Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.416
Filter
Add more filters

Publication year range
1.
J Cell Sci ; 135(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35194645

ABSTRACT

Cluster of differentiation 44 (CD44) is a single-pass transmembrane glycoprotein that is a widely distributed cell-surface adhesion molecule. CD44 undergoes ectodomain cleavage by membrane-associated metalloproteinases in breast cancer cells. Cleavage plays a critical role in cancer cell migration by mediating the interaction between CD44 and the extracellular matrix. To explore inhibitors of CD44 ectodomain cleavage, we developed two bioluminescent sensors for the detection of CD44 ectodomain cleavage. The sensors were designed as two-transmembrane proteins with split-luciferase fragments, one of which was cyclized by protein trans-splicing of a DnaE intein. These two sensors emit light by the cyclization or the spontaneous complementation of the luciferase fragments. The luminescence intensities decreased upon cleavage of the ectodomain in breast cancer cells. The sensors revealed that castanospermine, an α-glucosidase inhibitor, suppressed the ectodomain cleavage of endogenous CD44 in breast cancer cells. Castanospermine also inhibited breast cancer cell invasion. Thus, the sensors are beneficial tools for evaluating the effects of different inhibitors.


Subject(s)
Breast Neoplasms , Indolizines , Cell Movement , Female , Humans , Hyaluronan Receptors/metabolism
2.
Toxicol Appl Pharmacol ; 485: 116888, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452945

ABSTRACT

Upregulation of the multidrug efflux pump ABCB1/MDR1 (P-gp) and the anti-apoptotic protein BIRC5/Survivin promotes multidrug resistance in various human cancers. GDC-0152 is a DIABLO/SMAC mimetic currently being tested in patients with solid tumors. However, it is still unclear whether GDC-0152 is therapeutically applicable for patients with ABCB1-overexpressing multidrug-resistant tumors, and the molecular mechanism of action of GDC-0152 in cancer cells is still incompletely understood. In this study, we found that the potency of GDC-0152 is unaffected by the expression of ABCB1 in cancer cells. Interestingly, through in silico and in vitro analysis, we discovered that GDC-0152 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multidrug efflux activity at sub-cytotoxic concentrations (i.e., 0.25×IC50 or less). Further investigation revealed that GDC-0152 also decreases BIRC5 expression, induces mitophagy, and lowers intracellular ATP levels in cancer cells at low cytotoxic concentrations (i.e., 0.5×IC50). Co-treatment with GDC-0152 restored the sensitivity to the known ABCB1 substrates, including paclitaxel, vincristine, and YM155 in ABCB1-expressing multidrug-resistant cancer cells, and it also restored the sensitivity to tamoxifen in BIRC5-overexpressing tamoxifen-resistant breast cancer cells in vitro. Moreover, co-treatment with GDC-0152 restored and potentiated the anticancer effects of paclitaxel in ABCB1 and BIRC5 co-expressing xenograft tumors in vivo. In conclusion, GDC-0152 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide essential information to physicians for designing a more patient-specific GDC-0152 clinical trial program in the future.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Benzodioxoles , Drug Resistance, Neoplasm , Indolizines , Survivin , Humans , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Survivin/genetics , Survivin/metabolism , Animals , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Female , Mice, Nude , Mice , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays , Apoptosis Regulatory Proteins/metabolism , Drug Resistance, Multiple/drug effects , Paclitaxel/pharmacology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mice, Inbred BALB C , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/genetics
3.
Mult Scler ; 30(3): 369-380, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286755

ABSTRACT

BACKGROUND: Ibudilast has shown beneficial effects on several imaging outcomes in progressive multiple sclerosis (MS). Slowly enlarging lesions are a proposed imaging biomarker of compartmentalized inflammation within chronic active lesions. OBJECTIVE: To assess the treatment effect of ibudilast on slowly enlarging lesion volumes over 96 weeks from a phase II clinical trial of ibudilast (Secondary and Primary Progressive Ibudilast NeuroNEXT Trial in Multiple Sclerosis [SPRINT-MS]). METHODS: In total, 255 participants with progressive MS from 28 sites were randomized to oral ibudilast or placebo. Participants with at least four analyzable magnetic resonance imaging (MRI) were included. Slowly enlarging lesions were quantified using Jacobian determinant maps. A linear model was used to assess the effect of ibudilast. Magnetization transfer ratio within slowly enlarging lesions was assessed to determine the effect of ibudilast on tissue integrity. RESULTS: In total, 195 participants were included in this analysis. Ibudilast significantly decreased slowly enlarging lesion volume (23%, p = 0.003). Ibudilast also reduced magnetization transfer ratio change in slowly enlarging lesions: 0.22%/year, p = 0.04. CONCLUSION: Ibudilast showed a significant effect on baseline volume of lesions that were slowly enlarging and magnetization transfer ratio in slowly enlarging lesions. The results support the use of slowly enlarging lesions for assessment of compartmentalized inflammation represented by chronic active lesions and provide further support for the neuroprotective effects of ibudilast in progressive MS.


Subject(s)
Indolizines , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Pyrazoles , Humans , Brain/pathology , Inflammation/pathology , Magnetic Resonance Imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Chronic Progressive/drug therapy , Pyridines/therapeutic use
4.
Rapid Commun Mass Spectrom ; 38(23): e9916, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39307998

ABSTRACT

RATIONALE: Phosphodiesterase 4 (PDE4) inhibitors are a newer class of drugs that induce bronchodilation and have anti-inflammatory effects, making them susceptible to misuse as performance enhancers in competitive sports. METHODS: This study explores the metabolic conversion of PDE4 inhibitor ibudilast in thoroughbred horses after oral administration and in vitro using equine liver microsomes and Cunninghamella elegans. A liquid chromatography-high resolution mass spectrometry method was used to postulate the plausible structures of the detected metabolites. RESULTS: A total of 20 in vivo metabolites were identified under experimental conditions, including 12 Phase I and 8 Phase II conjugated metabolites. Phase I metabolites were predominantly formed through hydroxylation (mono-, di-, and tri-hydroxylation). Demethylated metabolites were also identified during this investigation. Additionally, the research detected Phase II metabolites conjugated with glucuronic and sulfonic acids. CONCLUSIONS: The data presented here can assist in detecting the PDE4 inhibitor ibudilast and uncover its illicit use in competitive sports.


Subject(s)
Microsomes, Liver , Phosphodiesterase 4 Inhibitors , Pyridines , Animals , Horses , Phosphodiesterase 4 Inhibitors/metabolism , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/pharmacology , Pyridines/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/analysis , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Performance-Enhancing Substances/metabolism , Performance-Enhancing Substances/chemistry , Performance-Enhancing Substances/pharmacology , Doping in Sports , Indolizines , Pyrazoles
5.
Mar Drugs ; 22(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38393024

ABSTRACT

Based on the results of our own preliminary studies, the derivative of the marine alkaloid fascaplysin containing a phenyl substituent at C-9 was selected to evaluate the therapeutic potential in vivo and in vitro. It was shown that this compound has outstandingly high antimicrobial activity against Gram-positive bacteria, including antibiotic-resistant strains in vitro. The presence of a substituent at C-9 of the framework is of fundamental importance, since its replacement to neighboring positions leads to a sharp decrease in the selectivity of the antibacterial action, which indicates the presence of a specific therapeutic target in bacterial cells. On a model of the acute bacterial sepsis in mice, it was shown that the lead compound was more effective than the reference antibiotic vancomycin seven out of nine times. However, ED50 value for 9-phenylfascaplysin (7) was similar for the unsubstituted fascaplysin (1) in vivo, despite the former being significantly more active than the latter in vitro. Similarly, assessments of the anticancer activity of compound 7 against various variants of Ehrlich carcinoma in mice demonstrated its substantial efficacy. To conduct a structure-activity relationship (SAR) analysis and searches of new candidate compounds, we synthesized a series of analogs of 9-phenylfascaplysin with varying aryl substituents. However, these modifications led to the reduced aqueous solubility of fascaplysin derivatives or caused a loss of their antibacterial activity. As a result, further research is required to explore new avenues for enhancing its pharmacokinetic characteristics, the modification of the heterocyclic framework, and optimizing of treatment regimens to harness the remarkable antimicrobial potential of fascaplysin for practical usage.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Carbolines , Indolizines , Quaternary Ammonium Compounds , Animals , Mice , Anti-Bacterial Agents/pharmacology , Structure-Activity Relationship , Indoles , Microbial Sensitivity Tests
6.
Chem Biodivers ; 21(8): e202400825, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38802323

ABSTRACT

Herein, we report analogues of s-indacene by the synthesis of novel indolizine derivatives. Using chloroform as an appropriate solvent, sixteen derivatives of pyrazolyl-indolizine (4--19) were prepared by the reaction of 3-(dimethylamino)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (1) with hydrazonoyl chloride derivatives (2) in the presence of triethylamine in good to excellent yields. We used NMR spectra, IR, mass spectrometry, as well as elemental analyses to prove the chemical structures and the purity of the synthesized compounds 4-19. Among all tested compounds 5, 9, 13 and 19 had a potent antimicrobial efficiency against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aerginousea, Sallmonella typhemerium, and Candida albicans. Furthermore, a significant increase in lipid peroxidation (LPO) toward the Gram-negative bacteria, Pseudomonas aeruginosa when treated with compound 9 was observed, while compound 13 remarkably increased the cell membrane oxidation of Salmonella typhimurium. Additionally, we utilized docking studies and in silico methods to evaluate the drug-likeness, physicochemical properties, and ADMET profiles of the compounds. The results of the molecular docking simulation revealed that the synthesized compounds displayed decreased binding energy when interacting with the active sites of important enzymes, including Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of S. typhimurium, and Gyrase B of B. subtilis.


Subject(s)
Candida albicans , Indolizines , Microbial Sensitivity Tests , Molecular Docking Simulation , Candida albicans/drug effects , Indolizines/chemistry , Indolizines/pharmacology , Indolizines/chemical synthesis , Indolizines/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Structure-Activity Relationship , Molecular Structure , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Bacteria/drug effects
7.
Chem Biodivers ; 21(5): e202400075, 2024 May.
Article in English | MEDLINE | ID: mdl-38466656

ABSTRACT

In the present work, we synthesized a small library of 2-phenylindolizine acetamide derivatives 7a-i and studied their biological activity. The synthesis was accomplished starting with easily available starting material phenacyl bromide 1 proceeding through the key intermediate 6-methyl-7-nitro-2-phenylindolizine 4. All the compounds 7a-i were characterized using spectroscopy viz., 1H-NMR, 13C NMR, FTIR, and mass spectrometry. Interestingly, 2-phenylindolizine scaffolds 7c, 7f and 7g revealed a remarkable antibacterial activity against relevant organisms S. aureus, E. coli, S. pneumoniae, P. aeruginosa. The target compounds 7e and 7h showed excellent anticancer activity against Colo-205 and MDA-MB-231 cell lines with IC50 values of 68.62, 62.91, 54.23 and 46.34 µM respectively. Additionally, all the 2-phenylindolizine acetamide derivatives 7a-i were subjected to molecular docking prediction by Autodock 4.2. Compounds 7a, 7f and 7c exhibited very good hydrogen bonding amino acid interactions Asp83 (2.23 Å), Asp83 (2.08 Å), His74 (2.05 Å), His76 (1.71 Å), Ser80 (1.05 Å) with active site of Topoisomerase-IV from S. pneumoniae (4KPE). Further, the compounds 7a-i have revealed acceptable ranges for drug-likeliness properties upon evaluation using SwissADME for ADMET and physiochemical properties.


Subject(s)
Acetamides , Antineoplastic Agents , Drug Design , Drug Screening Assays, Antitumor , Indolizines , Microbial Sensitivity Tests , Molecular Docking Simulation , Humans , Acetamides/chemistry , Acetamides/pharmacology , Acetamides/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Indolizines/chemistry , Indolizines/pharmacology , Indolizines/chemical synthesis , Molecular Structure , Structure-Activity Relationship , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology
8.
Drug Dev Res ; 85(3): e22193, 2024 May.
Article in English | MEDLINE | ID: mdl-38685605

ABSTRACT

The scaffolds of two known CDK inhibitors (CAN508 and dinaciclib) were the starting point for synthesizing two series of pyarazolo[1,5-a]pyrimidines to obtain potent inhibitors with proper selectivity. The study presented four promising compounds; 10d, 10e, 16a, and 16c based on cytotoxic studies. Compound 16a revealed superior activity in the preliminary anticancer screening with GI % = 79.02-99.13 against 15 cancer cell lines at 10 µM from NCI full panel 60 cancer cell lines and was then selected for further investigation. Furthermore, the four compounds revealed good safety profile toward the normal cell lines WI-38. These four compounds were subjected to CDK inhibitory activity against four different isoforms. All of them showed potent inhibition against CDK5/P25 and CDK9/CYCLINT. Compound 10d revealed the best activity against CDK5/P25 (IC50 = 0.063 µM) with proper selectivity index against CDK1 and CDK2. Compound 16c exhibited the highest inhibitory activity against CDK9/CYCLINT (IC50 = 0.074 µM) with good selectivity index against other isoforms. Finally, docking simulations were performed for compounds 10e and 16c accompanied by molecular dynamic simulations to understand their behavior in the active site of the two CDKs with respect to both CAN508 and dinaciclib.


Subject(s)
Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Cyclic N-Oxides , Drug Design , Indolizines , Molecular Docking Simulation , Protein Kinase Inhibitors , Pyridinium Compounds , Humans , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemistry , Indolizines/pharmacology , Indolizines/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cyclic N-Oxides/pharmacology , Cyclic N-Oxides/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cyclin-Dependent Kinases/antagonists & inhibitors , Structure-Activity Relationship , Pyrimidines/pharmacology , Pyrimidines/chemistry , Drug Screening Assays, Antitumor , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism
9.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612503

ABSTRACT

Chronic myeloid leukemia (CML) is induced by the expression of the fused tyrosine kinase BCR-ABL, which is caused by a chromosomal translocation. BCR-ABL inhibitors have been used to treat CML; however, the acquisition of resistance by CML cells during treatment is a serious issue. We herein demonstrated that BCR-ABL induced the expression of the RNA helicase DDX5 in K562 cells derived from CML patients in a manner that was dependent on its kinase activity, which resulted in cell proliferation and survival. The knockout of DDX5 decreased the expression of BIRC5 (survivin) and activated caspase 3, leading to apoptosis in K562 cells. Similar results were obtained in cells treated with FL118, an inhibitor of DDX5 and a derivative compound of camptothecin (CPT). Furthermore, FL118 potently induced apoptosis not only in Ba/F3 cells expressing BCR-ABL, but also in those expressing the BCR-ABL T315I mutant, which is resistant to BCR-ABL inhibitors. Collectively, these results revealed that DDX5 is a critical therapeutic target in CML and that FL118 is an effective candidate compound for the treatment of BCR-ABL inhibitor-resistant CML.


Subject(s)
Indolizines , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Benzodioxoles , Protein Kinase Inhibitors/pharmacology
10.
Molecules ; 29(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611869

ABSTRACT

The fascaplysin and homofascaplysin class of marine natural products has a characteristic 12H-pyrido[1,2-a:3,4-b']diindole pentacyclic structure. Fascaplysin was isolated in 1988 from the marine sponge Fascaplysinopsis bergquist sp. The analogs of fascaplysin, such as homofascaplysins A, B, and C, were discovered late in the Fijian sponge F. reticulate, and also have potent antimicrobial activity and strong cytotoxicity against L-1210 mouse leukemia. In this review, the total synthesis of fascaplysin and its analogs, such as homofascaplysins A, B, and C, will be reviewed, which will offer useful information for medicinal chemistry researchers who are interested in the exploration of marine alkaloids.


Subject(s)
Alkaloids , Antineoplastic Agents , Biological Products , Carbolines , Indoles , Indolizines , Porifera , Quaternary Ammonium Compounds , Animals , Mice , Alkaloids/pharmacology , Bandages
11.
Biochem Biophys Res Commun ; 662: 126-134, 2023 06 25.
Article in English | MEDLINE | ID: mdl-37104883

ABSTRACT

Cell cycle transitions are controlled by multiple cell cycle regulators, especially CDKs. Several CDKs, including CDK1-4 and CDK6, promote cell cycle progression directly. Among them, CDK3 is critically important because it triggers the transitions of G0 to G1 and G1 to S phase through binding to cyclin C and cyclin E1, respectively. In contrast to its highly related homologs, the molecular basis of CDK3 activation remains elusive due to the lack of structural information of CDK3, particularly in cyclin bound form. Here we report the crystal structure of CDK3 in complex with cyclin E1 at 2.25 Å resolution. CDK3 resembles CDK2 in that both adopt a similar fold and bind cyclin E1 in a similar way. The structural discrepancy between CDK3 and CDK2 may reflect their substrate specificity. Profiling a panel of CDK inhibitors reveals that dinaciclib inhibits CDK3-cyclin E1 potently and specifically. The structure of CDK3-cyclin E1 bound to dinaciclib reveals the inhibitory mechanism. The structural and biochemical results uncover the mechanism of CDK3 activation by cyclin E1 and lays a foundation for structural-based drug design.


Subject(s)
Indolizines , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/metabolism , Cyclin-Dependent Kinase 2 , Indolizines/pharmacology , Pyridinium Compounds/pharmacology , Cell Cycle/physiology , Cyclin E/metabolism , Cyclins/metabolism
12.
Blood ; 137(20): 2721-2735, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33824975

ABSTRACT

Selective targeting of BCL-2 with the BH3-mimetic venetoclax has been a transformative treatment for patients with various leukemias. TP-53 controls apoptosis upstream of where BCL-2 and its prosurvival relatives, such as MCL-1, act. Therefore, targeting these prosurvival proteins could trigger apoptosis across diverse blood cancers, irrespective of TP53 mutation status. Indeed, targeting BCL-2 has produced clinically relevant responses in blood cancers with aberrant TP-53. However, in our study, TP53-mutated or -deficient myeloid and lymphoid leukemias outcompeted isogenic controls with intact TP-53, unless sufficient concentrations of BH3-mimetics targeting BCL-2 or MCL-1 were applied. Strikingly, tumor cells with TP-53 dysfunction escaped and thrived over time if inhibition of BCL-2 or MCL-1 was sublethal, in part because of an increased threshold for BAX/BAK activation in these cells. Our study revealed the key role of TP-53 in shaping long-term responses to BH3-mimetic drugs and reconciled the disparate pattern of initial clinical response to venetoclax, followed by subsequent treatment failure among patients with TP53-mutant chronic lymphocytic leukemia or acute myeloid leukemia. In contrast to BH3-mimetics targeting just BCL-2 or MCL-1 at doses that are individually sublethal, a combined BH3-mimetic approach targeting both prosurvival proteins enhanced lethality and durably suppressed the leukemia burden, regardless of TP53 mutation status. Our findings highlight the importance of using sufficiently lethal treatment strategies to maximize outcomes of patients with TP53-mutant disease. In addition, our findings caution against use of sublethal BH3-mimetic drug regimens that may enhance the risk of disease progression driven by emergent TP53-mutant clones.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Indolizines/pharmacology , Isoquinolines/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Morpholines/pharmacology , Neoplasm Proteins/physiology , Peptide Fragments/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Sulfonamides/pharmacology , Tumor Suppressor Protein p53/physiology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Apoptosis/physiology , Apoptosis Regulatory Proteins/physiology , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , CRISPR-Cas Systems , Cell Line, Tumor , DNA Damage , Genes, p53 , Humans , Indolizines/therapeutic use , Interleukin-2 Receptor alpha Subunit/deficiency , Isoquinolines/therapeutic use , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Morpholines/therapeutic use , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Oxidative Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Tumor Suppressor Protein p53/deficiency , Xenograft Model Antitumor Assays
13.
Molecules ; 28(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894702

ABSTRACT

As a new approach, pyrrolo[1,2-a]pyrazines were synthesized through the cyclization of 2-formylpyrrole-based enaminones in the presence of ammonium acetate. The enaminones were prepared with a straightforward method, reacting the corresponding alkyl 2-(2-formyl-1H-pyrrol-1-yl)acetates, 2-(2-formyl-1H-pyrrol-1-yl)acetonitrile, and 2-(2-formyl-1H-pyrrol-1-yl)acetophenones with DMFDMA. Analogous enaminones elaborated from alkyl (E)-3-(1H-pyrrol-2-yl)acrylates were treated with a Lewis acid to afford indolizines. The antifungal activity of the series of substituted pyrroles, pyrrole-based enaminones, pyrrolo[1,2-a]pyrazines, and indolizines was evaluated on six Candida spp., including two multidrug-resistant ones. Compared to the reference drugs, most test compounds produced a more robust antifungal effect. Docking analysis suggests that the inhibition of yeast growth was probably mediated by the interaction of the compounds with the catalytic site of HMGR of the Candida species.


Subject(s)
Antifungal Agents , Indolizines , Antifungal Agents/pharmacology , Pyrroles/pharmacology , Indolizines/pharmacology , Pyrazines/pharmacology , Microbial Sensitivity Tests , Candida
14.
Nat Prod Rep ; 39(8): 1574-1590, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35699109

ABSTRACT

Covering: 1972 to 2021The rhazinilam family of natural products exhibits a main structure with a stereogenic quaternary carbon and a tetrahydroindolizine core imbedded within a 9-membered macrocycle, imposing axial chirality. This unique architecture combined with their taxol-like antimitotic activities have attracted various attention, especially from synthetic chemists, notably in the past decade. The present review describes the known total and formal syntheses of the members of the rhazinilam family (rhazinilam, rhazinal, leuconolam and kopsiyunnanines), according to the strategy developed.


Subject(s)
Alkaloids , Biological Products , Alkaloids/chemistry , Azepines , Biological Products/pharmacology , Indolizines , Lactams , Stereoisomerism
15.
BMC Cancer ; 22(1): 627, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35672711

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) constitutes 10-20% of breast cancers and is challenging to treat due to a lack of effective targeted therapies. Previous studies in TNBC cell lines showed in vitro growth inhibition when JQ1 or GSK2801 were administered alone, and enhanced activity when co-administered. Given their respective mechanisms of actions, we hypothesized the combinatorial effect could be due to the target genes affected. Hence the target genes were characterized for their expression in the TNBC cell lines to prove the combinatorial effect of JQ1 and GSK2801. METHODS: RNASeq data sets of TNBC cell lines (MDA-MB-231, HCC-1806 and SUM-159) were analyzed to identify the differentially expressed genes in single and combined treatments. The topmost downregulated genes were characterized for their downregulated expression in the TNBC cell lines treated with JQ1 and GSK2801 under different dose concentrations and combinations. The optimal lethal doses were determined by cytotoxicity assays. The inhibitory activity of the drugs was further characterized by molecular modelling studies. RESULTS: Global expression profiling of TNBC cell lines using RNASeq revealed different expression patterns when JQ1 and GSK2801 were co-administered. Functional enrichment analyses identified several metabolic pathways (i.e., systemic lupus erythematosus, PI3K-Akt, TNF, JAK-STAT, IL-17, MAPK, Rap1 and signaling pathways) enriched with upregulated and downregulated genes when combined JQ1 and GSK2801 treatment was administered. RNASeq identified downregulation of PTPRC, MUC19, RNA5-8S5, KCNB1, RMRP, KISS1 and TAGLN (validated by RT-qPCR) and upregulation of GPR146, SCARA5, HIST2H4A, CDRT4, AQP3, MSH5-SAPCD1, SENP3-EIF4A1, CTAGE4 and RNASEK-C17orf49 when cells received both drugs. In addition to differential gene regulation, molecular modelling predicted binding of JQ1 and GSK2801 with PTPRC, MUC19, KCNB1, TAGLN and KISS1 proteins, adding another mechanism by which JQ1 and GSK2801 could elicit changes in metabolism and proliferation. CONCLUSION: JQ1-GSK2801 synergistically inhibits proliferation and results in selective gene regulation. Besides suggesting that combinatorial use could be useful therapeutics for the treatment of TNBC, the findings provide a glimpse into potential mechanisms of action for this combination therapy approach.


Subject(s)
Azepines/pharmacology , Carcinoma, Hepatocellular , Liver Neoplasms , Triazoles/pharmacology , Triple Negative Breast Neoplasms , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/therapeutic use , Gene Expression Regulation, Neoplastic , Humans , Indolizines , Kisspeptins/genetics , Liver Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Scavenger Receptors, Class A/genetics , Sulfones , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
16.
J Org Chem ; 87(15): 10241-10249, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35849640

ABSTRACT

Two new complementary Au(I)-catalyzed methods for the preparation of ester-substituted indolizines from easily accessible 2-propargyloxypyridines and either acetoacetates or dimethyl malonate are reported. These reactions tolerate a wide range of functionality, allowing for diversification at three distinct positions of the product (R, R1, R2). For electron-poor substrates, the highest yields are observed upon reaction with acetoacetates, while neutral and electron-rich substrates give higher yields upon treatment with dimethyl malonate.


Subject(s)
Indolizines , Acetoacetates , Catalysis , Cyclization , Esters
17.
J Org Chem ; 87(22): 15197-15209, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36305554

ABSTRACT

An efficient I2-promoted one-pot one-step three-component reaction for the synthesis of sulfhydryl indolizines from methyl ketones, 2-pyridylacetate derivatives, and sulfonyl hydrazides via an in situ cyclization-rethiolation strategy has been developed. This protocol shows excellent substrate compatibility, including for chain and cyclic aliphatic methyl ketones, natural product pregnenolone acetate, and phosphorus-containing methyl ketones, affording a series of valuable aliphatic-substituted indolizines in good yields.


Subject(s)
Indolizines , Cyclization , Ketones , Acetone
18.
J Org Chem ; 87(24): 16297-16306, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36417299

ABSTRACT

A photocatalytic C-H disulfuration of indolizines was developed, giving an approach to a wide variety of indolizine-3-disulfides with good yields. Trisulfide dioxides were explored as a high-efficient disulfuration reagent. This disulfuration reaction could be scaled up to grams. Mechanistic studies support a photoinduced pathway involving the generation of indolizine cationic radicals. A bulky alkyl substituent on terminal sulfur of trisulfide dioxide A was necessary for selective formation of disulfide over monosulfide.


Subject(s)
Disulfides , Indolizines , Indicators and Reagents
19.
J Org Chem ; 87(1): 835-845, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34962788

ABSTRACT

An efficient method for the synthesis of new indolizine-fused chromones has been accomplished from ethyl (E)-3-(2-acetylphenoxy)acrylates and pyridines in a "one-pot" manner. Facile operation in open-air, metal-free, and mild conditions renders this protocol particularly practical and attractive. Moreover, this method can simultaneously construct two molecular fragments of chromone and indolizine. Scale-up experiment and the construction of natural products further prove the practicability of this strategy.


Subject(s)
Indolizines , Iodine , Chromones , Cyclization , Pyridines
20.
J Org Chem ; 87(21): 14168-14176, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36260747

ABSTRACT

Herein, we report a highly efficient and unprecedented approach for heteroarylation of congested α-bromoamides via electrophilic aromatic substitution of imidazo-heteroarenes and indolizines under mild reaction conditions (room temperature, metal, and oxidant free). The participation of an in situ generated aza-oxyallyl cation as an alkylating agent is the hallmark of this transformation. The method was readily adapted to synthesize novel imidazo-heteroarene-fused dibenzoazepinone architectures of potential medicinal value.


Subject(s)
Indolizines , Zolpidem , Molecular Structure , Cations
SELECTION OF CITATIONS
SEARCH DETAIL