Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Genet Genomic Med ; 12(7): e2446, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980994

ABSTRACT

BACKGROUND: Deafness autosomal dominant 2A (DFNA2A) is related to non-syndromic genetic hearing impairment. The KCNQ4 (Potassium Voltage-Gated Channel Subfamily Q Member 4) can lead to DFNA2A. In this study, we report a case of autosomal dominant non-syndromic hearing loss with six family members as caused by a novel variant in the KCNQ4 gene. METHODS: The whole-exome sequencing (WES) and pure tone audiometry were performed on the proband of the family. Sanger sequencing was conducted on family members to determine if the novel variant in the KCNQ4 gene was present. Evolutionary conservation analysis and computational tertiary structure protein prediction of the wild-type KCNQ4 protein and its variant were then performed. In addition, voltage-gated channel activity of the wild-type KCNQ4 protein and its variant were tested using whole-cell patch clamp. RESULTS: It was observed that the proband had inherited autosomal dominant, non-syndromic sensorineural hearing loss as a trait. A novel co-segregating heterozygous missense variant (c.902C>A, p.Ala301Asp) of the KCNQ4 gene was identified in the proband and other five affected family members. This variant was predicted to cause an alanine-to-aspartic acid substitution at position 301 in the KCNQ4 protein. The alanine at position 301 is well conserved across different species. Whole-cell patch clamp showed that there was a significant difference between the WT protein currents and the mutant protein currents in the voltage-gated channel activity. CONCLUSION: In the present study, performing WES in conjunction with Sanger sequencing enhanced the detection of a novel, potentially causative variant (c301 A>G; p.Ala301Asp) in exon 6 of the KCNQ4 gene. Therefore, our findings contributed to the mutation spectrum of the KCNQ4 gene and may be useful in the diagnosis and gene therapy of deafness autosomal dominant 2A.


Subject(s)
Hearing Loss, Sensorineural , KCNQ Potassium Channels , Mutation, Missense , Pedigree , Humans , KCNQ Potassium Channels/genetics , Male , Female , Adult , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Middle Aged , East Asian People
2.
Hypertension ; 81(3): 561-571, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354270

ABSTRACT

BACKGROUND: Small arteries exhibit resting tone, a partially contracted state that maintains arterial blood pressure. In arterial smooth muscle cells, potassium channels control contraction and relaxation. Perivascular adipose tissue (PVAT) has been shown to exert anticontractile effects on the blood vessels. However, the mechanisms by which PVAT signals small arteries, and their relevance remain largely unknown. We aimed to uncover key molecular components in adipose-vascular coupling. METHODS: A wide spectrum of genetic mouse models targeting Kcnq3, Kcnq4, and Kcnq5 genes (Kcnq3-/-, Kcnq4-/-, Kcnq5-/-, Kcnq5dn/dn, Kcnq4-/-/Kcnq5dn/dn, and Kcnq4-/-/Kcnq5-/-), telemetry blood pressure measurements, targeted lipidomics, RNA-Seq profiling, wire-myography, patch-clamp, and sharp-electrode membrane potential measurements was used. RESULTS: We show that PVAT causes smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels to hyperpolarize the membrane potential. This effect relaxes small arteries and regulates blood pressure. Oxygenation of polyunsaturated fats generates oxylipins, a superclass of lipid mediators. We identified numerous oxylipins released by PVAT, which potentiate vasodilatory action in small arteries by opening smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels. CONCLUSIONS: Our results reveal a key molecular function of the KV7.5 family of voltage-gated potassium (K+) channels in the adipose-vascular coupling, translating PVAT signals, particularly oxylipins, to the central physiological function of vasoregulation. This novel pathway opens new therapeutic perspectives.


Subject(s)
Oxylipins , Vasodilation , Animals , Mice , Adipose Tissue , KCNQ Potassium Channels/genetics , KCNQ Potassium Channels/metabolism , Oxylipins/metabolism , Potassium/metabolism
3.
Sci Rep ; 14(1): 15260, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38956136

ABSTRACT

KCNQ4 is a voltage-gated K+ channel was reported to distribute over the basolateral surface of type 1 vestibular hair cell and/or inner surface of calyx and heminode of the vestibular nerve connected to the type 1 vestibular hair cells of the inner ear. However, the precise localization of KCNQ4 is still controversial and little is known about the vestibular phenotypes caused by KCNQ4 dysfunction or the specific role of KCNQ4 in the vestibular organs. To investigate the role of KCNQ4 in the vestibular organ, 6-g hypergravity stimulation for 24 h, which represents excessive mechanical stimulation of the sensory epithelium, was applied to p.W277S Kcnq4 transgenic mice. KCNQ4 was detected on the inner surface of calyx of the vestibular afferent in transmission electron microscope images with immunogold labelling. Vestibular function decrease was more severe in the Kcnq4p.W277S/p.W277S mice than in the Kcnq4+/+ and Kcnq4+/p.W277S mice after the stimulation. The vestibular function loss was resulted from the loss of type 1 vestibular hair cells, which was possibly caused by increased depolarization duration. Retigabine, a KCNQ activator, prevented hypergravity-induced vestibular dysfunction and hair cell loss. Patients with KCNQ4 mutations also showed abnormal clinical vestibular function tests. These findings suggest that KCNQ4 plays an essential role in calyx and afferent of type 1 vestibular hair cell preserving vestibular function against excessive mechanical stimulation.


Subject(s)
Hair Cells, Vestibular , KCNQ Potassium Channels , Mice, Transgenic , Animals , KCNQ Potassium Channels/metabolism , KCNQ Potassium Channels/genetics , Hair Cells, Vestibular/metabolism , Hair Cells, Vestibular/pathology , Mice , Phenylenediamines/pharmacology , Carbamates/pharmacology , Vestibule, Labyrinth/metabolism , Vestibule, Labyrinth/pathology , Vestibule, Labyrinth/physiopathology
4.
Br J Pharmacol ; 181(16): 2851-2868, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38657956

ABSTRACT

BACKGROUND AND PURPOSE: The analgesic action of paracetamol involves KV7 channels, and its metabolite N-acetyl-p-benzo quinone imine (NAPQI), a cysteine modifying reagent, was shown to increase currents through such channels in nociceptors. Modification of cysteine residues by N-ethylmaleimide, H2O2, or nitric oxide has been found to modulate currents through KV7 channels. The study aims to identify whether, and if so which, cysteine residues in neuronal KV7 channels might be responsible for the effects of NAPQI. EXPERIMENTAL APPROACH: To address this question, we used a combination of perforated patch-clamp recordings, site-directed mutagenesis, and mass spectrometry applied to recombinant KV7.1 to KV7.5 channels. KEY RESULTS: Currents through the cardiac subtype KV7.1 were reduced by NAPQI. Currents through all other subtypes were increased, either by an isolated shift of the channel voltage dependence to more negative values (KV7.3) or by such a shift combined with increased maximal current levels (KV7.2, KV7.4, KV7.5). A stretch of three cysteine residues in the S2-S3 linker region of KV7.2 was necessary and sufficient to mediate these effects. CONCLUSION AND IMPLICATION: The paracetamol metabolite N-acetyl-p-benzo quinone imine (NAPQI) modifies cysteine residues of KV7 subunits and reinforces channel gating in homomeric and heteromeric KV7.2 to KV7.5, but not in KV7.1 channels. In KV7.2, a triple cysteine motif located within the S2-S3 linker region mediates this reinforcement that can be expected to reduce the excitability of nociceptors and to mediate antinociceptive actions of paracetamol.


Subject(s)
Acetaminophen , Benzoquinones , Cysteine , Imines , Cysteine/metabolism , Acetaminophen/pharmacology , Benzoquinones/pharmacology , Benzoquinones/metabolism , Animals , Imines/pharmacology , Imines/chemistry , Imines/metabolism , Neurons/drug effects , Neurons/metabolism , KCNQ Potassium Channels/metabolism , KCNQ Potassium Channels/genetics , Humans , Amino Acid Motifs , Analgesics, Non-Narcotic/pharmacology , HEK293 Cells , Rats
5.
Cell Rep ; 43(5): 114158, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722742

ABSTRACT

Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.


Subject(s)
Astrocytes , Gap Junctions , Hippocampus , KCNQ Potassium Channels , Potassium , Animals , Mice , Action Potentials/physiology , Astrocytes/metabolism , Connexins/metabolism , Connexins/genetics , Gap Junctions/metabolism , Hippocampus/metabolism , KCNQ Potassium Channels/metabolism , KCNQ Potassium Channels/genetics , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/metabolism , Neurons/metabolism , Potassium/metabolism , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL