection of pathogen fragments, cytokines, and other immune molecules by sensory neurons generates immunoregulatory responses through efferent autonomic neuron signaling. The functional organization of this neural control is based on principles of reflex regulation. Reflexes involving the vagus nerve and other nerves have been therapeutically explored in models of inflammatory and autoimmune conditions, and recently in clinical settings. The brain integrates neuro-immune communication, and brain function is altered in diseases characterized by peripheral immune dysregulation and inflammation. Here we review the anatomical and molecular basis of the neural interface with immunity, focusing on peripheral neural control of immune functions and the role of the brain in the model of the immunological homunculus. Clinical advances stemming from this knowledge within the framework of bioelectronic medicine are also briefly outlined.


Subject(s)
Neuroimmunomodulation , Animals , Biomarkers , Disease Susceptibility , Humans , Immunity , Nervous System/anatomy & histology , Nervous System/immunology , Nervous System/metabolism , Nervous System Physiological Phenomena , Neuroimmunomodulation/genetics , Neuroimmunomodulation/immunology , Signal Transduction , Translational Research, Biomedical
13.
Annu Rev Immunol ; 36: 603-638, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29490165

ABSTRACT

Globally, about 36.7 million people were living with HIV infection at the end of 2015. The most frequent infection co-occurring with HIV-1 is Mycobacterium tuberculosis-374,000 deaths per annum are attributable to HIV-tuberculosis, 75% of those occurring in Africa. HIV-1 infection increases the risk of tuberculosis by a factor of up to 26 and alters its clinical presentation, complicates diagnosis and treatment, and worsens outcome. Although HIV-1-induced depletion of CD4+ T cells underlies all these effects, more widespread immune deficits also contribute to susceptibility and pathogenesis. These defects present a challenge to understand and ameliorate, but also an opportunity to learn and optimize mechanisms that normally protect people against tuberculosis. The most effective means to prevent and ameliorate tuberculosis in HIV-1-infected people is antiretroviral therapy, but this may be complicated by pathological immune deterioration that in turn requires more effective host-directed anti-inflammatory therapies to be derived.


Subject(s)
Coinfection , HIV Infections/immunology , HIV-1/immunology , Host-Pathogen Interactions/immunology , Immunity , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Animals , Antiretroviral Therapy, Highly Active , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Disease Progression , Genetic Variation , HIV Infections/diagnosis , HIV Infections/therapy , HIV Infections/virology , HIV-1/genetics , Humans , Tuberculosis/diagnosis , Tuberculosis/microbiology , Tuberculosis/therapy , Virus Replication
14.
Annu Rev Immunol ; 36: 127-156, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29237129

ABSTRACT

T cells possess an array of functional capabilities important for host defense against pathogens and tumors. T cell effector functions require the T cell antigen receptor (TCR). The TCR has no intrinsic enzymatic activity, and thus signal transduction from the receptor relies on additional signaling molecules. One such molecule is the cytoplasmic tyrosine kinase ZAP-70, which associates with the TCR complex and is required for initiating the canonical biochemical signal pathways downstream of the TCR. In this article, we describe recent structure-based insights into the regulation and substrate specificity of ZAP-70, and then we review novel methods for determining the role of ZAP-70 catalytic activity-dependent and -independent signals in developing and mature T cells. Lastly, we discuss the disease states in mouse models and humans, which range from immunodeficiency to autoimmunity, that are caused by mutations in ZAP-70.


Subject(s)
Disease Susceptibility , Signal Transduction , T-Lymphocytes/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism , Animals , Autoimmunity , Biomarkers , Catalysis , Cell Differentiation/genetics , Cell Differentiation/immunology , Gene Expression Regulation , Humans , Immunity , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Phosphorylation , Protein Transport , Structure-Activity Relationship , Substrate Specificity , T-Lymphocytes/immunology , ZAP-70 Protein-Tyrosine Kinase/antagonists & inhibitors , ZAP-70 Protein-Tyrosine Kinase/chemistry , ZAP-70 Protein-Tyrosine Kinase/genetics
15.
Annu Rev Immunol ; 36: 43-71, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29144838

ABSTRACT

Human T cell leukemia virus type 1 (HTLV-1), also known as human T lymphotropic virus type 1, was the first exogenous human retrovirus discovered. Unlike the distantly related lentivirus HIV-1, HTLV-1 causes disease in only 5-10% of infected people, depending on their ethnic origin. But whereas HIV-1 infection and the consequent diseases can be efficiently contained in most cases by antiretroviral drug treatment, there is no satisfactory treatment for the malignant or inflammatory diseases caused by HTLV-1. The purpose of the present article is to review recent advances in the understanding of the mechanisms by which the virus persists in vivo and causes disabling or fatal diseases.


Subject(s)
HTLV-I Infections/immunology , HTLV-I Infections/virology , Human T-lymphotropic virus 1/physiology , Animals , Disease Susceptibility , HTLV-I Infections/complications , HTLV-I Infections/epidemiology , Host-Pathogen Interactions/immunology , Humans , Immunity , Immunity, Cellular , Interferon Type I/metabolism , Leukemia-Lymphoma, Adult T-Cell/etiology , Leukemia-Lymphoma, Adult T-Cell/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/immunology , Viral Regulatory and Accessory Proteins/metabolism , Virus Latency/immunology
16.
Annu Rev Immunol ; 36: 461-488, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677474

ABSTRACT

Metabolism drives function, on both an organismal and a cellular level. In T cell biology, metabolic remodeling is intrinsically linked to cellular development, activation, function, differentiation, and survival. After naive T cells are activated, increased demands for metabolic currency in the form of ATP, as well as biomass for cell growth, proliferation, and the production of effector molecules, are met by rewiring cellular metabolism. Consequently, pharmacological strategies are being developed to perturb or enhance selective metabolic processes that are skewed in immune-related pathologies. Here we review the most recent advances describing the metabolic changes that occur during the T cell lifecycle. We discuss how T cell metabolism can have profound effects on health and disease and where it might be a promising target to treat a variety of pathologies.


Subject(s)
Energy Metabolism , Immunity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Cell Differentiation/immunology , Humans , Immunologic Memory , Immunotherapy , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mitochondria/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/cytology
17.
Annu Rev Immunol ; 36: 813-842, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677477

ABSTRACT

Given the many cell types and molecular components of the human immune system, along with vast variations across individuals, how should we go about developing causal and predictive explanations of immunity? A central strategy in human studies is to leverage natural variation to find relationships among variables, including DNA variants, epigenetic states, immune phenotypes, clinical descriptors, and others. Here, we focus on how natural variation is used to find patterns, infer principles, and develop predictive models for two areas: (a) immune cell activation-how single-cell profiling boosts our ability to discover immune cell types and states-and (b) antigen presentation and recognition-how models can be generated to predict presentation of antigens on MHC molecules and their detection by T cell receptors. These are two examples of a shift in how we find the drivers and targets of immunity, especially in the human system in the context of health and disease.


Subject(s)
Immune System , Immunity , Animals , Antigen Presentation/immunology , Biomarkers , Disease Susceptibility/immunology , Disease Susceptibility/metabolism , Epitopes/immunology , Genomics/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immune System/cytology , Immune System/physiology , Ligands , Major Histocompatibility Complex/genetics , Major Histocompatibility Complex/immunology , Peptides/immunology , Protein Transport , Proteolysis , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
18.
Annu Rev Immunol ; 35: 177-198, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28125358

ABSTRACT

The discovery of long noncoding RNAs (lncRNA) has provided a new perspective on gene regulation in diverse biological contexts. lncRNAs are remarkably versatile molecules that interact with RNA, DNA, or proteins to promote or restrain the expression of protein-coding genes. Activation of immune cells is associated with dynamic changes in expression of genes, the products of which combat infectious microorganisms, initiate repair, and resolve inflammatory responses in cells and tissues. Recent evidence indicates that lncRNAs play important roles in directing the development of diverse immune cells and controlling the dynamic transcriptional programs that are a hallmark of immune cell activation. The importance of these molecules is underscored by their newly recognized roles in inflammatory diseases. In this review, we discuss the contribution of lncRNAs in the development and activation of immune cells and their roles in immune-related diseases. We also discuss challenges faced in identifying biological functions for this large and complex class of genes.


Subject(s)
Immune System Diseases/genetics , Immunity/genetics , RNA, Long Noncoding/immunology , Animals , Gene Expression Regulation , Humans
19.
Annu Rev Immunol ; 35: 31-52, 2017 04 26.
Article in English | MEDLINE | ID: mdl-27860528

ABSTRACT

The lymphatic vasculature is not considered a formal part of the immune system, but it is critical to immunity. One of its major roles is in the coordination of the trafficking of antigen and immune cells. However, other roles in immunity are emerging. Lymphatic endothelial cells, for example, directly present antigen or express factors that greatly influence the local environment. We cover these topics herein and discuss how other properties of the lymphatic vasculature, such as mechanisms of lymphatic contraction (which immunologists traditionally do not take into account), are nonetheless integral in the immune system. Much is yet unknown, and this nascent subject is ripe for exploration. We argue that to consider the impact of lymphatic biology in any given immunological interaction is a key step toward integrating immunology with organ physiology and ultimately many complex pathologies.


Subject(s)
Endothelial Cells/immunology , Immune System , Immunity , Lymphatic System/immunology , Lymphatic Vessels/physiology , Animals , Antigen Presentation , Humans , Lipid Metabolism
20.
Annu Rev Immunol ; 35: 371-402, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28446062

ABSTRACT

Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.


Subject(s)
Cardiovascular Diseases/immunology , Diabetes Mellitus, Type 1/immunology , Gastrointestinal Microbiome/immunology , Hypersensitivity/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Diet , Homeostasis , Humans , Immunity , Receptors, G-Protein-Coupled/immunology
SELECTION OF CITATIONS
SEARCH DETAIL