Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Immunity ; 57(6): 1187-1189, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38865963

ABSTRACT

A major barrier to antitumor immunity in solid tumors is T cell exclusion. In this issue of Immunity, De Sanctis et al.1 elucidate how CLDN18 on pancreatic and lung cancer cells enhances infiltration, immunological synapse formation, and activation of cytotoxic T lymphocytes.


Subject(s)
Claudins , Humans , Claudins/metabolism , Claudins/immunology , Claudins/genetics , Neoplasms/immunology , Animals , T-Lymphocytes, Cytotoxic/immunology , Pancreatic Neoplasms/immunology , Lung Neoplasms/immunology , Lymphocyte Activation/immunology , Immunological Synapses/immunology , Immunological Synapses/metabolism
2.
Immunity ; 57(6): 1378-1393.e14, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38749447

ABSTRACT

Tumors weakly infiltrated by T lymphocytes poorly respond to immunotherapy. We aimed to unveil malignancy-associated programs regulating T cell entrance, arrest, and activation in the tumor environment. Differential expression of cell adhesion and tissue architecture programs, particularly the presence of the membrane tetraspanin claudin (CLDN)18 as a signature gene, demarcated immune-infiltrated from immune-depleted mouse pancreatic tumors. In human pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer, CLDN18 expression positively correlated with more differentiated histology and favorable prognosis. CLDN18 on the cell surface promoted accrual of cytotoxic T lymphocytes (CTLs), facilitating direct CTL contacts with tumor cells by driving the mobilization of the adhesion protein ALCAM to the lipid rafts of the tumor cell membrane through actin. This process favored the formation of robust immunological synapses (ISs) between CTLs and CLDN18-positive cancer cells, resulting in increased T cell activation. Our data reveal an immune role for CLDN18 in orchestrating T cell infiltration and shaping the tumor immune contexture.


Subject(s)
Carcinoma, Pancreatic Ductal , Claudins , Lymphocyte Activation , Pancreatic Neoplasms , T-Lymphocytes, Cytotoxic , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Claudins/metabolism , Claudins/genetics , Gene Expression Regulation, Neoplastic/immunology , Immunological Synapses/metabolism , Immunological Synapses/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Membrane Microdomains/metabolism , Membrane Microdomains/immunology , Mice, Inbred C57BL , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology
4.
J Biol Chem ; 300(7): 107428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823638

ABSTRACT

Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein's cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.


Subject(s)
Immunological Synapses , T-Lymphocytes , Immunological Synapses/metabolism , Immunological Synapses/immunology , Humans , Animals , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/cytology , Phosphatidylinositols/metabolism , Lipoylation
5.
Cell Immunol ; 401-402: 104845, 2024.
Article in English | MEDLINE | ID: mdl-38909549

ABSTRACT

CD147 is a T cell activation-associated molecule which is closely involved in the formation of the immune synapse (IS). However, the precise role of CD147 in T cell activation and IS formation remains unclear. In the present study, we demonstrated that CD147 translocated to the IS upon T cell activation and was primarily distributed in the peripheral super molecular cluster (p-SMAC). The knock down of CD147 expression in T cells, but not in B cells, impaired IS formation. CD147 participated in IS formation between T cells and different types of antigen-presenting cells (APCs), including macrophages and dendritic cells. Ligation of CD147 with its monoclonal antibody (mAb) HAb18 effectively inhibited T cell activation and IL-2 secretion. CD98, a critical molecule interacting with CD147, was distributed in IS in a CD147-dependent way. Phosphorylation levels of T cell receptor (TCR) related molecules, like ZAP-70, ERK, and cJun, were down-regulated by CD147 ligation, which is crucial for the interaction of CD147 and TCR signaling transduction. CD147 is indispensable for the formation of immune synapses and plays an important role in the regulation of its function.


Subject(s)
Basigin , Immunological Synapses , Lymphocyte Activation , T-Lymphocytes , Basigin/metabolism , Basigin/immunology , Immunological Synapses/metabolism , Immunological Synapses/immunology , Lymphocyte Activation/immunology , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Phosphorylation , Antibodies, Monoclonal/immunology , Macrophages/immunology , Macrophages/metabolism , B-Lymphocytes/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Interleukin-2/metabolism , Interleukin-2/immunology , Animals , Jurkat Cells
6.
Sci Immunol ; 9(96): eadj2898, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941478

ABSTRACT

Immune cells have intensely physical lifestyles characterized by structural plasticity and force exertion. To investigate whether specific immune functions require stereotyped mechanical outputs, we used super-resolution traction force microscopy to compare the immune synapses formed by cytotoxic T cells with contacts formed by other T cell subsets and by macrophages. T cell synapses were globally compressive, which was fundamentally different from the pulling and pinching associated with macrophage phagocytosis. Spectral decomposition of force exertion patterns from each cell type linked cytotoxicity to compressive strength, local protrusiveness, and the induction of complex, asymmetric topography. These features were validated as cytotoxic drivers by genetic disruption of cytoskeletal regulators, live imaging of synaptic secretion, and in silico analysis of interfacial distortion. Synapse architecture and force exertion were sensitive to target stiffness and size, suggesting that the mechanical potentiation of killing is biophysically adaptive. We conclude that cellular cytotoxicity and, by implication, other effector responses are supported by specialized patterns of efferent force.


Subject(s)
Immunological Synapses , Single-Cell Analysis , Animals , Immunological Synapses/immunology , Mice , T-Lymphocytes, Cytotoxic/immunology , Biomechanical Phenomena/immunology , Cytotoxicity, Immunologic , Macrophages/immunology , Mice, Inbred C57BL
7.
Cancer Immunol Res ; 12(5): 515, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38557780

ABSTRACT

The pivotal role of T cell responses has been well studied in both protective and destructive scenarios. T cells recognize peptide epitopes presented on Human Leukocyte Antigens (HLA) through their surface T cell receptors (TCR). Advances in single-cell RNA sequencing have identified millions of TCRs, but only a minuscule fraction of them have known epitopes. Recently, cell-based T cell antigen discovery platforms have emerged onto the landscape. Here, Jin and colleagues, report a novel antigen discovery platform called Tsyn-seq that relies on sequencing TCR-peptide-HLA-induced synapses for genome-wide epitope screening. See related article by Jin et al., p. 530 (3).


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Immunological Synapses/immunology , HLA Antigens/genetics , HLA Antigens/immunology , High-Throughput Nucleotide Sequencing
8.
Curr Pharm Des ; 30(7): 536-551, 2024.
Article in English | MEDLINE | ID: mdl-38343058

ABSTRACT

BACKGROUND: Co-signaling and adhesion molecules are important elements for creating immune synapses between T lymphocytes and antigen-presenting cells; they positively or negatively regulate the interaction between a T cell receptor with its cognate antigen, presented by the major histocompatibility complex. OBJECTIVES: We conducted a systematic review on the effects of High Efficacy Disease Modifying Drugs (HEDMDs) for Multiple Sclerosis (MS) on the co-signaling and adhesion molecules that form the immune synapse. METHODS: We searched EMBASE, MEDLINE, and other sources to identify clinical or preclinical reports on the effects of HEDMDs on co-signaling and adhesion molecules that participate in the formation of immune synapses in patients with MS or other autoimmune disorders. We included reports on cladribine tablets, anti- CD20 monoclonal antibodies, S1P modulators, inhibitors of Bruton's Tyrosine Kinase, and natalizumab. RESULTS: In 56 eligible reports among 7340 total publications, limited relevant evidence was uncovered. Not all co-signaling and adhesion molecules have been studied in relation to every HEDMD, with more data being available on the anti-CD20 monoclonal antibodies (that affect CD80, CD86, GITR and TIGIT), cladribine tablets (affecting CD28, CD40, ICAM-1, LFA-1) and the S1P modulators (affecting CD86, ICAM-1 and LFA-1) and less on Natalizumab (affecting CD80, CD86, CD40, LFA-1, VLA-4) and Alemtuzumab (affecting GITR and CTLA-4). CONCLUSION: The puzzle of HEDMD effects on the immune synapse is far from complete. The available evidence suggests that distinguishing differences exist between drugs and are worth pursuing further.


Subject(s)
Multiple Sclerosis , Animals , Humans , Cell Adhesion Molecules/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Immunological Synapses/drug effects , Immunological Synapses/immunology , Immunological Synapses/metabolism , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology
9.
Clin Pharmacol Ther ; 116(2): 415-425, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38751031

ABSTRACT

Bispecific T-cell engagers (bsTCEs) have emerged as a promising class of cancer immunotherapy. BsTCEs enable physical connections between T cells and tumor cells to enhance T-cell activity against cancer. Despite several marketing approvals, the development of bsTCEs remains challenging, especially at early clinical translational stages. The intricate design of bsTCEs makes their pharmacologic effects and safety profiles highly dependent on patient's immunological and tumor conditions. Such context-dependent pharmacology introduces considerable uncertainty into translational efforts. In this study, we developed a Quantitative Systems Pharmacology (QSP) model, through context unification, that can facilitate the translation of bsTCEs preclinical data into clinical activity. Through characterizing the formation dynamics of immunological synapse (IS) induced by bsTCEs, this model unifies a broad range of contexts related to target affinity, tumor characteristics, and immunological conditions. After rigorous calibration using both experimental and clinical data, the model enables consistent translation of drug potency observed under diverse experimental conditions into predictable exposure-response relationships in patients. Moreover, the model can help identify optimal target-binding affinities and minimum efficacious concentrations across different clinical contexts. This QSP approach holds significant promise for the future development of bsTCEs.


Subject(s)
Antibodies, Bispecific , Neoplasms , T-Lymphocytes , Translational Research, Biomedical , Humans , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Translational Research, Biomedical/methods , Antibodies, Bispecific/pharmacology , Neoplasms/drug therapy , Neoplasms/immunology , Immunotherapy/methods , Network Pharmacology , Immunological Synapses/immunology , Animals
10.
Cancer Immunol Res ; 12(5): 530-543, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38363296

ABSTRACT

Tools for genome-wide rapid identification of peptide-major histocompatibility complex targets of T-cell receptors (TCR) are not yet universally available. We present a new antigen screening method, the T-synapse (Tsyn) reporter system, which includes antigen-presenting cells (APC) with a Fas-inducible NF-κB reporter and T cells with a nuclear factor of activated T cells (NFAT) reporter. To functionally screen for target antigens from a cDNA library, productively interacting T cell-APC aggregates were detected by dual-reporter activity and enriched by flow sorting followed by antigen identification quantified by deep sequencing (Tsyn-seq). When applied to a previously characterized TCR specific for the E7 antigen derived from human papillomavirus type 16 (HPV16), Tsyn-seq successfully enriched the correct cognate antigen from a cDNA library derived from an HPV16-positive cervical cancer cell line. Tsyn-seq provides a method for rapidly identifying antigens recognized by TCRs of interest from a tumor cDNA library. See related Spotlight by Makani and Joglekar, p. 515.


Subject(s)
Immunological Synapses , Receptors, Antigen, T-Cell , T-Lymphocytes , Humans , Antigen-Presenting Cells/immunology , Cell Line, Tumor , Gene Library , High-Throughput Nucleotide Sequencing , Human papillomavirus 16/immunology , Human papillomavirus 16/genetics , Immunological Synapses/immunology , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus E7 Proteins/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology
11.
Int Immunopharmacol ; 133: 112087, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38669951

ABSTRACT

EFHD2 (EF-hand domain family, member D2) has been identified as a calcium-binding protein with immunomodulatory effects. In this study, we characterized the phenotype of Efhd2-deficient mice in sepsis and examined the biological functions of EFHD2 in peripheral T cell activation and T helper (Th) cell differentiation. Increased levels of EFHD2 expression accompanied peripheral CD4+ T cell activation in the early stages of sepsis. Transcriptomic analysis indicated that immune response activation was impaired in Efhd2-deficient CD4+ T cells. Further, Efhd2-deficient CD4+ T cells isolated from the spleen of septic mice showed impaired T cell receptor (TCR)-induced Th differentiation, especially Th1 and Th17 differentiation. In vitro data also showed that Efhd2-deficient CD4+ T cells exhibit impaired Th1 and Th17 differentiation. In the CD4+ T cells and macrophages co-culture model for antigen presentation, the deficiency of Efhd2 in CD4+ T cells resulted in impaired formation of immunological synapses. In addition, Efhd2-deficient CD4+ T cells exhibited reduced levels of phospho-LCK and phospho-ZAP70, and downstream transcription factors including Nfat, Nfκb and Nur77 following TCR engagement. In summary, EFHD2 may promote TCR-mediated T cell activation subsequent Th1 and Th17 differentiation in the early stages of sepsis by regulating the intensity of TCR complex formation.


Subject(s)
Calcium-Binding Proteins , Cell Differentiation , Lymphocyte Activation , Receptors, Antigen, T-Cell , Sepsis , Signal Transduction , Animals , Male , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cells, Cultured , Immunological Synapses/metabolism , Immunological Synapses/immunology , Lymphocyte Activation/immunology , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Sepsis/immunology , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology , Th17 Cells/immunology
12.
Nat Commun ; 15(1): 4988, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862534

ABSTRACT

Cancer-associated fibroblasts (CAFs) have emerged as a dominant non-hematopoietic cell population in the tumour microenvironment, serving diverse functions in tumour progression. However, the mechanisms via which CAFs influence the anti-tumour immunity remain poorly understood. Here, using multiple tumour models and biopsies from cancer patients, we report that α-SMA+ CAFs can form immunological synapses with Foxp3+ regulatory T cells (Tregs) in tumours. Notably, α-SMA+ CAFs can phagocytose and process tumour antigens and exhibit a tolerogenic phenotype which instructs movement arrest, activation and proliferation in Tregs in an antigen-specific manner. Moreover, α-SMA+ CAFs display double-membrane structures resembling autophagosomes in their cytoplasm. Single-cell transcriptomic data showed an enrichment in autophagy and antigen processing/presentation pathways in α-SMA-expressing CAF clusters. Conditional knockout of Atg5 in α-SMA+ CAFs promoted inflammatory re-programming in CAFs, reduced Treg cell infiltration and attenuated tumour development. Overall, our findings reveal an immunosuppressive mechanism entailing the formation of synapses between α-SMA+ CAFs and Tregs in an autophagy-dependent manner.


Subject(s)
Autophagy , Cancer-Associated Fibroblasts , Immunological Synapses , T-Lymphocytes, Regulatory , Tumor Microenvironment , T-Lymphocytes, Regulatory/immunology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Humans , Immunological Synapses/metabolism , Immunological Synapses/immunology , Animals , Tumor Microenvironment/immunology , Mice , Autophagy/immunology , Actins/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Mice, Inbred C57BL , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Female , Mice, Knockout
13.
Nat Commun ; 15(1): 6677, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107283

ABSTRACT

Clarification of the cytotoxic function of T cells is crucial for understanding human immune responses and immunotherapy procedures. Here, we report a high-throughput Bessel oblique plane microscopy (HBOPM) platform capable of 3D live imaging and phenotyping of chimeric antigen receptor (CAR)-modified T-cell cytotoxicity against cancer cells. The HBOPM platform has the following characteristics: an isotropic subcellular resolution of 320 nm, large-scale scouting over 400 interacting cell pairs, long-term observation across 5 hours, and quantitative analysis of the Terabyte-scale 3D, multichannel, time-lapse image datasets. Using this advanced microscopy platform, several key subcellular events in CAR-T cells are captured and comprehensively analyzed; these events include the instantaneous formation of immune synapses and the sustained changes in the microtubing morphology. Furthermore, we identify the actin retrograde flow speed, the actin depletion coefficient, the microtubule polarization and the contact area of the CAR-T/target cell conjugates as essential parameters strongly correlated with CAR-T-cell cytotoxic function. Our approach will be useful for establishing criteria for quantifying T-cell function in individual patients for all T-cell-based immunotherapies.


Subject(s)
Imaging, Three-Dimensional , Immunotherapy, Adoptive , Microtubules , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Imaging, Three-Dimensional/methods , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Microtubules/metabolism , Cell Line, Tumor , Immunological Synapses/immunology , Immunological Synapses/metabolism , Cytotoxicity, Immunologic , Actins/metabolism , Microscopy/methods , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL