Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.660
Filter
Add more filters

Publication year range
1.
Cell ; 177(6): 1536-1552.e23, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150623

ABSTRACT

Ectopic lipid deposition and altered mitochondrial dynamics contribute to the development of obesity and insulin resistance. However, the mechanistic link between these processes remained unclear. Here we demonstrate that the C16:0 sphingolipid synthesizing ceramide synthases, CerS5 and CerS6, affect distinct sphingolipid pools and that abrogation of CerS6 but not of CerS5 protects from obesity and insulin resistance. We identify proteins that specifically interact with C16:0 sphingolipids derived from CerS5 or CerS6. Here, only CerS6-derived C16:0 sphingolipids bind the mitochondrial fission factor (Mff). CerS6 and Mff deficiency protect from fatty acid-induced mitochondrial fragmentation in vitro, and the two proteins genetically interact in vivo in obesity-induced mitochondrial fragmentation and development of insulin resistance. Our experiments reveal an unprecedented specificity of sphingolipid signaling depending on specific synthesizing enzymes, provide a mechanistic link between hepatic lipid deposition and mitochondrial fragmentation in obesity, and define the CerS6-derived sphingolipid/Mff interaction as a therapeutic target for metabolic diseases.


Subject(s)
Membrane Proteins/metabolism , Obesity/metabolism , Sphingolipids/metabolism , Sphingosine N-Acyltransferase/metabolism , Animals , Apoptosis , Cell Line , HeLa Cells , Humans , Insulin Resistance/physiology , Liver/metabolism , Male , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Proteins/metabolism , Obesity/physiopathology , Sphingolipids/physiology , Sphingosine N-Acyltransferase/physiology
2.
Cell ; 175(1): 146-158.e15, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30100182

ABSTRACT

Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.


Subject(s)
Host-Pathogen Interactions/physiology , Iron/metabolism , Virulence/physiology , Animals , Asymptomatic Infections , Citrobacter rodentium/metabolism , Citrobacter rodentium/pathogenicity , Colitis/drug therapy , Colitis/metabolism , Colon/microbiology , Dietary Supplements , Enterobacteriaceae Infections/drug therapy , Female , Insulin Resistance/physiology , Intestine, Small/microbiology , Iron/pharmacology , Lethal Dose 50 , Male , Mice , Mice, Inbred C3H , Mice, Inbred DBA
3.
Nat Rev Mol Cell Biol ; 19(10): 654-672, 2018 10.
Article in English | MEDLINE | ID: mdl-30104701

ABSTRACT

The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin Resistance/physiology , Animals , Glucose Metabolism Disorders/metabolism , Humans , Insulin/metabolism , Insulin Resistance/genetics , Lipid Metabolism/physiology , Liver/metabolism , Metabolic Networks and Pathways , Metabolomics/methods , Obesity , Receptor, Insulin/metabolism , Signal Transduction
4.
Nature ; 621(7978): 389-395, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648852

ABSTRACT

Insulin resistance is the primary pathophysiology underlying metabolic syndrome and type 2 diabetes1,2. Previous metagenomic studies have described the characteristics of gut microbiota and their roles in metabolizing major nutrients in insulin resistance3-9. In particular, carbohydrate metabolism of commensals has been proposed to contribute up to 10% of the host's overall energy extraction10, thereby playing a role in the pathogenesis of obesity and prediabetes3,4,6. Nevertheless, the underlying mechanism remains unclear. Here we investigate this relationship using a comprehensive multi-omics strategy in humans. We combine unbiased faecal metabolomics with metagenomics, host metabolomics and transcriptomics data to profile the involvement of the microbiome in insulin resistance. These data reveal that faecal carbohydrates, particularly host-accessible monosaccharides, are increased in individuals with insulin resistance and are associated with microbial carbohydrate metabolisms and host inflammatory cytokines. We identify gut bacteria associated with insulin resistance and insulin sensitivity that show a distinct pattern of carbohydrate metabolism, and demonstrate that insulin-sensitivity-associated bacteria ameliorate host phenotypes of insulin resistance in a mouse model. Our study, which provides a comprehensive view of the host-microorganism relationships in insulin resistance, reveals the impact of carbohydrate metabolism by microbiota, suggesting a potential therapeutic target for ameliorating insulin resistance.


Subject(s)
Carbohydrate Metabolism , Gastrointestinal Microbiome , Insulin Resistance , Animals , Humans , Mice , Diabetes Mellitus, Type 2/metabolism , Gastrointestinal Microbiome/physiology , Insulin Resistance/physiology , Monosaccharides/metabolism , Insulin/metabolism , Metabolic Syndrome/metabolism , Feces/chemistry , Feces/microbiology , Metabolomics
5.
Physiol Rev ; 101(3): 907-993, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33356916

ABSTRACT

Lipodystrophies have been recognized since at least the nineteenth century and, despite their rarity, tended to attract considerable medical attention because of the severity and somewhat paradoxical nature of the associated metabolic disease that so closely mimics that of obesity. Within the last 20 yr most of the monogenic subtypes have been characterized, facilitating family genetic screening and earlier disease detection as well as providing important insights into adipocyte biology and the systemic consequences of impaired adipocyte function. Even more recently, compelling genetic studies have suggested that subtle partial lipodystrophy is likely to be a major factor in prevalent insulin-resistant type 2 diabetes mellitus (T2DM), justifying the longstanding interest in these disorders. This progress has also underpinned novel approaches to treatment that, in at least some patients, can be of considerable therapeutic benefit.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Dyslipidemias/metabolism , Lipodystrophy/metabolism , Obesity/metabolism , Animals , Humans , Insulin Resistance/physiology
6.
Nat Rev Neurosci ; 23(4): 215-230, 2022 04.
Article in English | MEDLINE | ID: mdl-35228741

ABSTRACT

The discovery of insulin in 1921 revolutionized the treatment of diabetes and paved the way for numerous studies on hormone signalling networks and actions in peripheral tissues and in the central nervous system. Impaired insulin signalling, a hallmark of diabetes, is now established as a key component of Alzheimer disease (AD) pathology. Here, we review evidence showing that brain inflammation and activation of cellular stress response mechanisms comprise molecular underpinnings of impaired brain insulin signalling in AD and integrate impaired insulin signalling with AD pathology. Further, we highlight that insulin resistance is an important component of allostatic load and that allostatic overload can trigger insulin resistance. This bidirectional association between impaired insulin signalling and allostatic overload favours medical conditions that increase the risk of AD, including diabetes, obesity, depression, and cardiovascular and cerebrovascular diseases. Finally, we discuss how the integration of biological, social and lifestyle factors throughout the lifespan can contribute to the development of AD, underscoring the potential of social and lifestyle interventions to preserve brain health and prevent or delay AD.


Subject(s)
Allostasis , Alzheimer Disease , Insulin Resistance , Brain , Humans , Insulin , Insulin Resistance/physiology , Signal Transduction/physiology
7.
Annu Rev Physiol ; 85: 339-362, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36137277

ABSTRACT

High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Iron Overload , Humans , Iron/metabolism , Iron Overload/complications , Iron Overload/metabolism , Liver/metabolism , Insulin Resistance/physiology
8.
Trends Immunol ; 44(8): 613-627, 2023 08.
Article in English | MEDLINE | ID: mdl-37423882

ABSTRACT

The innate cytokine system is involved in the response to excessive food intake. In this review, we highlight recent advances in our understanding of the physiological role of three prominent cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF), in mammalian metabolic regulation. This recent research highlights the pleiotropic and context-dependent functions in the immune-metabolic interplay. IL-1ß is activated in response to overloaded mitochondrial metabolism, stimulates insulin secretion, and allocates energy to immune cells. IL-6 is released by contracting skeletal muscle and adipose tissue and directs energy from storing tissues to consuming tissues. TNF induces insulin resistance and prevents ketogenesis. Additionally, the therapeutic potential of modulating the activity of each cytokine is discussed.


Subject(s)
Cytokines , Insulin Resistance , Animals , Humans , Cytokines/metabolism , Interleukin-6/metabolism , Adipose Tissue , Tumor Necrosis Factor-alpha/metabolism , Insulin Resistance/physiology , Mammals
9.
J Biol Chem ; 300(2): 105655, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237682

ABSTRACT

Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Cell Death , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , Insulin Resistance/physiology , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , T-Lymphocytes/metabolism , Male
10.
Physiol Rev ; 98(4): 1911-1941, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30067159

ABSTRACT

The subcutaneous adipose tissue (SAT) is the largest and best storage site for excess lipids. However, it has a limited ability to expand by recruiting and/or differentiating available precursor cells. When inadequate, this leads to a hypertrophic expansion of the cells with increased inflammation, insulin resistance, and a dysfunctional prolipolytic tissue. Epi-/genetic factors regulate SAT adipogenesis and genetic predisposition for type 2 diabetes is associated with markers of an impaired SAT adipogenesis and development of hypertrophic obesity also in nonobese individuals. We here review mechanisms for the adipose precursor cells to enter adipogenesis, emphasizing the role of bone morphogenetic protein-4 (BMP-4) and its endogenous antagonist gremlin-1, which is increased in hypertrophic SAT in humans. Gremlin-1 is a secreted and a likely important mechanism for the impaired SAT adipogenesis in hypertrophic obesity. Transiently increasing BMP-4 enhances adipogenic commitment of the precursor cells while maintained BMP-4 signaling during differentiation induces a beige/brown oxidative phenotype in both human and murine adipose cells. Adipose tissue growth and development also requires increased angiogenesis, and BMP-4, as a proangiogenic molecule, may also be an important feedback regulator of this. Hypertrophic obesity is also associated with increased lipolysis. Reduced lipid storage and increased release of FFA by hypertrophic SAT are important mechanisms for the accumulation of ectopic fat in the liver and other places promoting insulin resistance. Taken together, the limited expansion and storage capacity of SAT is a major driver of the obesity-associated metabolic complications.


Subject(s)
Adipogenesis/physiology , Adipose Tissue/pathology , Obesity/pathology , Adipocytes/pathology , Animals , Cell Differentiation/physiology , Diabetes Mellitus, Type 2/pathology , Humans , Inflammation/pathology , Insulin Resistance/physiology
11.
Physiol Rev ; 98(4): 2133-2223, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30067154

ABSTRACT

The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ?selective hepatic insulin resistanceË® is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.


Subject(s)
Insulin Resistance/physiology , Insulin/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Liver/metabolism , Liver/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
12.
Lancet ; 404(10448): 158-174, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38909619

ABSTRACT

Gestational diabetes is the most common medical complication in pregnancy. Historically, gestational diabetes was considered a pregnancy complication involving treatment of rising glycaemia late in the second trimester. However, recent evidence challenges this view. Pre-pregnancy and pregnancy-specific factors influence gestational glycaemia, with open questions regarding roles of non-glycaemic factors in the aetiology and consequences of gestational diabetes. Varying patterns of insulin secretion and resistance in early and late pregnancy underlie a heterogeneity of gestational diabetes in the timing and pathophysiological subtypes with clinical implications: early gestational diabetes and insulin resistant gestational diabetes subtypes are associated with a higher risk of pregnancy complications. Metabolic perturbations of early gestational diabetes can affect early placental development, affecting maternal metabolism and fetal development. Fetal hyperinsulinaemia can affect the development of multiple fetal tissues, with short-term and long-term consequences. Pregnancy complications are prevented by managing glycaemia in early and late pregnancy in some, but not all women with gestational diabetes. A better understanding of the pathophysiology and heterogeneity of gestational diabetes will help to develop novel management approaches with focus on improved prevention of maternal and offspring short-term and long-term complications, from pre-conception, throughout pregnancy, and beyond.


Subject(s)
Diabetes, Gestational , Humans , Female , Pregnancy , Diabetes, Gestational/physiopathology , Insulin Resistance/physiology , Blood Glucose/metabolism , Pregnancy Complications/physiopathology , Insulin/metabolism
13.
J Cell Sci ; 136(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37815440

ABSTRACT

Skeletal muscle insulin resistance, a major contributor to type 2 diabetes, is linked to the consumption of saturated fats. This insulin resistance arises from failure of insulin-induced translocation of glucose transporter type 4 (GLUT4; also known as SLC2A4) to the plasma membrane to facilitate glucose uptake into muscle. The mechanisms of defective GLUT4 translocation are poorly understood, limiting development of insulin-sensitizing therapies targeting muscle glucose uptake. Although many studies have identified early insulin signalling defects and suggest that they are responsible for insulin resistance, their cause-effect has been debated. Here, we find that the saturated fat palmitate (PA) causes insulin resistance owing to failure of GLUT4 translocation in skeletal muscle myoblasts and myotubes without impairing signalling to Akt2 or AS160 (also known as TBC1D4). Instead, PA altered two basal-state events: (1) the intracellular localization of GLUT4 and its sorting towards a perinuclear storage compartment, and (2) actin filament stiffness, which prevents Rac1-dependent actin remodelling. These defects were triggered by distinct mechanisms, respectively protein palmitoylation and endoplasmic reticulum (ER) stress. Our findings highlight that saturated fats elicit muscle cell-autonomous dysregulation of the basal-state machinery required for GLUT4 translocation, which 'primes' cells for insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Insulin Resistance/physiology , Palmitates/pharmacology , Palmitates/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose Transporter Type 4 , Insulin/metabolism , Muscle, Skeletal/metabolism , Protein Transport , Actin Cytoskeleton/metabolism , Glucose/metabolism
14.
FASEB J ; 38(15): e23845, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39082199

ABSTRACT

Women typically have less muscle mass and more fat mass than men, while at the same time possessing similar or even greater whole-body insulin sensitivity. Our study aimed to investigate the molecular factors in primarily adipose tissue, but also in skeletal muscle, contributing to this sex difference. In healthy, moderately active premenopausal women and men with normal weight (28 ± 5 and 23 ± 3 years old; BMI 22.2 ± 1.9 and 23.7 ± 1.7) and in healthy, recreationally active women and men with overweight (32.2 ± 6 and 31.0 ± 5 years old; BMI 29.8 ± 4.3 & 30.9 ± 3.7) matched at age, BMI, and fitness level, we assessed insulin sensitivity and glucose tolerance with a hyperinsulinemic-euglycemic clamp or oral glucose tolerance test and studied subcutaneous adipose tissue and skeletal muscle samples with western blotting. Additionally, we traced glucose-stimulated glucose disposal in adipose tissues of female and male C57BL/6J littermate mice aged 16 weeks and measured glucose metabolic proteins. Our findings revealed greater protein expression related to glucose disposal in the subcutaneous adipose tissue (AKT2, insulin receptor, glucose transport 4) and skeletal muscle (hexokinase II, pyruvate dehydrogenase) in women compared to matched men with normal weight and with overweight. This increased protein capacity for glucose uptake extended to white adipose tissues of mice accompanied with ~2-fold greater glucose uptake compared to male mice. Furthermore, even in the obese state, women displayed better glucose tolerance than matched men, despite having 46% body fat and 20 kg less lean mass. In conclusion, our findings suggest that the superior potential for glucose disposal in female subcutaneous adipose tissue and skeletal muscle, driven by greater expression of various glucose metabolic proteins, compensates for their lower muscle mass. This likely explains women's superior glucose tolerance and tissue insulin sensitivity compared to men.


Subject(s)
Glucose , Muscle, Skeletal , Female , Humans , Male , Muscle, Skeletal/metabolism , Adult , Glucose/metabolism , Animals , Mice , Mice, Inbred C57BL , Adipose Tissue/metabolism , Insulin Resistance/physiology , Young Adult , Glucose Tolerance Test , Overweight/metabolism , Glucose Clamp Technique
15.
Immunity ; 45(3): 583-596, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27566941

ABSTRACT

Mononuclear phagocytes (MNPs) are a highly heterogeneous group of cells that play important roles in maintaining the body's homeostasis. Here, we found CD301b (also known as MGL2), a lectin commonly used as a marker for alternatively activated macrophages, was selectively expressed by a subset of CD11b(+)CD11c(+)MHCII(+) MNPs in multiple organs including adipose tissues. Depleting CD301b(+) MNPs in vivo led to a significant weight loss with increased insulin sensitivity and a marked reduction in serum Resistin-like molecule (RELM) α, a multifunctional cytokine produced by MNPs. Reconstituting RELMα in CD301b(+) MNP-depleted animals restored body weight and normoglycemia. Thus, CD301b(+) MNPs play crucial roles in maintaining glucose metabolism and net energy balance.


Subject(s)
Energy Metabolism/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Lectins, C-Type/metabolism , Phagocytes/metabolism , Adipose Tissue/metabolism , Animals , Female , Glucose , Insulin/metabolism , Insulin Resistance/physiology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL
16.
Proc Natl Acad Sci U S A ; 119(12): e2113290119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35286195

ABSTRACT

SignificanceAmbient nighttime light exposure is implicated as a risk factor for adverse health outcomes, including cardiometabolic disease. However, the effects of nighttime light exposure during sleep on cardiometabolic outcomes and the related mechanisms are unclear. This laboratory study shows that, in healthy adults, one night of moderate (100 lx) light exposure during sleep increases nighttime heart rate, decreases heart rate variability (higher sympathovagal balance), and increases next-morning insulin resistance when compared to sleep in a dimly lit (<3 lx) environment. Moreover, a positive relationship between higher sympathovagal balance and insulin levels suggests that sympathetic activation may play a role in the observed light-induced changes in insulin sensitivity.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Adult , Cardiovascular Diseases/etiology , Circadian Rhythm/physiology , Heart Rate/physiology , Humans , Insulin Resistance/physiology , Sleep/physiology
17.
Pharmacol Rev ; 74(3): 506-551, 2022 07.
Article in English | MEDLINE | ID: mdl-35710135

ABSTRACT

Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal ß -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.


Subject(s)
Carnitine , Insulin Resistance , Biomarkers , Carnitine/analogs & derivatives , Carnitine/chemistry , Carnitine/metabolism , Carnitine/therapeutic use , Fatty Acids/metabolism , Humans , Insulin Resistance/physiology
18.
Annu Rev Physiol ; 83: 303-330, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33158378

ABSTRACT

The global prevalence of metabolic diseases such as type 2 diabetes mellitus, steatohepatitis, myocardial infarction, and stroke has increased dramatically over the past two decades. These obesity-fueled disorders result, in part, from the aberrant accumulation of harmful lipid metabolites in tissues not suited for lipid storage (e.g., the liver, vasculature, heart, and pancreatic beta-cells). Among the numerous lipid subtypes that accumulate, sphingolipids such as ceramides are particularly impactful, as they elicit the selective insulin resistance, dyslipidemia, and ultimately cell death that underlie nearly all metabolic disorders. This review summarizes recent findings on the regulatory pathways controlling ceramide production, the molecular mechanisms linking the lipids to these discrete pathogenic events, and exciting attempts to develop therapeutics to reduce ceramide levels to combat metabolic disease.


Subject(s)
Ceramides/metabolism , Lipid Metabolism/physiology , Animals , Humans , Insulin Resistance/physiology , Metabolic Diseases/metabolism , Sphingolipids/metabolism
19.
J Lipid Res ; 65(3): 100519, 2024 03.
Article in English | MEDLINE | ID: mdl-38354857

ABSTRACT

Metabolic syndrome affects more than one in three adults and is associated with increased risk of diabetes, cardiovascular disease, and all-cause mortality. Muscle insulin resistance is a major contributor to the development of the metabolic syndrome. Studies in mice have linked skeletal muscle sarcoplasmic reticulum (SR) phospholipid composition to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase activity and insulin sensitivity. To determine if the presence of metabolic syndrome alters specific phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species in human SR, we compared SR phospholipid composition in skeletal muscle from sedentary subjects with metabolic syndrome and sedentary control subjects without metabolic syndrome. Both total PC and total PE were significantly decreased in skeletal muscle SR of sedentary metabolic syndrome patients compared with sedentary controls, particularly in female participants, but there was no difference in the PC:PE ratio between groups. Total SR PC levels, but not total SR PE levels or PC:PE ratio, were significantly negatively correlated with BMI, waist circumference, total fat, visceral adipose tissue, triglycerides, fasting insulin, and homeostatic model assessment for insulin resistance. These findings are consistent with the existence of a relationship between skeletal muscle SR PC content and insulin resistance in humans.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Adult , Humans , Female , Animals , Mice , Sarcoplasmic Reticulum/metabolism , Insulin Resistance/physiology , Metabolic Syndrome/metabolism , Muscle, Skeletal/metabolism , Phospholipids/metabolism , Phosphatidylcholines/metabolism
20.
Diabetologia ; 67(7): 1181-1191, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38363340

ABSTRACT

Insulin exerts its actions not only on peripheral organs but is also transported into the brain where it performs distinct functions in various brain regions. This review highlights recent advancements in our understanding of insulin's actions within the brain, with a specific emphasis on investigations in humans. It summarises current knowledge on the transport of insulin into the brain. Subsequently, it showcases robust evidence demonstrating the existence and physiological consequences of brain insulin action, while also introducing the presence of brain insulin resistance in humans. This pathophysiological condition goes along with an impaired acute modulation of peripheral metabolism in response to brain insulin action, particularly in the postprandial state. Furthermore, brain insulin resistance has been associated with long-term adiposity and an unfavourable adipose tissue distribution, thus implicating it in the pathogenesis of subgroups of obesity and (pre)diabetes that are characterised by distinct patterns of body fat distribution. Encouragingly, emerging evidence suggests that brain insulin resistance could represent a treatable entity, thereby opening up novel therapeutic avenues to improve systemic metabolism and enhance brain functions, including cognition. The review closes with an outlook towards prospective research directions aimed at further elucidating the clinical implications of brain insulin resistance. It emphasises the critical need to establish feasible diagnostic measures and effective therapeutic interventions.


Subject(s)
Brain , Insulin Resistance , Humans , Insulin Resistance/physiology , Brain/metabolism , Insulin/metabolism , Body Fat Distribution , Obesity/metabolism , Animals , Adipose Tissue/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL