Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.804
Filter
Add more filters

Publication year range
1.
Cell ; 187(7): 1651-1665.e21, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38490195

ABSTRACT

The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Lactobacillus , Neoplasms , Humans , Lactobacillus/metabolism , Neoplasms/immunology , Neoplasms/therapy , Indoles/metabolism , Immune Checkpoint Inhibitors/therapeutic use
2.
Cell ; 185(1): 158-168.e11, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995514

ABSTRACT

Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.


Subject(s)
Aminopyridines/metabolism , Benzodioxoles/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Indoles/metabolism , Protein Folding , Aminopyridines/chemistry , Aminopyridines/therapeutic use , Animals , Benzodioxoles/chemistry , Benzodioxoles/therapeutic use , Binding Sites , CHO Cells , Cell Membrane/chemistry , Cell Membrane/metabolism , Cricetulus , Cryoelectron Microscopy , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Indoles/therapeutic use , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/therapeutic use , Mutation , Protein Domains/genetics , Sf9 Cells , Transfection
3.
Cell ; 184(15): 3884-3898.e11, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34143954

ABSTRACT

Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon ß (IFNß) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.


Subject(s)
Bifidobacterium/physiology , Immune System/growth & development , Immune System/microbiology , Anti-Bacterial Agents/pharmacology , Biomarkers/metabolism , Breast Feeding , CD4-Positive T-Lymphocytes/immunology , Cell Polarity , Cell Proliferation , Cytokines/metabolism , Feces/chemistry , Feces/microbiology , Galectin 1/metabolism , Gastrointestinal Microbiome , Humans , Indoles/metabolism , Infant, Newborn , Inflammation/blood , Inflammation/genetics , Intestinal Mucosa/immunology , Metabolome , Milk, Human/chemistry , Oligosaccharides/metabolism , Th17 Cells/immunology , Th2 Cells/immunology , Water
4.
Immunity ; 55(2): 324-340.e8, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35139353

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a sensor of products of tryptophan metabolism and a potent modulator of immunity. Here, we examined the impact of AhR in tumor-associated macrophage (TAM) function in pancreatic ductal adenocarcinoma (PDAC). TAMs exhibited high AhR activity and Ahr-deficient macrophages developed an inflammatory phenotype. Deletion of Ahr in myeloid cells or pharmacologic inhibition of AhR reduced PDAC growth, improved efficacy of immune checkpoint blockade, and increased intra-tumoral frequencies of IFNγ+CD8+ T cells. Macrophage tryptophan metabolism was not required for this effect. Rather, macrophage AhR activity was dependent on Lactobacillus metabolization of dietary tryptophan to indoles. Removal of dietary tryptophan reduced TAM AhR activity and promoted intra-tumoral accumulation of TNFα+IFNγ+CD8+ T cells; provision of dietary indoles blocked this effect. In patients with PDAC, high AHR expression associated with rapid disease progression and mortality, as well as with an immune-suppressive TAM phenotype, suggesting conservation of this regulatory axis in human disease.


Subject(s)
Immune Tolerance/immunology , Receptors, Aryl Hydrocarbon/immunology , Tryptophan/immunology , Tumor-Associated Macrophages/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Humans , Indoles/immunology , Indoles/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Microbiota/immunology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/metabolism
5.
Nature ; 607(7919): 585-592, 2022 07.
Article in English | MEDLINE | ID: mdl-35732737

ABSTRACT

The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.


Subject(s)
Indoles , Nerve Regeneration , Propionates , Wound Healing , Animals , Mice , Axons/drug effects , Axons/physiology , Chemotaxis, Leukocyte , Clostridium/metabolism , Fasting , Ganglia, Spinal/metabolism , Gastrointestinal Microbiome , Indoles/blood , Indoles/metabolism , Indoles/pharmacology , Nerve Crush , Nerve Growth Factors/metabolism , Nerve Regeneration/drug effects , Neutrophils/cytology , Neutrophils/immunology , Propionates/blood , Propionates/metabolism , Propionates/pharmacology , Recovery of Function , Sciatic Nerve/injuries , Sequence Analysis, RNA , Wound Healing/drug effects
6.
J Biol Chem ; 300(4): 105785, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401845

ABSTRACT

The epithelial sodium channel (ENaC) is essential for mediating sodium absorption in several epithelia. Its impaired function leads to severe disorders, including pseudohypoaldosteronism type 1 and respiratory distress. Therefore, pharmacological ENaC activators have potential therapeutic implications. Previously, a small molecule ENaC activator (S3969) was developed. So far, little is known about molecular mechanisms involved in S3969-mediated ENaC stimulation. Here, we identified an S3969-binding site in human ENaC by combining structure-based simulations with molecular biological methods and electrophysiological measurements of ENaC heterologously expressed in Xenopus laevis oocytes. We confirmed a previous observation that the extracellular loop of ß-ENaC is essential for ENaC stimulation by S3969. Molecular dynamics simulations predicted critical residues in the thumb domain of ß-ENaC (Arg388, Phe391, and Tyr406) that coordinate S3969 within a binding site localized at the ß-γ-subunit interface. Importantly, mutating each of these residues reduced (R388H; R388A) or nearly abolished (F391G; Y406A) the S3969-mediated ENaC activation. Molecular dynamics simulations also suggested that S3969-mediated ENaC stimulation involved a movement of the α5 helix of the thumb domain of ß-ENaC away from the palm domain of γ-ENaC. Consistent with this, the introduction of two cysteine residues (ßR437C - γS298C) to form a disulfide bridge connecting these two domains prevented ENaC stimulation by S3969 unless the disulfide bond was reduced by DTT. Finally, we demonstrated that S3969 stimulated ENaC endogenously expressed in cultured human airway epithelial cells (H441). These new findings may lead to novel (patho-)physiological and therapeutic concepts for disorders associated with altered ENaC function.


Subject(s)
Epithelial Sodium Channel Agonists , Epithelial Sodium Channels , Indoles , Animals , Humans , Binding Sites , Epithelial Sodium Channel Agonists/metabolism , Epithelial Sodium Channel Agonists/pharmacology , Epithelial Sodium Channels/chemistry , Epithelial Sodium Channels/metabolism , Molecular Dynamics Simulation , Oocytes/drug effects , Xenopus laevis , Protein Binding , Indoles/metabolism , Indoles/pharmacology
7.
Mol Microbiol ; 121(5): 927-939, 2024 05.
Article in English | MEDLINE | ID: mdl-38396382

ABSTRACT

Aspergillus flavus is an agriculturally significant micro-fungus having potential to contaminate food and feed crops with toxic secondary metabolites such as aflatoxin (AF) and cyclopiazonic acid (CPA). Research has shown A. flavus strains can overcome heterokaryon incompatibility and undergo meiotic recombination as teleomorphs. Although evidence of recombination in the AF gene cluster has been reported, the impacts of recombination on genotype and metabolomic phenotype in a single generation are lacking. In previous studies, we paired an aflatoxigenic MAT1-1 A. flavus strain with a non-aflatoxigenic MAT1-2 A. flavus strain that had been tagged with green fluorescent protein and then 10 F1 progenies (a mix of fluorescent and non-fluorescent) were randomly selected from single-ascospore colonies and broadly examined for evidence of recombination. In this study, we determined four of those 10 F1 progenies were recombinants because they were not vegetatively compatible with either parent or their siblings, and they exhibited other distinctive traits that could only result from meiotic recombination. The other six progenies examined shared genomic identity with the non-aflatoxigenic, fluorescent, and MAT1-2 parent, but were metabolically distinct. This study highlights phenotypic and genomic changes that may occur in a single generation from the outcrossing of sexually compatible strains of A. flavus.


Subject(s)
Aflatoxins , Aspergillus flavus , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aflatoxins/metabolism , Aflatoxins/genetics , Genome, Fungal/genetics , Recombination, Genetic , Genomics , Metabolomics , Genotype , Phenotype , Multigene Family , Genetic Variation , Indoles/metabolism , Meiosis/genetics
8.
Proc Natl Acad Sci U S A ; 119(25): e2203633119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35696560

ABSTRACT

Auxin biosynthesis involves two types of enzymes: the Trp aminotransferases (TAA/TARs) and the flavin monooxygenases (YUCCAs). This two-step pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. Despite their importance, it is unclear how these enzymes are regulated and how their activities are coordinated. Here, we show that TAA1/TARs are regulated by their product indole-3-pyruvic acid (IPyA) (or its mimic KOK2099) via negative feedback regulation in Arabidopsis thaliana. This regulatory system also functions in rice and tomato. This negative feedback regulation appears to be achieved by both the reversibility of Trp aminotransferase activity and the competitive inhibition of TAA1 activity by IPyA. The Km value of IPyA is 0.7 µM, and that of Trp is 43.6 µM; this allows IPyA to be maintained at low levels and prevents unfavorable nonenzymatic indole-3-acetic acid (IAA) formation from IPyA in vivo. Thus, IPyA levels are maintained by the push (by TAA1/TARs) and pull (by YUCCAs) of the two biosynthetic enzymes, in which TAA1 plays a key role in preventing the over- or under-accumulation of IPyA. TAA1 prefer Ala among various amino acid substrates in the reverse reaction of auxin biosynthesis, allowing TAA1 to show specificity for converting Trp and pyruvate to IPyA and Ala, and the reverse reaction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Indoles , Tryptophan Transaminase , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Feedback, Physiological , Indoleacetic Acids/metabolism , Indoles/metabolism , Tryptophan Transaminase/metabolism
9.
Metab Eng ; 81: 100-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000548

ABSTRACT

Tyrian purple (6,6'-Dibromoindigo) is an ancient precious dye, which possesses remarkable properties as a biocompatible semiconductor material. Recently, biosynthesis has emerged as an alternative for the sustainable production of Tyrian purple from a natural substrate. However, the selectivity issue in enzymatic tryptophan (Trp) and bromotryptophan (6-Br-Trp) degradation was an obstacle for obtaining high-purity Tyrian purple in a single cell biosynthesis. In this study, we present a simplified one-pot process for the production of Tyrian purple from Trp in Escherichia coli (E. coli) using Trp 6-halogenase from Streptomyces toxytricini (SttH), tryptophanase from E. coli (TnaA) and a two-component indole oxygenase from Providencia Rettgeri GS-2 (GS-C and GS-D). To enhance the in vivo solubility and activity of SttH and flavin reductase (Fre) fusion enzyme (Fre-L3-SttH), a chaperone system of GroEL/GroES (pGro7) was introduced in addition to the implementation of a set of optimization strategies, including fine-tuning the expression vector, medium, concentration of bromide salt and inducer. To overcome the selectivity issue and achieve a higher conversion yield of Tyrian purple with minimal indigo formation, we applied the λpL/pR-cI857 thermoinducible system to temporally control the bifunctional fusion enzyme of TnaA and monooxygenase GS-C (TnaA-L3-GS-C). Through optimization of the fermentation process, we were able to achieve a Tyrian purple titer of 44.5 mg L-1 with minimal indigo byproduct from 500 µM Trp. To the best of our knowledge, this is the first report of the selective production of Tyrian purple in E. colivia a one-pot process.


Subject(s)
Escherichia coli , Indigo Carmine , Indigo Carmine/metabolism , Escherichia coli/metabolism , Indoles/metabolism , Mixed Function Oxygenases/metabolism
10.
Appl Environ Microbiol ; 90(6): e0042924, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38780258

ABSTRACT

Microbial synthesis is a desirable approach to produce indirubin but suffers from low synthetic efficiency. Insufficient supply of reduced flavins is one major factor limiting synthetic efficiency. To address this, a novel flavin reductase, MoxB, was discovered through screening of the metagenomic library. MoxB showed a strong preference for NADH over NADPH as the electron source for FMN/FAD reduction and exhibited the highest activity at pH 8.0 and 30°C. It displayed remarkable thermostability by maintaining 80% of full activity after incubation at 60°C for 1 h. Furthermore, MoxB showed great organic solvent tolerance and its activity could be significantly increased by bivalent metal ions. In addition, heterologous expression of the moxB gene in the indirubin-producing E. coli significantly improved indirubin production up to 15.12-fold. This discovery expands the understanding of flavin reductases and provides a promising catalytic tool for microbial indirubin production.IMPORTANCEMuch effort has been exerted to produce indirubin using engineered Escherichia coli, but high-level production has not been achieved so far. Insufficient supply of reduced flavins is one key factor limiting the catalytic efficiency. However, the flavin reductases involved in indirubin biosynthesis have not been hitherto reported. Discovery of the novel flavin reductase MoxB provides a useful tool for enhancing indirubin production by E. coli. Overexpression of MoxB in indirubin-producing E. coli increased indirubin production by 15.12-fold in comparison to the control strain. Our results document the function of flavin reductase that reduces flavins during indirubin biosynthesis and provide an important foundation for using the flavin reductases to improve indirubin production by engineered microorganisms.


Subject(s)
Escherichia coli , FMN Reductase , Indoles , Indoles/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , FMN Reductase/metabolism , FMN Reductase/genetics , Geologic Sediments/microbiology , Metagenomics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metagenome , Gene Library , Oxidoreductases/genetics , Oxidoreductases/metabolism
11.
Plant Cell Environ ; 47(6): 1941-1956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38369767

ABSTRACT

While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.


Subject(s)
Glycine max , Indoles , Plant Roots , Salt Stress , Streptomyces , Glycine max/physiology , Glycine max/microbiology , Glycine max/growth & development , Glycine max/drug effects , Streptomyces/physiology , Plant Roots/physiology , Plant Roots/microbiology , Plant Roots/metabolism , Indoles/metabolism , Salt Tolerance , Gene Expression Regulation, Plant/drug effects
12.
PLoS Biol ; 19(1): e3001070, 2021 01.
Article in English | MEDLINE | ID: mdl-33481771

ABSTRACT

Microbial conversion of dietary or drug substrates into small bioactive molecules represents a regulatory mechanism by which the gut microbiota alters intestinal physiology. Here, we show that a wide variety of gut bacteria can metabolize the dietary supplement and antidepressant 5-hydroxytryptophan (5-HTP) to 5-hydroxyindole (5-HI) via the tryptophanase (TnaA) enzyme. Oral administration of 5-HTP results in detection of 5-HI in fecal samples of healthy volunteers with interindividual variation. The production of 5-HI is inhibited upon pH reduction in in vitro studies. When administered orally in rats, 5-HI significantly accelerates the total gut transit time (TGTT). Deciphering the underlying mechanisms of action reveals that 5-HI accelerates gut contractility via activation of L-type calcium channels located on the colonic smooth muscle cells. Moreover, 5-HI stimulation of a cell line model of intestinal enterochromaffin cells results in significant increase in serotonin production. Together, our findings support a role for bacterial metabolism in altering gut motility and lay the foundation for microbiota-targeted interventions.


Subject(s)
Bacteria/metabolism , Calcium Channels, L-Type/drug effects , Gastrointestinal Motility/drug effects , Indoles/metabolism , Indoles/pharmacology , 5-Hydroxytryptophan/metabolism , Adult , Animals , Calcium Channels, L-Type/metabolism , Feces/microbiology , Female , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Gastrointestinal Motility/physiology , Humans , Ion Channel Gating/drug effects , Male , Rats , Young Adult
13.
Pharmacol Res ; 202: 107121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431091

ABSTRACT

Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. A dramatic decrease in estrogen levels in postmenopausal women leads to osteoclast overactivation, impaired bone homeostasis, and subsequent bone loss. Changes in the gut microbiome affect bone mineral density. However, the role of the gut microbiome in estrogen deficiency-induced bone loss and its underlying mechanism remain unknown. In this study, we found that the abundance of Clostridium sporogenes (C. spor.) and its derived metabolite, indole propionic acid (IPA), were decreased in ovariectomized (OVX) mice. In vitro assays suggested that IPA suppressed osteoclast differentiation and function. At the molecular level, IPA suppressed receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced pregnane X receptor (PXR) ubiquitination and degradation, leading to increased binding of remaining PXR with P65. In vivo daily IPA administration or repeated C. spor. colonization protected against OVX-induced bone loss. To protect live bacteria from the harsh gastric environment and delay the emptying of orally administered C. spor. from the intestine, a C. spor.-encapsulated silk fibroin (SF) hydrogel system was developed, which achieved bone protection in OVX mice comparable to that achieved with repeated germ transplantation or daily IPA administration. Overall, we found that gut C. spor.-derived IPA was involved in estrogen deficiency-induced osteoclast overactivation by regulating the PXR/P65 complex. The C. spor.-encapsulated SF hydrogel system is a promising tool for combating postmenopausal osteoporosis without the disadvantages of repeated germ transplantation.


Subject(s)
Bone Resorption , Clostridium , Osteoclasts , Propionates , Humans , Female , Mice , Animals , Osteoclasts/metabolism , Pregnane X Receptor/metabolism , Bone Resorption/metabolism , Osteogenesis , Estrogens/metabolism , Indoles/metabolism , Hydrogels , RANK Ligand/metabolism , Cell Differentiation
14.
Int Microbiol ; 27(2): 449-457, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37490176

ABSTRACT

Indole is a typical heterocyclic compound derived from tryptophan widespread in nature. Pseudomonas aeruginosa is one of the most common opportunistic pathogens everywhere in the world. Indole and P. aeruginosa will encounter inevitably; however, the indole transformation process by P. aeruginosa remains unclear. Herein, an indole-degrading strain of P. aeruginosa Jade-X was isolated from activated sludge. Strain Jade-X could degrade 1 mmol/L indole within 48 h with the inoculum size of 1% (v/v). It showed high efficiency in indole degradation under the conditions of 30-42 °C, pH 5.0-9.0, and NaCl concentration less than 2.5%. The complete genome of strain Jade-X was sequenced which was 6508614 bp in length with one chromosome. Bioinformatic analyses showed that strain Jade-X did not contain the indole oxygenase gene. Three cytochrome P450 genes were identified and up-regulated in the indole degradation process by RT-qPCR analysis, while cytochrome P450 inhibitors did not affect the indole degradation process. It suggested that indole oxidation was catalyzed by an unraveled enzyme. An ant gene cluster was identified, among which the anthranilate 1,2-dioxygenase and catechol 1,2-dioxygenase genes were upregulated. An indole-anthranilate-catechol pathway was proposed in indole degradation by strain P. aeruginosa Jade-X. This study enriched our understanding of the indole biodegradation process in P. aeruginosa.


Subject(s)
Genomics , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Biodegradation, Environmental , Indoles/metabolism , Cytochrome P-450 Enzyme System/metabolism
15.
Bioorg Med Chem Lett ; 97: 129541, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37952596

ABSTRACT

Matrix metalloproteinase-9 (MMP-9) is a secreted zinc-dependent endopeptidase that degrades the extracellular matrix and basement membrane of neurons, and then contributes to synaptic plasticity by remodeling the extracellular matrix. Inhibition of MMP-9 activity has therapeutic potential for neurodegenerative diseases such as fragile X syndrome. This paper reports the molecular design, synthesis, and in vitro studies of novel indole derivatives as inhibitors of proMMP-9 activation. High-throughput screening (HTS) of our internal compound library and subsequent merging of hit compounds 1 and 2 provided compound 4 as a bona-fide lead. X-ray structure-based design and subsequent lead optimization led to the discovery of compound 33, a highly potent and selective inhibitor of proMMP-9 activation.


Subject(s)
Enzyme Precursors , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 9/metabolism , Enzyme Precursors/metabolism , Extracellular Matrix/metabolism , Indoles/pharmacology , Indoles/metabolism , Metalloendopeptidases/metabolism , Matrix Metalloproteinase Inhibitors
16.
Phys Chem Chem Phys ; 26(23): 16521-16528, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809594

ABSTRACT

Indole monooxygenases (IMOs) are enzymes from the family of Group E monooxygenases, requiring flavin adenine dinucleotide (FAD) for their activities. IMOs play important roles in both sulfoxidation and epoxidation reactions. The broad substrate range and high selectivity of IMOs make them promising biocatalytic tools for synthesizing chiral compounds. In the present study, quantum chemical calculations using the cluster approach were performed to investigate the reaction mechanism and the enantioselectivity of the IMO from Variovorax paradoxus EPS (VpIndA1). The sulfoxidation of methyl phenyl sulfide (MPS) and the epoxidation of indene were chosen as the representative reactions. The calculations confirmed that the FADOOH intermediate is the catalytic species in the VpIndA1 reactions. The oxidation of MPS adopts a one-step mechanism involving the direct oxygen-transfer from FADOOH to the substrate and the proton transfer from the -OH group back to FAD, while the oxidation of indene follows a stepwise mechanism involving a carbocation intermediate. It was computationally predicted that VpIndA1 prefers the formation of (S)-product for the MPS sulfoxidation and (1S,2R)-product for the indene epoxidation, consistent with the experimental observations. Importantly, the factors controlling the stereo-preference of the two reactions are identified. The findings in the present study provide valuable insights into the VpIndA1-catalyzed reactions, which are essential for the rational design of this enzyme and other IMOs for industrial applications. It is also worth emphasizing that the quantum chemical cluster approach is again demonstrated to be powerful in studying the enantioselectivity of enzymatic reactions.


Subject(s)
Mixed Function Oxygenases , Oxidation-Reduction , Stereoisomerism , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Quantum Theory , Sulfides/chemistry , Sulfides/metabolism , Indoles/chemistry , Indoles/metabolism , Models, Chemical , Epoxy Compounds/chemistry , Epoxy Compounds/metabolism , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Models, Molecular
17.
Appl Microbiol Biotechnol ; 108(1): 275, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530470

ABSTRACT

Prenylation plays a pivotal role in the diversification and biological activities of natural products. This study presents the functional characterization of TolF, a multiple prenyltransferase from Tolypocladium inflatum. The heterologous expression of tolF in Aspergillus oryzae, coupled with feeding the transformed strain with paxilline, resulted in the production of 20- and 22-prenylpaxilline. Additionally, TolF demonstrated the ability to prenylated the reduced form of paxilline, ß-paxitriol. A related prenyltransferase TerF from Chaunopycnis alba, exhibited similar substrate tolerance and regioselectivity. In vitro enzyme assays using purified recombinant enzymes TolF and TerF confirmed their capacity to catalyze prenylation of paxilline, ß-paxitriol, and terpendole I. Based on previous reports, terpendole I should be considered a native substrate. This work not only enhances our understanding of the molecular basis and product diversity of prenylation reactions in indole diterpene biosynthesis, but also provides insights into the potential of fungal indole diterpene prenyltransferase to alter their position specificities for prenylation. This could be applicable for the synthesis of industrially useful compounds, including bioactive compounds, thereby opening up new avenues for the development of novel biosynthetic strategies and pharmaceuticals. KEY POINTS: • The study characterizes TolF as a multiple prenyltransferase from Tolypocladium inflatum. • TerF from Chaunopycnis alba shows similar substrate tolerance and regioselectivity compared to TolF. • The research offers insights into the potential applications of fungal indole diterpene prenyltransferases.


Subject(s)
Dimethylallyltranstransferase , Diterpenes , Hypocreales , Dimethylallyltranstransferase/metabolism , Prenylation , Indoles/metabolism , Diterpenes/metabolism , Substrate Specificity
18.
Phytopathology ; 114(6): 1196-1205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38281161

ABSTRACT

When Pseudomonas savastanoi pv. phaseolicola, the bacterium that causes halo blight, induces hypersensitive immunity in common bean leaves, salicylic acid and phytoalexins accumulate at the site of infection. Both salicylic acid and the phytoalexin resveratrol exert antibiotic activities and toxicities in vitro, adversely disrupting the P. savastanoi pv. phaseolicola proteome and metabolism and stalling replication and motility. These efficacious properties likely contribute to the cessation of bacterial spread in beans. Genistein is an isoflavonoid phytoalexin that also accumulates during bean immunity, so we tested its antibiotic potential in vitro. Quantitative proteomics revealed that genistein did not induce proteomic changes in P. savastanoi pv. phaseolicola in the same way that salicylic acid or resveratrol did. Rather, a dioxygenase that could function to metabolize genistein was among the most highly induced enzymes. Indeed, high-throughput metabolomics provided direct evidence for genistein catabolism. Metabolomics also revealed that genistein induced the bacterium to produce indole compounds, several of which had structural similarity to auxin. Additional mass spectrometry analyses proved that the bacterium produced an isomer of the auxin indole-3-acetic acid but not indole-3-acetic acid proper. These results reveal that P. savastanoi pv. phaseolicola can tolerate bean genistein and that the bacterium likely responds to bean-produced genistein during infection, using it as a signal to increase pathogenicity, possibly by altering host cell physiology or metabolism through the production of potential auxin mimics.


Subject(s)
Genistein , Phytoalexins , Plant Diseases , Pseudomonas , Sesquiterpenes , Genistein/pharmacology , Genistein/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Pseudomonas/drug effects , Sesquiterpenes/metabolism , Sesquiterpenes/pharmacology , Indoles/metabolism , Indoles/pharmacology , Salicylic Acid/metabolism , Plant Leaves/microbiology , Phaseolus/microbiology , Proteomics , Indoleacetic Acids/metabolism , Stilbenes/metabolism , Stilbenes/pharmacology , Resveratrol/pharmacology , Resveratrol/metabolism
19.
Xenobiotica ; 54(2): 83-94, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38164702

ABSTRACT

Indirubin is the main component of the traditional Chinese medicine Indigo naturalis (IN), a potent agonist of aryl hydrocarbon receptors (AhRs). In China, IN is used to treat psoriasis and ulcerative colitis, and indirubin is used for the treatment of chronic myelogenous leukaemia. However, IN and indirubin have adverse reactions, such as abdominal pain, diarrhoea, and intussusception, and their specific mechanism is unclear.The purpose of our research was to determine the specific mechanism underlying the adverse effects of IN and indirubin. By tracking the modifications in guinea pigs after the intragastric administration of indirubin for 28 days.The results demonstrate that indirubin could accelerate bowel movements and decrease intestinal acetylcholinesterase (AchE) expression. Experiments with NCM460 cells revealed that indirubin significantly reduced the expression of AchE, and the AchE levels were increased after the silencing of AhR and re-exposure to indirubin.This study showed that the inhibition of AchE expression by indirubin plays a key role in the occurrence of adverse reactions to indirubin and that the underlying mechanism is related to AhR-mediated AchE downregulation.


Subject(s)
Acetylcholinesterase , Psoriasis , Guinea Pigs , Animals , Indoles/pharmacology , Indoles/metabolism , Indigo Carmine , Receptors, Aryl Hydrocarbon/metabolism
20.
Biosci Biotechnol Biochem ; 88(3): 316-321, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38086614

ABSTRACT

When cultured anaerobically, Enterocloster sp. RD014215 was found to produce 1. Using nuclear magnetic resonance and mass spectroscopy, the planar structure of 1 was determined to be 3-hydroxy-3-(2-oxopropyl)indolin-2-one. The chirality of 1 was implied as S by comparing the optical rotation value of 1 with literature reports of the synthesized compounds. To our knowledge, this work represents the first discovery of the metabolite produced by Enterocloster strain. 1 exhibited inhibition of nitric oxide (NO) production, demonstrating a 50% inhibitory activity (IC50) of 34 µm for NO production by murine macrophage cells subjected to lipopolysaccharide stimulation.


Subject(s)
Macrophages , Nitric Oxide , Humans , Mice , Animals , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II , Macrophages/metabolism , Indoles/pharmacology , Indoles/metabolism , Lipopolysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL