Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
J Phycol ; 60(3): 710-723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551084

ABSTRACT

Pyropia nereocystis is an annual northeastern Pacific-bladed bangialean species whose macroscopic stage epiphytized the annual canopy forming bull kelp Nereocystis luetkeana. I examined three in situ facets of these epiphyte-host dynamics in the central California region: (1) spatial and temporal variation in the presence of P. nereocystis epiphytes as a function of host density, (2) the relationship between individual host morphology and epiphytic P. nereocystis biomass, and (3) the ecophysiological growth ramifications for subtidal transplants of both life stages of P. nereocystis. Swath canopy surveys and whole host collections were conducted at five sites between November 2017 and February 2019. Additionally, transplants of P. nereocystis gametophytes and sporophytes were conducted across multiple subtidal depths. I observed temporal changes in the proportions of hosts epiphytized by P. nereocystis, with differences in seasonal persistence of P. nereocystis among sites and between years. Biomass of P. nereocystis was positively correlated with individual host stipe length, stipe surface area, and the primary principal component (PC) of stipe morphometrics denoted by principal component analysis (PCA). Gametogenesis in P. nereocystis epiphytes was spatially heterogeneous and limited for the 2018-2019 cohort due to comprehensive removal of hosts by the February 2019 sampling period. Transplants of P. nereocystis gametophytes yielded similar growth responses among depths, and sporophyte (conchocelis) transplant areal growth was positively correlated with transplant depth. These findings detail spatiotemporal complexity and multi-scale (individual, site, and whole region) phenological nuances for central Californian P. nereocystis epiphytes.


Subject(s)
Seasons , California , Biomass , Kelp/growth & development , Kelp/physiology
2.
J Phycol ; 60(4): 980-1000, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031293

ABSTRACT

Macroalgae influence local and global biogeochemical cycles through their production of dissolved organic carbon (DOC). Yet, data remain scarce and annualized estimates are typically based on high growth periods without considering seasonal variability. Although the mechanisms of active exudation and passive leakage need clarifying, ecophysiological stress is known to enhance DOC release. Therefore, DOC leakage from seasonally senescent macroalgae may be overlooked. This study focuses on the annual kelp Saccharina japonica var. religiosa (class Phaeophyceae) from Oshoro Bay, Hokkaido, Japan. Three years (2020-2022) of seasonal data were collected and analyzed, with least squares mean DOC release rates established for kelp (n = 88) across 16 incubation experiments (t ≥ 4 d, DOC samples ≥1 · d-1) under different photosynthetically active radiation (PAR) treatments (200, 400, 1200, or 1500 µmol photons · m-2 · s-1). Differences in PAR, dry weight biomass (g DW), sea surface temperature, or salinity could not explain DOC release-rate variability, which was high between individual kelp. Instead, there were significant intra-annual differences, with mean DOC release rates (mg C · g-1 DW · d-1 ± standard error between n kelp) higher during the autumn "late decay" period (0.71 ± 0.10, n = 27) compared to the winter "early growth" period (0.14 ± 0.025, n = 10) and summer "early decay" period (0.25 ± 0.050, n = 24). This relationship between seasonal senescence and macroalgal DOC release is further evidence that long-term, place-based studies of DOC dynamics are essential and that global extrapolations are premature.


Subject(s)
Carbon , Kelp , Seasons , Kelp/metabolism , Kelp/physiology , Kelp/growth & development , Carbon/metabolism , Japan , Biomass
3.
J Exp Biol ; 222(Pt 4)2019 02 25.
Article in English | MEDLINE | ID: mdl-30679240

ABSTRACT

The resistance of macroalgae to damage by hydrodynamic forces depends on the mechanical properties of their tissues. Although factors such as water-flow environment, algal growth rate and damage by herbivores have been shown to influence various material properties of macroalgal tissues, the interplay of these factors as they change seasonally and affect algal mechanical performance has not been worked out. We used the perennial kelp Egregia menziesii to study how the material properties of the rachis supporting a frond changed seasonally over a 2 year period, and how those changes correlated with seasonal patterns of the environment, growth rate and herbivore load. Rachis tissue became stiffer, stronger and less extensible with age (distance from the meristem). Thus, slowly growing rachises were stiffer, stronger and tougher than rapidly growing ones. Growth rates were highest in spring and summer when upwelling and long periods of daylight occurred. Therefore, rachis tissue was most resistant to damage in the winter, when waves were large as a result of seasonal storms. Herbivory was greatest during summer, when rachis growth rates were high. Unlike other macroalgae, E. menziesii did not respond to herbivore damage by increasing rachis tissue strength, but rather by growing in width so that the cross-sectional area of the wounded rachis was increased. The relative timing of environmental factors that affect growth rates (e.g. upwelling supply of nutrients, daylight duration) and of those that can damage macroalgae (e.g. winter storms, summer herbivore outbreaks) can influence the material properties and thus the mechanical performance of macroalgae.


Subject(s)
Herbivory , Kelp/physiology , Seaweed/physiology , Water Movements , Biomechanical Phenomena , Kelp/growth & development , Seasons , Seaweed/growth & development
4.
Proc Natl Acad Sci U S A ; 113(48): 13785-13790, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27849580

ABSTRACT

Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y-1). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y-1), increases in 27% of ecoregions (0.015 to 0.11 y-1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.


Subject(s)
Ecosystem , Forests , Kelp/growth & development , Arctic Regions , Climate Change , Oceans and Seas
5.
Proc Natl Acad Sci U S A ; 113(48): 13791-13796, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27849585

ABSTRACT

Some of the most profound effects of climate change on ecological communities are due to alterations in species interactions rather than direct physiological effects of changing environmental conditions. Empirical evidence of historical changes in species interactions within climate-impacted communities is, however, rare and difficult to obtain. Here, we demonstrate the recent disappearance of key habitat-forming kelp forests from a warming tropical-temperate transition zone in eastern Australia. Using a 10-y video dataset encompassing a 0.6 °C warming period, we show how herbivory increased as kelp gradually declined and then disappeared. Concurrently, fish communities from sites where kelp was originally abundant but subsequently disappeared became increasingly dominated by tropical herbivores. Feeding assays identified two key tropical/subtropical herbivores that consumed transplanted kelp within hours at these sites. There was also a distinct increase in the abundance of fishes that consume epilithic algae, and much higher bite rates by this group at sites without kelp, suggesting a key role for these fishes in maintaining reefs in kelp-free states by removing kelp recruits. Changes in kelp abundance showed no direct relationship to seawater temperatures over the decade and were also unrelated to other measured abiotic factors (nutrients and storms). Our results show that warming-mediated increases in fish herbivory pose a significant threat to kelp-dominated ecosystems in Australia and, potentially, globally.


Subject(s)
Ecosystem , Fishes/physiology , Kelp/growth & development , Oceans and Seas , Animals , Australia , Climate Change , Food Chain , Herbivory/physiology , Temperature , Tropical Climate
6.
J Phycol ; 54(5): 608-615, 2018 10.
Article in English | MEDLINE | ID: mdl-30098020

ABSTRACT

Maintaining buoyancy with gas-filled floats (pneumatocysts) is essential for some subtidal kelps to achieve an upright stature and compete for light . However, as these kelps grow up through the water column, pneumatocysts are exposed to substantial changes in hydrostatic pressure, which could cause complications as internal gases may expand or contract, potentially causing them to rupture, flood, and lose buoyancy. In this study, we investigate how pneumatocysts of Nereocystis luetkeana resist biomechanical stress and maintain buoyancy as they develop across a hydrostatic gradient. We measured internal pressure, material properties, and pneumatocyst geometry across a range of thallus sizes and collection depths to identify strategies used to resist pressure-induced mechanical failure. Contrary to expectations, all pneumatocysts had internal pressures less than atmospheric pressure, ensuring that thalli are always exposed to a positive pressure gradient and compressional loads, indicating that they are more likely to buckle than rupture at all depths. Small pneumatocysts collected from depths between 1 and 9 m (inner radius = 0.4-1.0 cm) were demonstrated to have elevated wall stresses under high compressive loads and are at greatest risk of buckling. Although small kelps do not adjust pneumatocyst material properties or geometry to reduce wall stress as they grow, they are ~3.4 times stronger than they need to be to resist hydrostatic buckling. When tested, pneumatocysts buckled around 35 m depth, which agrees with previous measures of lower limits due to light attenuation, suggesting that hydrostatic pressure may also define the lower limit of Nereocystis in the field.


Subject(s)
Kelp/cytology , Kelp/physiology , Biomechanical Phenomena , Kelp/growth & development , Pressure
7.
J Phycol ; 54(1): 1-11, 2018 02.
Article in English | MEDLINE | ID: mdl-29072316

ABSTRACT

Primary producers respond to climate directly and indirectly due to effects on their consumers. In the temperate coastal ocean, the highly productive brown algae known as kelp have both strong climate and grazer linkages. We analyzed the demographic response of the kelp Pleurophycus gardneri over a 25-year span to determine the interaction between ocean climate indicators and invertebrate infestation rates. Pleurophycus hosts amphipod species that burrow in the stipe, increasing mortality. Although kelp performance is generally greater with more negative values of the Pacific Decadal Oscillation (PDO) and colder seawater temperatures, Pleurophycus showed the opposite pattern. When we compared the 1990s, a period of positive values for the PDO and warmer sea surface temperatures, with the following decade, a period characterized by negative PDO values, we documented a contradictory outcome for proxies of kelp fitness. In the 1990s, Pleurophycus unexpectedly showed greater longevity, faster growth, greater reproductive effort, and a trend toward decreased amphipod infestation compared with the 2006-2012 period. In contrast, the period from 2006 to 2012 showed opposite kelp performance patterns and with a trend toward greater amphipod infestation. Pleurophycus performance metrics suggest that some coastal primary producers will respond differently to climate drivers, particularly if they interact strongly with grazers.


Subject(s)
Amphipoda/physiology , Climate Change , Food Chain , Herbivory , Kelp/growth & development , Animals , Oceans and Seas , Seasons , Seawater/chemistry
8.
Glob Chang Biol ; 23(1): 353-361, 2017 01.
Article in English | MEDLINE | ID: mdl-27392308

ABSTRACT

The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs.


Subject(s)
Climate Change , Food Chain , Kelp/growth & development , Animals , Biomass , Climate , Ecosystem , Forests , Nephropidae , Sea Urchins
9.
J Phycol ; 53(1): 230-234, 2017 02.
Article in English | MEDLINE | ID: mdl-27878814

ABSTRACT

Recent findings on holdfast development in the giant kelp highlighted its key importance for Macrocystis vegetative propagation. We report here for the first time the development of adventitious holdfasts from Macrocystis stipes. Swellings emerge spontaneously from different areas of the stipes, especially in senescent or creeping individuals. After being manually fastened to solid substrata, these swellings elongated into haptera, which became strongly attached after 1 month. Within 4 months, new thalli increased in size and vitality, and developed reproductive fronds. Our results suggest the usage of these structures for auxiliary attachment techniques. These could act as a backup, when primary holdfasts are weak, and thus improve the survival rate of the giant kelp in natural beds.


Subject(s)
Kelp/physiology , Macrocystis/physiology , Chile , Kelp/growth & development , Macrocystis/growth & development , Reproduction
10.
J Phycol ; 53(3): 557-566, 2017 06.
Article in English | MEDLINE | ID: mdl-28164308

ABSTRACT

The absorption of anthropogenic CO2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non-calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifida, in south-eastern New Zealand. Meiospores of both kelps were released into four seawater pH treatments (pHT 7.20, extreme OA predicted for 2300; pHT 7.65, OA predicted for 2100; pHT 8.01, ambient pH; and pHT 8.40, pre-industrial pH) and cultured for 15 d. Meiospore germination, germling growth rate, and gametophyte size and sex ratio were monitored and measured. Exposure to reduced pHT (7.20 and 7.65) had positive effects on germling growth rate and gametophyte size in both M. pyrifera and U. pinnatifida, whereas, higher pHT (8.01 and 8.40) reduced the gametophyte size in both kelps. Sex ratio of gametophytes of both kelps was biased toward females under all pHT treatments, except for U. pinnatifida at pHT 7.65. Germling growth rate under OA was significantly higher in M. pyrifera compared to U. pinnatifida but gametophyte development was equal for both kelps under all seawater pHT treatments, indicating that the microscopic stages of the native M. pyrifera and the invasive U. pinnatifida will respond similarly to OA.


Subject(s)
Kelp/growth & development , Macrocystis/growth & development , Seawater/chemistry , Undaria/growth & development , Germ Cells, Plant/growth & development , Hydrogen-Ion Concentration , Oceans and Seas
11.
J Phycol ; 52(2): 157-60, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27037581

ABSTRACT

Giant kelp, Macrocystis pyrifera (Linnaeus) C. Agardh, is the subject of intense breeding studies for marine biomass production and conservation of natural resources. In this context, six gametophyte pairs and a sporophyte offspring of Macrocystis from South America were analyzed by flow cytometry. Minimum relative DNA content per cell (1C) was found in five males. Unexpectedly, nuclei of all female gametophytes contained approximately double the DNA content (2C) of males; the male gametophyte from one locality also contained 2C, likely a spontaneous natural diploid variant. The results illustrate a sex-specific difference in nuclear DNA content among Macrocystis gametophytes, with the chromosomes of the females in a polytenic condition. This correlates with significantly larger cell sizes in female gametophytes compared to males and resource allocation in oogamous reproduction. The results provide key information for the interpretation of DNA measurements in kelp life cycle stages and prompt further research on the regulation of the cell cycle, metabolic activity, sex determination, and sporophyte development.


Subject(s)
DNA/genetics , Kelp/growth & development , Kelp/genetics , Macrocystis/genetics , Flow Cytometry , Germ Cells, Plant/cytology , Germ Cells, Plant/metabolism , Kelp/cytology , Macrocystis/cytology
12.
Am J Bot ; 102(11): 1938-44, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26546127

ABSTRACT

PREMISE OF THE STUDY: Morphology and material properties are the main components of the mechanical design of organisms, with species groups developing different optimization strategies in the context of their physical environment. For intertidal and subtidal seaweeds, possessing highly flexible and extensible tissues allows individuals to bend and reconfigure in flow, thereby reducing drag. Previous research has shown that aging may compromise these qualities. Tissue age increases with distance from the blade's meristem, which differs in its position on kelps and red algae. Here, we assess whether longitudinal patterns of blade material properties differ between these two algal groups according to tissue age. METHODS: We performed tensile tests on tissues samples excised from various positions along the extent of blades in nine kelp species (basal growth) and 15 species of red algae (apical growth). KEY RESULTS: We found that older tissues were less flexible and extensible than younger tissues in all species tested. As predicted, tissue near the basal meristem in kelp was more flexible and extensible than older tissue at the blade's distal end. The opposite pattern was observed for red algae, with the most flexible and extensible tissues found near the apical meristem at the distal ends of blades. CONCLUSIONS: We propose that divergent patterns in the distribution of material properties along blades may have different consequences for the performance of kelps and red algae. The positioning of younger tissues at the blade base for kelps may enable these species to attain larger body sizes in wave-swept habitats.


Subject(s)
Kelp/growth & development , Rhodophyta/growth & development , Biomechanical Phenomena
13.
Oecologia ; 179(4): 1223-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26363905

ABSTRACT

Ocean warming is anticipated to strengthen the persistence of turf-forming habitat, yet the concomitant elevation of grazer metabolic rates may accelerate per capita rates of consumption to counter turf predominance. Whilst this possibility of strong top-down control is supported by the metabolic theory of ecology (MTE), it assumes that consumer metabolism and consumption keep pace with increasing production. This assumption was tested by quantifying the metabolic rates of turfs and herbivorous gastropods under a series of elevated temperatures in which the ensuing production and consumption were observed. We discovered that as temperature increases towards near-future levels (year 2100), consumption rates of gastropods peak earlier than the rate of growth of producers. Hence, turfs have greater capacity to persist under near-future temperatures than the capacity for herbivores to counter their growth. These results suggest that whilst MTE predicts stronger top-down control, understanding whether consumer-producer responses are synchronous is key to assessing the future strength of top-down control.


Subject(s)
Food Chain , Gastropoda , Herbivory , Kelp/growth & development , Oceans and Seas , Temperature , Animals , Climate Change , Ecosystem , Gastropoda/metabolism , Kelp/metabolism
14.
Oecologia ; 179(4): 1199-209, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26358195

ABSTRACT

Foundation species create milieus in which ecosystems evolve, altering species abundances and distribution often to a dramatic degree. Although much descriptive work supports their importance, there remains little definitive information on the mechanisms by which foundation species alter their environment. These mechanisms fall into two basic categories: provision of food or other materials, and modification of the physical environment. Here, we manipulated the abundance of a marine foundation species, the giant kelp Macrocystis pyrifera, in 40 × 40-m plots at Mohawk Reef off Santa Barbara, California and found that its biomass had a strong positive effect on the abundance of bottom-dwelling sessile invertebrates. We examined the carbon (C) stable isotope values of seven species of sessile invertebrates in the treatment plots to test the hypothesis that this positive effect resulted from a nutritional supplement of small suspended particles of kelp detritus, as many studies have posited. We found no evidence from stable isotope analyses to support the hypothesis that kelp detritus is an important food source for sessile suspension-feeding invertebrates. The isotope composition of invertebrates varied with species and season, but was not affected by kelp biomass, with the exception of two species: the tunicate Styela montereyensis, which exhibited a slight enrichment in C stable isotope composition with increasing kelp biomass, and the hydroid Aglaophenia sp., which showed the opposite effect. These results suggest that modification of the physical habitat, rather than nutritional subsidy by kelp detritus, likely accounts for increased abundance of sessile invertebrates within giant kelp forests.


Subject(s)
Diet , Ecosystem , Feeding Behavior , Invertebrates/physiology , Kelp , Macrocystis , Animals , Biomass , California , Carbon/metabolism , Carbon Isotopes/analysis , Environment , Invertebrates/growth & development , Invertebrates/metabolism , Kelp/growth & development , Macrocystis/growth & development
15.
Oecologia ; 175(1): 409-16, 2014 May.
Article in English | MEDLINE | ID: mdl-24604540

ABSTRACT

Understanding the impact of multiple stressors on ecosystems is of pronounced importance, particularly when one or more of those stressors is anthropogenic. Here we investigated the role of physical disturbance and increased nutrients on reefs dominated by the canopy-forming kelp Ecklonia radiata. We combined experimental kelp canopy removals and additional nutrient at three different locations in a large embayment in temperate southeastern Australia. Over the following winter recruitment season, Ecklonia recruitment was unaffected by increased nutrients alone, but tripled at all sites where the canopy had been removed. At one site, the combination of disturbance and increased nutrients resulted in more than four times the recruitment of the introduced kelp Undaria pinnatifida. Six months after disturbance, the proliferation of the Undaria canopy in the canopy-removal and nutrient-addition treatment negatively influenced the recovery of the native kelp Ecklonia. Given the otherwise competitive dominance of adult Ecklonia, this provides a mechanism whereby Undaria could maintain open space for the following recruitment season. This interplay between disturbance, nutrients and the response of native and invasive species makes a compelling case for how a combination of factors can influence species dynamics.


Subject(s)
Ecosystem , Kelp/growth & development , Australia , Introduced Species , Nitrogen/chemistry , Seasons , Seawater/chemistry
16.
Science ; 385(6712): 924-927, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39208091

ABSTRACT

An ambitious strategy aims to cool the planet by dumping farmed seaweed on the sea floor. Will it work?


Subject(s)
Aquaculture , Climate Change , Kelp , Seaweed , Kelp/growth & development , Carbon Sequestration
17.
Integr Comp Biol ; 64(2): 222-233, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38521985

ABSTRACT

Kelp and other habitat-forming seaweeds in the intertidal zone are exposed to a suite of environmental factors, including temperature and hydrodynamic forces, that can influence their growth, survival, and ecological function. Relatively little is known about the interactive effect of temperature and hydrodynamic forces on kelp, especially the effect of cold stress on biomechanical resistance to hydrodynamic forces. We used the intertidal kelp Egregia menziesii to investigate how freezing in air during a low tide changes the kelp's resistance to breaking from hydrodynamic forces. We conducted a laboratory experiment to test how short-term freezing, mimicking a brief low-tide freezing event, affected the kelp's mechanical properties. We also characterized daily minimum winter temperatures in an intertidal E. menziesii population on San Juan Island, WA, near the center of the species' geographic range. In the laboratory, acute freezing events decreased the strength and toughness of kelp tissue by 8-20% (change in medians). During low tides in the field, we documented sub-zero temperatures, snow, and low canopy cover (compared to summer surveys). These results suggest that freezing can contribute to frond breakage and decreased canopy cover in intertidal kelp. Further work is needed to understand whether freezing and the biomechanical performance in cold temperatures influence the fitness and ecological function of kelp and whether this will change as winter conditions, such as freezing events and storms, change in frequency and intensity.


Subject(s)
Freezing , Kelp , Kelp/physiology , Kelp/growth & development , Biomechanical Phenomena , Ecosystem , Washington , Hydrodynamics , Seasons
18.
Commun Biol ; 7(1): 1147, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278981

ABSTRACT

Kelps are vital for marine ecosystems, yet the genetic diversity underlying their capacity to adapt to climate change remains unknown. In this study, we focused on the kelp Macrocystis pyrifera a species critical to coastal habitats. We developed a protocol to evaluate heat stress response in 204 Macrocystis pyrifera genotypes subjected to heat stress treatments ranging from 21 °C to 27 °C. Here we show that haploid gametophytes exhibiting a heat-stress tolerant (HST) phenotype also produced greater biomass as genetically similar diploid sporophytes in a warm-water ocean farm. HST was measured as chlorophyll autofluorescence per genotype, presented here as fluorescent intensity values. This correlation suggests a predictive relationship between the growth performance of the early microscopic gametophyte stage HST and the later macroscopic sporophyte stage, indicating the potential for selecting resilient kelp strains under warmer ocean temperatures. However, HST kelps showed reduced genetic variation, underscoring the importance of integrating heat tolerance genes into a broader genetic pool to maintain the adaptability of kelp populations in the face of climate change.


Subject(s)
Heat-Shock Response , Macrocystis , Macrocystis/genetics , Heat-Shock Response/genetics , Thermotolerance/genetics , Genetic Variation , Climate Change , Genotype , Kelp/genetics , Kelp/growth & development
19.
PLoS One ; 17(1): e0257933, 2022.
Article in English | MEDLINE | ID: mdl-34990455

ABSTRACT

Giant kelp populations that support productive and diverse coastal ecosystems at temperate and subpolar latitudes of both hemispheres are vulnerable to changing climate conditions as well as direct human impacts. Observations of giant kelp forests are spatially and temporally uneven, with disproportionate coverage in the northern hemisphere, despite the size and comparable density of southern hemisphere kelp forests. Satellite imagery enables the mapping of existing and historical giant kelp populations in understudied regions, but automating the detection of giant kelp using satellite imagery requires approaches that are robust to the optical complexity of the shallow, nearshore environment. We present and compare two approaches for automating the detection of giant kelp in satellite datasets: one based on crowd sourcing of satellite imagery classifications and another based on a decision tree paired with a spectral unmixing algorithm (automated using Google Earth Engine). Both approaches are applied to satellite imagery (Landsat) of the Falkland Islands or Islas Malvinas (FLK), an archipelago in the southern Atlantic Ocean that supports expansive giant kelp ecosystems. The performance of each method is evaluated by comparing the automated classifications with a subset of expert-annotated imagery (8 images spanning the majority of our continuous timeseries, cumulatively covering over 2,700 km of coastline, and including all relevant sensors). Using the remote sensing approaches evaluated herein, we present the first continuous timeseries of giant kelp observations in the FLK region using Landsat imagery spanning over three decades. We do not detect evidence of long-term change in the FLK region, although we observe a recent decline in total canopy area from 2017-2021. Using a nitrate model based on nearby ocean state measurements obtained from ships and incorporating satellite sea surface temperature products, we find that the area of giant kelp forests in the FLK region is positively correlated with the nitrate content observed during the prior year. Our results indicate that giant kelp classifications using citizen science are approximately consistent with classifications based on a state-of-the-art automated spectral approach. Despite differences in accuracy and sensitivity, both approaches find high interannual variability that impedes the detection of potential long-term changes in giant kelp canopy area, although recent canopy area declines are notable and should continue to be monitored carefully.


Subject(s)
Ecosystem , Forests , Kelp/growth & development , Remote Sensing Technology/methods , Satellite Imagery/methods , Temperature , Climate Change , Falkland Islands
20.
PLoS One ; 16(2): e0229703, 2021.
Article in English | MEDLINE | ID: mdl-33596204

ABSTRACT

Kelp forests form an important biogenic habitat that responds to natural and human drivers. Global concerns exist about threats to kelp forests, yet long-term information is limited and research suggests that trends are geographically distinct. We examined distribution of the bull kelp Nereocystis luetkeana over 145 years in South Puget Sound (SPS), a semi-protected inner basin in a fjord estuary complex in the northeast Pacific Ocean. We synthesized 48 historical and modern Nereocystis surveys and examined presence/absence within 1-km segments along 452 km of shoreline. Compared to the earliest baseline in 1878, Nereocystis extent in 2017 decreased 63%, with individual sub-basins showing up to 96% loss. Losses have persisted for decades, across a range of climate conditions. In recent decades, Nereocystis predominantly occurred along shorelines with intense currents and mixing, where temperature and nutrient concentrations did not reach thresholds for impacts to Nereocystis performance, and high current speeds likely excluded grazers. Losses predominated in areas with elevated temperature, lower nutrient concentrations, and relatively low current velocities. The pattern of long-term losses in SPS contrasts with stability in floating kelp abundance during the last century in an area of the Salish Sea with greater wave exposure and proximity to oceanic conditions. These findings support the hypothesis that kelp beds along wave-sheltered shorelines exhibit greater sensitivity to environmental stressors. Additionally, shorelines with strong currents and deep-water mixing may provide refugia within sheltered systems.


Subject(s)
Conservation of Natural Resources/trends , Kelp/growth & development , Kelp/metabolism , British Columbia , Conservation of Natural Resources/methods , Ecological Parameter Monitoring/methods , Ecosystem , Longitudinal Studies , Pacific Ocean , Temperature , Washington
SELECTION OF CITATIONS
SEARCH DETAIL