Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306.136
Filter
Add more filters

Publication year range
1.
Cell ; 178(5): 1057-1071.e11, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442400

ABSTRACT

The Zika epidemic in the Americas has challenged surveillance and control. As the epidemic appears to be waning, it is unclear whether transmission is still ongoing, which is exacerbated by discrepancies in reporting. To uncover locations with lingering outbreaks, we investigated travel-associated Zika cases to identify transmission not captured by reporting. We uncovered an unreported outbreak in Cuba during 2017, a year after peak transmission in neighboring islands. By sequencing Zika virus, we show that the establishment of the virus was delayed by a year and that the ensuing outbreak was sparked by long-lived lineages of Zika virus from other Caribbean islands. Our data suggest that, although mosquito control in Cuba may initially have been effective at mitigating Zika virus transmission, such measures need to be maintained to be effective. Our study highlights how Zika virus may still be "silently" spreading and provides a framework for understanding outbreak dynamics. VIDEO ABSTRACT.


Subject(s)
Epidemics , Genomics/methods , Zika Virus Infection/epidemiology , Aedes/virology , Animals , Cuba/epidemiology , Humans , Incidence , Mosquito Control , Phylogeny , RNA, Viral/chemistry , RNA, Viral/metabolism , Sequence Analysis, RNA , Travel , West Indies/epidemiology , Zika Virus/classification , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/transmission , Zika Virus Infection/virology
2.
CA Cancer J Clin ; 74(1): 84-114, 2024.
Article in English | MEDLINE | ID: mdl-37909870

ABSTRACT

Current US lung cancer screening recommendations limit eligibility to adults with a pack-year (PY) history of ≥20 years and the first 15 years since quit (YSQ). The authors conducted a systematic review to better understand lung cancer incidence, risk and mortality among otherwise eligible individuals in this population beyond 15 YSQ. The PubMed and Scopus databases were searched through February 14, 2023, and relevant articles were searched by hand. Included studies examined the relationship between adults with both a ≥20-PY history and ≥15 YSQ and lung cancer diagnosis, mortality, and screening ineligibility. One investigator abstracted data and a second confirmed. Two investigators independently assessed study quality and certainty of evidence (COE) and resolved discordance through consensus. From 2636 titles, 22 studies in 26 articles were included. Three studies provided low COE of elevated lung cancer incidence beyond 15 YSQ, as compared with people who never smoked, and six studies provided moderate COE that the risk of a lung cancer diagnosis after 15 YSQ declines gradually, but with no clinically significant difference just before and after 15 YSQ. Studies examining lung cancer-related disparities suggest that outcomes after 15 YSQ were similar between African American/Black and White participants; increasing YSQ would expand eligibility for African American/Black individuals, but for a significantly larger proportion of White individuals. The authors observed that the risk of lung cancer not only persists beyond 15 YSQ but that, compared with individuals who never smoked, the risk may remain significantly elevated for 2 or 3 decades. Future research of nationally representative samples with consistent reporting across studies is needed, as are better data from which to examine the effects on health disparities across different populations.


Subject(s)
Lung Neoplasms , Adult , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Early Detection of Cancer/adverse effects , Incidence
3.
CA Cancer J Clin ; 74(1): 12-49, 2024.
Article in English | MEDLINE | ID: mdl-38230766

ABSTRACT

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries (through 2020) and mortality data collected by the National Center for Health Statistics (through 2021). In 2024, 2,001,140 new cancer cases and 611,720 cancer deaths are projected to occur in the United States. Cancer mortality continued to decline through 2021, averting over 4 million deaths since 1991 because of reductions in smoking, earlier detection for some cancers, and improved treatment options in both the adjuvant and metastatic settings. However, these gains are threatened by increasing incidence for 6 of the top 10 cancers. Incidence rates increased during 2015-2019 by 0.6%-1% annually for breast, pancreas, and uterine corpus cancers and by 2%-3% annually for prostate, liver (female), kidney, and human papillomavirus-associated oral cancers and for melanoma. Incidence rates also increased by 1%-2% annually for cervical (ages 30-44 years) and colorectal cancers (ages <55 years) in young adults. Colorectal cancer was the fourth-leading cause of cancer death in both men and women younger than 50 years in the late-1990s but is now first in men and second in women. Progress is also hampered by wide persistent cancer disparities; compared to White people, mortality rates are two-fold higher for prostate, stomach and uterine corpus cancers in Black people and for liver, stomach, and kidney cancers in Native American people. Continued national progress will require increased investment in cancer prevention and access to equitable treatment, especially among American Indian and Alaska Native and Black individuals.


Subject(s)
Melanoma , Neoplasms , Male , Young Adult , Humans , Female , United States/epidemiology , Neoplasms/epidemiology , Neoplasms/therapy , Registries , Incidence , Smoking , White
4.
CA Cancer J Clin ; 74(3): 229-263, 2024.
Article in English | MEDLINE | ID: mdl-38572751

ABSTRACT

This article presents global cancer statistics by world region for the year 2022 based on updated estimates from the International Agency for Research on Cancer (IARC). There were close to 20 million new cases of cancer in the year 2022 (including nonmelanoma skin cancers [NMSCs]) alongside 9.7 million deaths from cancer (including NMSC). The estimates suggest that approximately one in five men or women develop cancer in a lifetime, whereas around one in nine men and one in 12 women die from it. Lung cancer was the most frequently diagnosed cancer in 2022, responsible for almost 2.5 million new cases, or one in eight cancers worldwide (12.4% of all cancers globally), followed by cancers of the female breast (11.6%), colorectum (9.6%), prostate (7.3%), and stomach (4.9%). Lung cancer was also the leading cause of cancer death, with an estimated 1.8 million deaths (18.7%), followed by colorectal (9.3%), liver (7.8%), female breast (6.9%), and stomach (6.8%) cancers. Breast cancer and lung cancer were the most frequent cancers in women and men, respectively (both cases and deaths). Incidence rates (including NMSC) varied from four-fold to five-fold across world regions, from over 500 in Australia/New Zealand (507.9 per 100,000) to under 100 in Western Africa (97.1 per 100,000) among men, and from over 400 in Australia/New Zealand (410.5 per 100,000) to close to 100 in South-Central Asia (103.3 per 100,000) among women. The authors examine the geographic variability across 20 world regions for the 10 leading cancer types, discussing recent trends, the underlying determinants, and the prospects for global cancer prevention and control. With demographics-based predictions indicating that the number of new cases of cancer will reach 35 million by 2050, investments in prevention, including the targeting of key risk factors for cancer (including smoking, overweight and obesity, and infection), could avert millions of future cancer diagnoses and save many lives worldwide, bringing huge economic as well as societal dividends to countries over the forthcoming decades.


Subject(s)
Global Health , Neoplasms , Humans , Neoplasms/epidemiology , Neoplasms/mortality , Male , Female , Incidence , Global Health/statistics & numerical data , Adult , Middle Aged , Aged , Child , Adolescent , Child, Preschool , Infant , Young Adult , Sex Distribution , Infant, Newborn , Aged, 80 and over
5.
CA Cancer J Clin ; 73(3): 233-254, 2023.
Article in English | MEDLINE | ID: mdl-36856579

ABSTRACT

Colorectal cancer (CRC) is the second most common cause of cancer death in the United States. Every 3 years, the American Cancer Society provides an update of CRC statistics based on incidence from population-based cancer registries and mortality from the National Center for Health Statistics. In 2023, approximately 153,020 individuals will be diagnosed with CRC and 52,550 will die from the disease, including 19,550 cases and 3750 deaths in individuals younger than 50 years. The decline in CRC incidence slowed from 3%-4% annually during the 2000s to 1% annually during 2011-2019, driven partly by an increase in individuals younger than 55 years of 1%-2% annually since the mid-1990s. Consequently, the proportion of cases among those younger than 55 years increased from 11% in 1995 to 20% in 2019. Incidence since circa 2010 increased in those younger than 65 years for regional-stage disease by about 2%-3% annually and for distant-stage disease by 0.5%-3% annually, reversing the overall shift to earlier stage diagnosis that occurred during 1995 through 2005. For example, 60% of all new cases were advanced in 2019 versus 52% in the mid-2000s and 57% in 1995, before widespread screening. There is also a shift to left-sided tumors, with the proportion of rectal cancer increasing from 27% in 1995 to 31% in 2019. CRC mortality declined by 2% annually from 2011-2020 overall but increased by 0.5%-3% annually in individuals younger than 50 years and in Native Americans younger than 65 years. In summary, despite continued overall declines, CRC is rapidly shifting to diagnosis at a younger age, at a more advanced stage, and in the left colon/rectum. Progress against CRC could be accelerated by uncovering the etiology of rising incidence in generations born since 1950 and increasing access to high-quality screening and treatment among all populations, especially Native Americans.


Subject(s)
Colorectal Neoplasms , Rectal Neoplasms , Humans , United States/epidemiology , Colorectal Neoplasms/diagnosis , Incidence , American Cancer Society
6.
CA Cancer J Clin ; 73(1): 17-48, 2023 01.
Article in English | MEDLINE | ID: mdl-36633525

ABSTRACT

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries and mortality data collected by the National Center for Health Statistics. In 2023, 1,958,310 new cancer cases and 609,820 cancer deaths are projected to occur in the United States. Cancer incidence increased for prostate cancer by 3% annually from 2014 through 2019 after two decades of decline, translating to an additional 99,000 new cases; otherwise, however, incidence trends were more favorable in men compared to women. For example, lung cancer in women decreased at one half the pace of men (1.1% vs. 2.6% annually) from 2015 through 2019, and breast and uterine corpus cancers continued to increase, as did liver cancer and melanoma, both of which stabilized in men aged 50 years and older and declined in younger men. However, a 65% drop in cervical cancer incidence during 2012 through 2019 among women in their early 20s, the first cohort to receive the human papillomavirus vaccine, foreshadows steep reductions in the burden of human papillomavirus-associated cancers, the majority of which occur in women. Despite the pandemic, and in contrast with other leading causes of death, the cancer death rate continued to decline from 2019 to 2020 (by 1.5%), contributing to a 33% overall reduction since 1991 and an estimated 3.8 million deaths averted. This progress increasingly reflects advances in treatment, which are particularly evident in the rapid declines in mortality (approximately 2% annually during 2016 through 2020) for leukemia, melanoma, and kidney cancer, despite stable/increasing incidence, and accelerated declines for lung cancer. In summary, although cancer mortality rates continue to decline, future progress may be attenuated by rising incidence for breast, prostate, and uterine corpus cancers, which also happen to have the largest racial disparities in mortality.


Subject(s)
Lung Neoplasms , Melanoma , Multiple Endocrine Neoplasia Type 1 , Neoplasms , Male , Humans , Female , United States/epidemiology , Middle Aged , Aged , Neoplasms/epidemiology , Registries , Incidence , Racial Groups , Lung Neoplasms/epidemiology
7.
Nature ; 629(8013): 910-918, 2024 May.
Article in English | MEDLINE | ID: mdl-38693263

ABSTRACT

International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden1. In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence2. Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics.


Subject(s)
Carcinoma, Renal Cell , Environmental Exposure , Geography , Kidney Neoplasms , Mutagens , Mutation , Female , Humans , Male , Aristolochic Acids/adverse effects , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/epidemiology , Carcinoma, Renal Cell/chemically induced , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Genome, Human/genetics , Genomics , Hypertension/epidemiology , Incidence , Japan/epidemiology , Kidney Neoplasms/genetics , Kidney Neoplasms/epidemiology , Kidney Neoplasms/chemically induced , Mutagens/adverse effects , Obesity/epidemiology , Risk Factors , Romania/epidemiology , Serbia/epidemiology , Thailand/epidemiology , Tobacco Smoking/adverse effects , Tobacco Smoking/genetics
8.
CA Cancer J Clin ; 72(6): 524-541, 2022 11.
Article in English | MEDLINE | ID: mdl-36190501

ABSTRACT

This article is the American Cancer Society's update on female breast cancer statistics in the United States, including population-based data on incidence, mortality, survival, and mammography screening. Breast cancer incidence rates have risen in most of the past four decades; during the most recent data years (2010-2019), the rate increased by 0.5% annually, largely driven by localized-stage and hormone receptor-positive disease. In contrast, breast cancer mortality rates have declined steadily since their peak in 1989, albeit at a slower pace in recent years (1.3% annually from 2011 to 2020) than in the previous decade (1.9% annually from 2002 to 2011). In total, the death rate dropped by 43% during 1989-2020, translating to 460,000 fewer breast cancer deaths during that time. The death rate declined similarly for women of all racial/ethnic groups except American Indians/Alaska Natives, among whom the rates were stable. However, despite a lower incidence rate in Black versus White women (127.8 vs. 133.7 per 100,000), the racial disparity in breast cancer mortality remained unwavering, with the death rate 40% higher in Black women overall (27.6 vs. 19.7 deaths per 100,000 in 2016-2020) and two-fold higher among adult women younger than 50 years (12.1 vs. 6.5 deaths per 100,000). Black women have the lowest 5-year relative survival of any racial/ethnic group for every molecular subtype and stage of disease (except stage I), with the largest Black-White gaps in absolute terms for hormone receptor-positive/human epidermal growth factor receptor 2-negative disease (88% vs. 96%), hormone receptor-negative/human epidermal growth factor receptor 2-positive disease (78% vs. 86%), and stage III disease (64% vs. 77%). Progress against breast cancer mortality could be accelerated by mitigating racial disparities through increased access to high-quality screening and treatment via nationwide Medicaid expansion and partnerships between community stakeholders, advocacy organizations, and health systems.


Subject(s)
Breast Neoplasms , Adult , Female , United States/epidemiology , Humans , Mammography , Early Detection of Cancer , Racial Groups , Incidence
9.
CA Cancer J Clin ; 72(1): 7-33, 2022 01.
Article in English | MEDLINE | ID: mdl-35020204

ABSTRACT

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes. Incidence data (through 2018) were collected by the Surveillance, Epidemiology, and End Results program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2019) were collected by the National Center for Health Statistics. In 2022, 1,918,030 new cancer cases and 609,360 cancer deaths are projected to occur in the United States, including approximately 350 deaths per day from lung cancer, the leading cause of cancer death. Incidence during 2014 through 2018 continued a slow increase for female breast cancer (by 0.5% annually) and remained stable for prostate cancer, despite a 4% to 6% annual increase for advanced disease since 2011. Consequently, the proportion of prostate cancer diagnosed at a distant stage increased from 3.9% to 8.2% over the past decade. In contrast, lung cancer incidence continued to decline steeply for advanced disease while rates for localized-stage increased suddenly by 4.5% annually, contributing to gains both in the proportion of localized-stage diagnoses (from 17% in 2004 to 28% in 2018) and 3-year relative survival (from 21% to 31%). Mortality patterns reflect incidence trends, with declines accelerating for lung cancer, slowing for breast cancer, and stabilizing for prostate cancer. In summary, progress has stagnated for breast and prostate cancers but strengthened for lung cancer, coinciding with changes in medical practice related to cancer screening and/or treatment. More targeted cancer control interventions and investment in improved early detection and treatment would facilitate reductions in cancer mortality.


Subject(s)
Breast Neoplasms/epidemiology , Early Detection of Cancer/statistics & numerical data , Lung Neoplasms/epidemiology , Prostatic Neoplasms/epidemiology , American Cancer Society , Breast Neoplasms/diagnosis , Early Detection of Cancer/trends , Female , Humans , Incidence , Lung Neoplasms/diagnosis , Male , Neoplasm Staging , Prostatic Neoplasms/diagnosis , SEER Program/statistics & numerical data , Survival Rate , United States/epidemiology
10.
Nature ; 621(7979): 558-567, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37704720

ABSTRACT

Sustainable Development Goal 2.2-to end malnutrition by 2030-includes the elimination of child wasting, defined as a weight-for-length z-score that is more than two standard deviations below the median of the World Health Organization standards for child growth1. Prevailing methods to measure wasting rely on cross-sectional surveys that cannot measure onset, recovery and persistence-key features that inform preventive interventions and estimates of disease burden. Here we analyse 21 longitudinal cohorts and show that wasting is a highly dynamic process of onset and recovery, with incidence peaking between birth and 3 months. Many more children experience an episode of wasting at some point during their first 24 months than prevalent cases at a single point in time suggest. For example, at the age of 24 months, 5.6% of children were wasted, but by the same age (24 months), 29.2% of children had experienced at least one wasting episode and 10.0% had experienced two or more episodes. Children who were wasted before the age of 6 months had a faster recovery and shorter episodes than did children who were wasted at older ages; however, early wasting increased the risk of later growth faltering, including concurrent wasting and stunting (low length-for-age z-score), and thus increased the risk of mortality. In diverse populations with high seasonal rainfall, the population average weight-for-length z-score varied substantially (more than 0.5 z in some cohorts), with the lowest mean z-scores occurring during the rainiest months; this indicates that seasonally targeted interventions could be considered. Our results show the importance of establishing interventions to prevent wasting from birth to the age of 6 months, probably through improved maternal nutrition, to complement current programmes that focus on children aged 6-59 months.


Subject(s)
Cachexia , Developing Countries , Growth Disorders , Malnutrition , Child, Preschool , Humans , Infant , Infant, Newborn , Cachexia/epidemiology , Cachexia/mortality , Cachexia/prevention & control , Cross-Sectional Studies , Growth Disorders/epidemiology , Growth Disorders/mortality , Growth Disorders/prevention & control , Incidence , Longitudinal Studies , Malnutrition/epidemiology , Malnutrition/mortality , Malnutrition/prevention & control , Rain , Seasons
12.
CA Cancer J Clin ; 71(1): 7-33, 2021 01.
Article in English | MEDLINE | ID: mdl-33433946

ABSTRACT

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.


Subject(s)
Mortality/trends , Neoplasms/epidemiology , SEER Program/statistics & numerical data , American Cancer Society , Humans , Incidence , Neoplasms/therapy , United States/epidemiology
13.
CA Cancer J Clin ; 71(3): 209-249, 2021 05.
Article in English | MEDLINE | ID: mdl-33538338

ABSTRACT

This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.


Subject(s)
Developed Countries/statistics & numerical data , Developing Countries/statistics & numerical data , Global Health/statistics & numerical data , Neoplasms/epidemiology , Population Dynamics , Africa/epidemiology , Americas/epidemiology , Asia/epidemiology , Databases, Factual , Europe , Female , Humans , Incidence , Internationality , Male , Neoplasms/mortality , Oceania/epidemiology , Risk Factors , Sex Distribution
14.
CA Cancer J Clin ; 71(6): 466-487, 2021 11.
Article in English | MEDLINE | ID: mdl-34545941

ABSTRACT

The Hispanic/Latino population is the second largest racial/ethnic group in the continental United States and Hawaii, accounting for 18% (60.6 million) of the total population. An additional 3 million Hispanic Americans live in Puerto Rico. Every 3 years, the American Cancer Society reports on cancer occurrence, risk factors, and screening for Hispanic individuals in the United States using the most recent population-based data. An estimated 176,600 new cancer cases and 46,500 cancer deaths will occur among Hispanic individuals in the continental United States and Hawaii in 2021. Compared to non-Hispanic Whites (NHWs), Hispanic men and women had 25%-30% lower incidence (2014-2018) and mortality (2015-2019) rates for all cancers combined and lower rates for the most common cancers, although this gap is diminishing. For example, the colorectal cancer (CRC) incidence rate ratio for Hispanic compared with NHW individuals narrowed from 0.75 (95% CI, 0.73-0.78) in 1995 to 0.91 (95% CI, 0.89-0.93) in 2018, reflecting delayed declines in CRC rates among Hispanic individuals in part because of slower uptake of screening. In contrast, Hispanic individuals have higher rates of infection-related cancers, including approximately two-fold higher incidence of liver and stomach cancer. Cervical cancer incidence is 32% higher among Hispanic women in the continental US and Hawaii and 78% higher among women in Puerto Rico compared to NHW women, yet is largely preventable through screening. Less access to care may be similarly reflected in the low prevalence of localized-stage breast cancer among Hispanic women, 59% versus 67% among NHW women. Evidence-based strategies for decreasing the cancer burden among the Hispanic population include the use of culturally appropriate lay health advisors and patient navigators and targeted, community-based intervention programs to facilitate access to screening and promote healthy behaviors. In addition, the impact of the COVID-19 pandemic on cancer trends and disparities in the Hispanic population should be closely monitored.


Subject(s)
Early Detection of Cancer/statistics & numerical data , Health Services Accessibility/statistics & numerical data , Hispanic or Latino/statistics & numerical data , Neoplasms/ethnology , Adolescent , Adult , Aged , Female , Humans , Incidence , Male , Middle Aged , Neoplasms/mortality , Neoplasms/prevention & control , Puerto Rico/epidemiology , Risk Factors , Survival Rate , United States/epidemiology , White People/statistics & numerical data , Young Adult
15.
N Engl J Med ; 390(15): 1382-1393, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38587239

ABSTRACT

BACKGROUND: The effects of temporary mechanical circulatory support with a microaxial flow pump on mortality among patients with ST-segment elevation myocardial infarction (STEMI) complicated by cardiogenic shock remains unclear. METHODS: In an international, multicenter, randomized trial, we assigned patients with STEMI and cardiogenic shock to receive a microaxial flow pump (Impella CP) plus standard care or standard care alone. The primary end point was death from any cause at 180 days. A composite safety end point was severe bleeding, limb ischemia, hemolysis, device failure, or worsening aortic regurgitation. RESULTS: A total of 360 patients underwent randomization, of whom 355 were included in the final analysis (179 in the microaxial-flow-pump group and 176 in the standard-care group). The median age of the patients was 67 years, and 79.2% were men. Death from any cause occurred in 82 of 179 patients (45.8%) in the microaxial-flow-pump group and in 103 of 176 patients (58.5%) in the standard-care group (hazard ratio, 0.74; 95% confidence interval [CI], 0.55 to 0.99; P = 0.04). A composite safety end-point event occurred in 43 patients (24.0%) in the microaxial-flow-pump group and in 11 (6.2%) in the standard-care group (relative risk, 4.74; 95% CI, 2.36 to 9.55). Renal-replacement therapy was administered to 75 patients (41.9%) in the microaxial-flow-pump group and to 47 patients (26.7%) in the standard-care group (relative risk, 1.98; 95% CI, 1.27 to 3.09). CONCLUSIONS: The routine use of a microaxial flow pump with standard care in the treatment of patients with STEMI-related cardiogenic shock led to a lower risk of death from any cause at 180 days than standard care alone. The incidence of a composite of adverse events was higher with the use of the microaxial flow pump. (Funded by the Danish Heart Foundation and Abiomed; DanGer Shock ClinicalTrials.gov number, NCT01633502.).


Subject(s)
Heart-Assist Devices , ST Elevation Myocardial Infarction , Shock, Cardiogenic , Aged , Female , Humans , Male , Heart-Assist Devices/adverse effects , Incidence , Shock, Cardiogenic/etiology , Shock, Cardiogenic/mortality , Shock, Cardiogenic/surgery , ST Elevation Myocardial Infarction/complications , ST Elevation Myocardial Infarction/mortality , ST Elevation Myocardial Infarction/therapy , Treatment Outcome , Assisted Circulation/adverse effects , Assisted Circulation/instrumentation , Assisted Circulation/methods
16.
CA Cancer J Clin ; 70(3): 145-164, 2020 05.
Article in English | MEDLINE | ID: mdl-32133645

ABSTRACT

Colorectal cancer (CRC) is the second most common cause of cancer death in the United States. Every 3 years, the American Cancer Society provides an update of CRC occurrence based on incidence data (available through 2016) from population-based cancer registries and mortality data (through 2017) from the National Center for Health Statistics. In 2020, approximately 147,950 individuals will be diagnosed with CRC and 53,200 will die from the disease, including 17,930 cases and 3,640 deaths in individuals aged younger than 50 years. The incidence rate during 2012 through 2016 ranged from 30 (per 100,000 persons) in Asian/Pacific Islanders to 45.7 in blacks and 89 in Alaska Natives. Rapid declines in incidence among screening-aged individuals during the 2000s continued during 2011 through 2016 in those aged 65 years and older (by 3.3% annually) but reversed in those aged 50 to 64 years, among whom rates increased by 1% annually. Among individuals aged younger than 50 years, the incidence rate increased by approximately 2% annually for tumors in the proximal and distal colon, as well as the rectum, driven by trends in non-Hispanic whites. CRC death rates during 2008 through 2017 declined by 3% annually in individuals aged 65 years and older and by 0.6% annually in individuals aged 50 to 64 years while increasing by 1.3% annually in those aged younger than 50 years. Mortality declines among individuals aged 50 years and older were steepest among blacks, who also had the only decreasing trend among those aged younger than 50 years, and excluded American Indians/Alaska Natives, among whom rates remained stable. Progress against CRC can be accelerated by increasing access to guideline-recommended screening and high-quality treatment, particularly among Alaska Natives, and elucidating causes for rising incidence in young and middle-aged adults.


Subject(s)
Colorectal Neoplasms/epidemiology , Models, Statistical , SEER Program/statistics & numerical data , Aged , Female , Humans , Incidence , Male , Middle Aged , Survival Rate/trends , United States/epidemiology
17.
CA Cancer J Clin ; 70(1): 7-30, 2020 01.
Article in English | MEDLINE | ID: mdl-31912902

ABSTRACT

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.


Subject(s)
American Cancer Society , Neoplasms/epidemiology , Registries , SEER Program/statistics & numerical data , Adult , Aged , Female , Humans , Incidence , Male , Middle Aged , Survival Rate/trends , United States/epidemiology , Young Adult
18.
CA Cancer J Clin ; 70(6): 443-459, 2020 11.
Article in English | MEDLINE | ID: mdl-32940362

ABSTRACT

Cancer statistics for adolescents and young adults (AYAs) (aged 15-39 years) are often presented in aggregate, masking important heterogeneity. The authors analyzed population-based cancer incidence and mortality for AYAs in the United States by age group (ages 15-19, 20-29, and 30-39 years), sex, and race/ethnicity. In 2020, there will be approximately 89,500 new cancer cases and 9270 cancer deaths in AYAs. Overall cancer incidence increased in all AYA age groups during the most recent decade (2007-2016), largely driven by thyroid cancer, which rose by approximately 3% annually among those aged 20 to 39 years and 4% among those aged 15 to 19 years. Incidence also increased in most age groups for several cancers linked to obesity, including kidney (3% annually across all age groups), uterine corpus (3% in the group aged 20-39 years), and colorectum (0.9%-1.5% in the group aged 20-39 years). Rates declined dramatically for melanoma in the group aged 15 to 29 years (4%-6% annually) but remained stable among those aged 30 to 39 years. Overall cancer mortality declined during 2008 through 2017 by 1% annually across age and sex groups, except for women aged 30 to 39 years, among whom rates were stable because of a flattening of declines in female breast cancer. Rates increased for cancers of the colorectum and uterine corpus in the group aged 30 to 39 years, mirroring incidence trends. Five-year relative survival in AYAs is similar across age groups for all cancers combined (range, 83%-86%) but varies widely for some cancers, such as acute lymphocytic leukemia (74% in the group aged 15-19 years vs 51% in the group aged 30-39 years) and brain tumors (77% vs 66%), reflecting differences in histologic subtype distribution and treatment. Progress in reducing cancer morbidity and mortality among AYAs could be addressed through more equitable access to health care, increasing clinical trial enrollment, expanding research, and greater alertness among clinicians and patients for early symptoms and signs of cancer. Further progress could be accelerated with increased disaggregation by age in research on surveillance, etiology, basic biology, and survivorship.


Subject(s)
Neoplasms/epidemiology , Adolescent , Adult , Age Distribution , Female , Humans , Incidence , Male , Neoplasms/ethnology , Neoplasms/mortality , Racial Groups/statistics & numerical data , Sex Distribution , Survival Rate , United States/epidemiology , Young Adult
19.
CA Cancer J Clin ; 70(4): 299-312, 2020 07.
Article in English | MEDLINE | ID: mdl-32478924

ABSTRACT

Glioblastoma is the most common malignant primary brain tumor. Overall, the prognosis for patients with this disease is poor, with a median survival of <2 years. There is a slight predominance in males, and incidence increases with age. The standard approach to therapy in the newly diagnosed setting includes surgery followed by concurrent radiotherapy with temozolomide and further adjuvant temozolomide. Tumor-treating fields, delivering low-intensity alternating electric fields, can also be given concurrently with adjuvant temozolomide. At recurrence, there is no standard of care; however, surgery, radiotherapy, and systemic therapy with chemotherapy or bevacizumab are all potential options, depending on the patient's circumstances. Supportive and palliative care remain important considerations throughout the disease course in the multimodality approach to management. The recently revised classification of glioblastoma based on molecular profiling, notably isocitrate dehydrogenase (IDH) mutation status, is a result of enhanced understanding of the underlying pathogenesis of disease. There is a clear need for better therapeutic options, and there have been substantial efforts exploring immunotherapy and precision oncology approaches. In contrast to other solid tumors, however, biological factors, such as the blood-brain barrier and the unique tumor and immune microenvironment, represent significant challenges in the development of novel therapies. Innovative clinical trial designs with biomarker-enrichment strategies are needed to ultimately improve the outcome of patients with glioblastoma.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Neoplasm Recurrence, Local/epidemiology , Antineoplastic Agents/therapeutic use , Bevacizumab/therapeutic use , Brain/diagnostic imaging , Brain/pathology , Brain/surgery , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Chemoradiotherapy, Adjuvant/methods , Glioblastoma/genetics , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Immunotherapy/methods , Incidence , Isocitrate Dehydrogenase/genetics , Magnetic Field Therapy/methods , Magnetic Resonance Imaging , Mutation , Neoplasm Recurrence, Local/prevention & control , Precision Medicine/methods , Prognosis , Review Literature as Topic , Survival Rate , Temozolomide/therapeutic use , Treatment Outcome , Tumor Microenvironment , United States/epidemiology
20.
Nature ; 600(7890): 701-706, 2021 12.
Article in English | MEDLINE | ID: mdl-34673755

ABSTRACT

Following severe adverse reactions to the AstraZeneca ChAdOx1-S-nCoV-19 vaccine1,2, European health authorities recommended that patients under the age of 55 years who received one dose of ChAdOx1-S-nCoV-19 receive a second dose of the Pfizer BNT162b2 vaccine as a booster. However, the effectiveness and the immunogenicity of this vaccination regimen have not been formally tested. Here we show that the heterologous ChAdOx1-S-nCoV-19 and BNT162b2 combination confers better protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than the homologous BNT162b2 and BNT162b2 combination in a real-world observational study of healthcare workers (n = 13,121). To understand the underlying mechanism, we conducted a longitudinal survey of the anti-spike immunity conferred by each vaccine combination. Both combinations induced strong anti-spike antibody responses, but sera from heterologous vaccinated individuals displayed a stronger neutralizing activity regardless of the SARS-CoV-2 variant. This enhanced neutralizing potential correlated with increased frequencies of switched and activated memory B cells that recognize the SARS-CoV-2 receptor binding domain. The ChAdOx1-S-nCoV-19 vaccine induced a weaker IgG response but a stronger T cell response than the BNT162b2 vaccine after the priming dose, which could explain the complementarity of both vaccines when used in combination. The heterologous vaccination regimen could therefore be particularly suitable for immunocompromised individuals.


Subject(s)
BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , ChAdOx1 nCoV-19/immunology , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Female , France/epidemiology , Hospitals, University , Humans , Immunologic Memory/immunology , Incidence , Male , Memory B Cells/immunology , Memory T Cells/immunology , Middle Aged , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL