Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
Add more filters

Publication year range
1.
Microb Cell Fact ; 23(1): 195, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971787

ABSTRACT

This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.


Subject(s)
Microbial Sensitivity Tests , Nanocomposites , Silver , Whey , Nanocomposites/chemistry , Silver/chemistry , Silver/pharmacology , Whey/chemistry , Whey/metabolism , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Metal Nanoparticles/chemistry , Lactobacillus/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Spectroscopy, Fourier Transform Infrared
2.
Nanotechnology ; 35(35)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38806018

ABSTRACT

Nanotechnology has gained immense popularity and observed rapid development due to the remarkable physio-chemical properties of nanoparticles (NPs) and related nanomaterials. The green production of NPs has many benefits over traditional techniques because the current procedures are expensive, time-consuming, and involve harmful substances that limit their applicability. This study aimed to use a novel green source, theSalsola imbricata(SI) plant, which is commonly found in Central Asia and known for its medicinal properties as a reducing and stabilizing agent for the synthesis of AgNPs. The current study also utilized efficient statistical design, the Plackett-Burman Design (PBD) of Experiment method to synthesize the NPs. The characterization of NPs was carried out using UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM). The PBD results showed that only two out of four factorsi.e.AgNO3concentration and incubation time, were significant for the synthesis of SI-AgNPs. While remaining factors, incubation temperature and plant extract: AgNO3ratio were non-significant. The SEM analysis result showed that SI-AgNPs had a size of 20-50 nm. The SI-AgNPs demonstrated strong antibacterial activity against oral pathogens such asS. mutans and Lactobacillus acidophilus, with the highest efficacy observed at a concentration of 2 mg ml-1. The addition of SI-AgNPs in glass ionomer cement significantly increased the antibacterial activity of GIC againstS. mutans. Based on the results of the current study, the plant based AgNPs can be further evaluated in detail as alternate antimicrobial agent either alone or in combination with other antimicrobial agents for different dental applications.


Subject(s)
Anti-Bacterial Agents , Glass Ionomer Cements , Metal Nanoparticles , Microbial Sensitivity Tests , Plant Extracts , Silver , Streptococcus mutans , Silver/chemistry , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Metal Nanoparticles/chemistry , Glass Ionomer Cements/chemistry , Glass Ionomer Cements/pharmacology , Streptococcus mutans/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Lactobacillus acidophilus/drug effects , Green Chemistry Technology/methods , Spectroscopy, Fourier Transform Infrared
3.
Pharmacol Res ; 159: 104978, 2020 09.
Article in English | MEDLINE | ID: mdl-32485282

ABSTRACT

Emerging evidence implicates gut microbiota have an important role in ulcerative colitis (UC). Previous study indicated that Evodiamine (EVO) can alleviate colitis through downregulating inflammatory pathways. However, specific relationship between EVO-treated colitis relief and regulation of gut microbiota is still unclear. Here, our goal was to determine the potential role of gut microbiota in the relief of UC by EVO. By using pathology-related indicators, 16S rRNA sequencing and metabolomics profiling, we assessed the pharmacological effect of EVO on dextran sulfate sodium (DSS)-induced colitis rats as well as on the change of gut microbiota and metabolism. Fecal derived from EVO-treated rats was transplanted into colitis rats to verify the effect of EVO on gut microbiota, and 'driver bacteria' was found and validated by 16S rRNA sequencing, metagenome and qRT-PCR. The effect of Lactobacillus acidophilus (L. acidophilus) was investigated by vivo experiment, microbiota analysis, Short-chain fatty acids (SCFAs) quantification and colon transcriptomics. EVO reduced the susceptibility to DSS-induced destruction of epithelial integrity and severe inflammatory response, and regulated the gut microbiota and metabolites. Fecal Microbiota Transplantation (FMT) alleviated DSS-induced colitis, increased the abundance of L. acidophilus and the level of acetate. Furthermore, gavaged with L. acidophilus reduced pro-inflammatory cytokines, promoted the increase of goblet cells and the secretion of antimicrobial peptides, regulated the ratio of Firmicutes/Bacteroidetes and increased the level of acetate. Our results indicated that EVO mitigation of DSS-induced colitis is associated with increased in L. acidophilus and protective acetate production, which may be a promising strategy for treating UC.


Subject(s)
Acetates/metabolism , Colitis, Ulcerative/drug therapy , Colon/microbiology , Gastrointestinal Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Lactobacillus acidophilus/drug effects , Quinazolines/pharmacology , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colon/metabolism , Cytokines/metabolism , Dextran Sulfate , Disease Models, Animal , Fecal Microbiota Transplantation , Feces/microbiology , Inflammation Mediators/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lactobacillus acidophilus/genetics , Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/metabolism , Male , Metabolomics , Rats, Sprague-Dawley , Ribotyping
4.
Biosci Biotechnol Biochem ; 84(9): 1913-1920, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32448058

ABSTRACT

The aims of this study were to compare the effectiveness of different drying methods and to investigate the effects of adding a series of individual protectant such as skim milk, sucrose, maltodextrin, and corn starch for preserving Lactobacillus acidophilus FTDC 3081 cells during spray and freeze-drying and storage at different temperatures. Results showed a remarkable high survival rate of 70-80% immediately after spray- and freeze-drying in which the cell viability retained at the range of 109 to 1010 CFU/mL. After a month of storage, maltodextrin showed higher protective ability on both spray- and freeze-dried cells as compared to other protective agents at 4°C, 25°C, and 40°C. A complete loss in viability of spray-dried L. acidophilus FTDC 3081 was observed after a month at 40°C in the absence of protective agent.


Subject(s)
Cryopreservation/methods , Freeze Drying , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/physiology , Microbial Viability/drug effects , Capsules , Cell Survival/drug effects , Lactobacillus acidophilus/cytology , Polysaccharides/pharmacology
5.
Food Microbiol ; 86: 103348, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31703879

ABSTRACT

The effects of the incorporation of the essential oils from Origanum vulgare L. (OVEO; 0.07 µL/g) and Rosmarinus officinalis L. (ROEO; 2.65 µL/g) in combination in Minas Frescal cheese on the counts of the probiotic Lactobacillus acidophilus LA-5 and Escherichia coli O157:H7 were evaluated during refrigerated storage (7 ±â€¯0.5 °C). The terpenes of OVEO and ROEO, survival of the probiotic strain during in vitro digestion, as well as the physicochemical and sensory aspects were also monitored in Minas Frescal cheese. All terpenes decreased in cheese when the storage time increased. The incorporation of OVEO and ROEO delayed the increase in L. acidophilus LA-5 counts in cheese, but did not affect its ability to survive in cheese under simulated gastrointestinal conditions. The decreases in counts of E. coli O157:H7 observed in the first 15 days of refrigerated storage were strongly correlated (r ≥ 0.82) with the terpenes detected in cheese. Scores attributed for aroma, flavor, overall impression and purchase intention of cheese with OVEO and ROEO increased with the increase of the storage time. The incorporation of OVEO and ROEO in combination could be a strategy to control E. coli O157:H7 in probiotic Minas cheese during storage; however, the amounts of these substances should be cautiously selected considering possible negative sensory impacts in this product.


Subject(s)
Cheese/microbiology , Escherichia coli O157/growth & development , Food Additives/analysis , Lactobacillus acidophilus/growth & development , Oils, Volatile/analysis , Origanum/chemistry , Plant Oils/analysis , Rosmarinus/chemistry , Cheese/analysis , Escherichia coli O157/drug effects , Food Additives/pharmacology , Humans , Lactobacillus acidophilus/drug effects , Microbial Viability/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Taste
6.
J Sci Food Agric ; 100(5): 2057-2064, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31875968

ABSTRACT

BACKGROUND: The reason why dietary polyunsaturated fatty acids (PUFAs) affect the activity of Lactobacillus remains unclear. In this study, linoleic acid was used to study the mechanism underlying its inhibition function against Lactobacillus activity. RESULTS: The growth curve of Lactobacillus rhamnosus LGG and the metabolite content in bacterial liquid were determined at varying linoleic acid concentration. The degree of cell membrane damage of L. rhamnosus LGG was determined by flow cytometry and fluorescence microscopy, and the cell structure was observed by scanning electron microscopy and transmission electron microscopy. The effect of linoleic acid on Lactobacillus activity was assessed in a simulated gut environment. Results showed that L. rhamnosus LGG grew slowly, cell metabolites leaked into the liquid, cell membrane was damaged, and the cell structure changed at a linoleic acid concentration of 50 µg mL-1 . CONCLUSION: The mechanism of action of linoleic acid on Lactobacillus showed that that linoleic acid destroyed the cell membrane of bacteria, thereby affecting the normal metabolism of the bacteria and ultimately leading to their death. © 2019 Society of Chemical Industry.


Subject(s)
Cell Membrane/drug effects , Lactobacillus/drug effects , Lactobacillus/metabolism , Linoleic Acid/pharmacology , Dimethyl Sulfoxide/pharmacology , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/metabolism , Limosilactobacillus fermentum/drug effects , Limosilactobacillus fermentum/metabolism , Lacticaseibacillus rhamnosus/drug effects , Lacticaseibacillus rhamnosus/metabolism , Ligilactobacillus salivarius/drug effects , Ligilactobacillus salivarius/metabolism , Microbial Sensitivity Tests , Models, Molecular , Probiotics
7.
Lett Appl Microbiol ; 68(1): 31-37, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30269343

ABSTRACT

Lactobacillus acidophilus is one of the widespread probiotic bacteria that can overcome acid and bile barrier of stomach and intestine, respectively, and then have beneficial effects on the host improving its intestinal microbial balance. The cell membrane FO F1 -ATPase is an important factor in the response and tolerance to low pH through the action of controlling the H+ concentration between the cell cytoplasm and external medium. In this study, the effects of extremely high-frequency EMI at the frequencies of 51·8 GHz and 53 GHz and cetfazidime ( µmol l-1 ) on survival of L. acidophilus VKM B-1660 in the gastrointestinal model in vitro and on ATPase activity of their membrane vesicles were investigated. Irradiated L. acidophilus survived in media with acid pH; the irradiation stimulated N,N'-dicyclohexylcarbodiimide-sensitive FO F1 -ATPase activity under acidic conditions, but enhanced the inhibitory effects of ceftazidime. Probably irradiated L. acidophilus is overcoming the acid barrier even in the presence of ceftazidime due to the FO F1 -ATPase. The obtained results can allow the use of L. acidophilus in food industry, veterinary and medicine. SIGNIFICANCE AND IMPACT OF THE STUDY: The probiotic property of lactobacilli is defined with survival in different conditions of human digestive tract even in the presence of antibiotics and subjected to electromagnetic irradiation (EMI) at the extremely high frequency. Despite the fact that EMI and antibiotic ceftazidime affected Lactobacillus acidophilus; the viable number of bacterial cells was decreased in in vitro gastrointestinal model, but they could to grow in fresh growth medium. The changes in the FO F1 -ATPase activity were obtained at acidic pH. Thus, these bacteria can overcome acid barrier due to the FO F1 -ATPase: the irradiation stimulates the FO F1 -ATPase activity in the acidic conditions, but enhances the effects of ceftazidime. The results are important for identifying the mechanisms of lactobacilli survival for physical and chemical factors and valuable for use.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ceftazidime/pharmacology , Electromagnetic Radiation , Lactobacillus acidophilus/growth & development , Proton-Translocating ATPases/metabolism , Bile/metabolism , Cell Membrane/drug effects , Dicyclohexylcarbodiimide , Gastrointestinal Tract/microbiology , Humans , Hydrogen-Ion Concentration , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/radiation effects , Probiotics
8.
Biofouling ; 34(7): 815-825, 2018 08.
Article in English | MEDLINE | ID: mdl-30322278

ABSTRACT

This study evaluated the antibacterial activity of terpinen-4-ol against Streptococcus mutans and Lactobacillus acidophilus and its influence on gbpA (S. mutans) and slpA (L. acidophilus) gene expression. As measured by XTT assay, the concentrations of terpinen-4-ol that effectively inhibited the biofilm were 0.24% and 0.95% for S. mutans and L. acidophilus, respectively. Confocal microscopy revealed the presence of a biofilm attached to the enamel and dentin block surfaces with significant terpinen-4-ol effects against these microorganisms. The expression of the gbpA and slpA genes involved in adherence and biofilm formation was investigated using RT-PCR. Expression of these genes decreased after 15 min with 0.24% and 0.95% terpinen-4-ol in S. mutans and L. acidophilus, respectively. These findings demonstrate the antimicrobial activity of terpinen-4-ol and its ability to modulate the expression of gbpA and slpA genes, emphasizing the therapeutic capacity of terpinen-4-ol as an alternative to inhibit adherence in biofilm.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dental Caries/prevention & control , Lactobacillus acidophilus/drug effects , Streptococcus mutans/drug effects , Terpenes/pharmacology , Adult , Anti-Infective Agents , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/drug effects , Humans , Lactobacillus acidophilus/genetics , Lactobacillus acidophilus/metabolism , Male , Microbial Sensitivity Tests , Phytotherapy , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Tea Tree Oil/chemistry
9.
J Contemp Dent Pract ; 19(5): 591-598, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29807972

ABSTRACT

AIM: To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diammine fluoride (SDF), silver fluoride, and silver nitrate. MATERIALS AND METHODS: Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. RESULTS: Silver diammine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p < 0.05) on all three test organisms, although ammonium fluoride had no effect at low concentration; the remaining other compounds had no effect. CONCLUSION: Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. CLINICAL SIGNIFICANCE: Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.


Subject(s)
Actinomyces/drug effects , Lactobacillus acidophilus/drug effects , Quaternary Ammonium Compounds/pharmacology , Silver Compounds/pharmacology , Streptococcus mutans/drug effects , Actinomyces/pathogenicity , Dental Caries/microbiology , Dose-Response Relationship, Drug , Drug Resistance, Bacterial , Fluorides/pharmacology , Fluorides, Topical/pharmacology , Lactobacillus acidophilus/pathogenicity , Microbial Sensitivity Tests/methods , Silver Nitrate/pharmacology , Streptococcus mutans/pathogenicity
10.
Biometals ; 30(2): 237-248, 2017 04.
Article in English | MEDLINE | ID: mdl-28185076

ABSTRACT

Bovine lactoferrin (bLf) is a natural iron-binding protein and it has been suggested to be a prebiotic agent, but this finding remains inconclusive. This study explores the prebiotic potential of bLf in 14 probiotics. Initially, bLf (1-32 mg/mL) treatment showed occasional and slight prebiotic activity in several probiotics only during the late experimental period (48, 78 h) at 37 °C. We subsequently supposed that bLf exerts stronger prebiotic effects when probiotic growth has been temperately retarded. Therefore, we incubated the probiotics at different temperatures, namely 37 °C, 28 °C, room temperature (approximately 22-24 °C), and 22 °C, to retard or inhibit their growth. As expected, bLf showed more favorable prebiotic activity in several probiotics when their growth was partially retarded at room temperature. Furthermore, at 22 °C, the growth of Bifidobacterium breve, Lactobacillus coryniformis, L. delbrueckii, L. acidophilus, B. angulatum, B. catenulatum, and L. paraplantarum were completely blocked. Notably, these probiotics started regrowing in the presence of bLf (1-32 mg/mL) in a significant and dose-dependent manner. Accordingly, bLf significantly increased the growth of Pediococcus pentosaceus, L. rhamnosus, and L. paracasei (BCRC 17483; a locally isolated strain) when their growth was retarded by incubation at 22 °C. In conclusion, bLf showed inconsistent prebiotic activity in the 14 probiotics at 37 °C, but revealed strong prebiotic activity in 10 probiotic strains at 22 °C. Therefore, this study enables determining additional roles of Lf in probiotic strains, which can facilitate developing novel combinational approaches by simultaneously using Lf and specific probiotics.


Subject(s)
Bifidobacterium/drug effects , Lactobacillus/drug effects , Lactoferrin/pharmacology , Prebiotics , Probiotics , Animals , Bifidobacterium/growth & development , Bifidobacterium breve/drug effects , Bifidobacterium breve/growth & development , Cattle , Culture Media/chemistry , Lactobacillus/growth & development , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/growth & development , Lactobacillus delbrueckii/drug effects , Lactobacillus delbrueckii/growth & development , Pediococcus pentosaceus/drug effects , Pediococcus pentosaceus/growth & development , Temperature
11.
Appl Microbiol Biotechnol ; 101(8): 3439-3449, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28013406

ABSTRACT

The effects of weightlessness on enteric microorganisms have been extensively studied, but have mainly been focused on pathogens. As a major component of the microbiome of the human intestinal tract, probiotics are important to keep the host healthy. Accordingly, understanding their changes under weightlessness conditions has substantial value. This study was carried out to investigate the characteristics of Lactobacillus acidophilus, a typical probiotic for humans, under simulated microgravity (SMG) conditions. The results revealed that SMG had no significant impact on the morphology of L. acidophilus, but markedly shortened its lag phase, enhanced its growth rate, acid tolerance ability up to pH < 2.5, and the bile resistance at the bile concentration of <0.05%. SMG also decreased the sensitivity of L. acidophilus to cefalexin, sulfur gentamicin, and sodium penicillin. No obvious effect of SMG was observed on the adhesion ability of L. acidophilus to Caco-2 cells. Moreover, after SMG treatment, both the culture of L. acidophilus and its liquid phase exhibited higher antibacterial activity against S. typhimurium and S. aureus in a time-dependent manner. The SMG treatment also increased the in vitro cholesterol-lowering ability of L. acidophilus by regulating the expression of the key cholesterol metabolism genes CYP7A1, ABCB11, LDLR, and HMGCR in the HepG2 cell line. Thus, the SMG treatment did have considerable influence on some biological activities and characteristics of L. acidophilus related to human health. These findings provided valuable information for understanding the influence of probiotics on human health under simulated microgravity conditions, at least.


Subject(s)
Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/physiology , Weightlessness Simulation , Weightlessness , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion , Bile Acids and Salts/pharmacology , Caco-2 Cells , Cholesterol/genetics , Cholesterol/metabolism , Humans , Hydrogen-Ion Concentration , Intestines/drug effects , Lactobacillus acidophilus/drug effects , Probiotics/metabolism , Staphylococcus aureus/drug effects
12.
Ecotoxicol Environ Saf ; 142: 164-170, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28410499

ABSTRACT

Alterations of gut bacterial metabolism play an important role in their host metabolism, and can result in diseases such as obesity and diabetes. While many factors were discovered influencing the gut bacterial metabolism, exposure to ultrafine particles (UFPs) from engine combustions were recently proposed to be a potential risk factor for the perturbation of gut bacterial metabolism, and consequentially to obesity and diabetes development. This study focused on evaluation of how UFPs from diesel engine combustions impact gut bacterial metabolism. We hypothesize that UFPs from different type of diesel (petrodiesel vs. biodiesel) will both impact bacterial metabolism, and the degree of impact is also diesel type-dependent. Targeted metabolic profiling of 221 metabolites were applied to three model gut bacteria in vitro, Streptococcus salivarius, Lactobacillus acidophilus and Lactobacillus fermentum. UFPs from two types of fuels, petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume), were exposed to the bacteria and their metabolic changes were compared. For each bacterial strain, metabolites with significantly changed abundance were observed in both perturbations, and all three strains have increased number of altered metabolites detected from B20 UFPs perturbation in comparison to B0 UFPs. Multivariate statistical analysis further confirmed that the metabolic profiles were clearly different between testing groups. Metabolic pathway analyses also demonstrated several important metabolic pathways, including pathways involves amino acids biosynthesis and sugar metabolism, were significantly impacted by UFPs exposure.


Subject(s)
Biofuels/toxicity , Gasoline/toxicity , Lactobacillus acidophilus/drug effects , Limosilactobacillus fermentum/drug effects , Metabolome/drug effects , Particulate Matter/toxicity , Streptococcus salivarius/drug effects , Vehicle Emissions/toxicity , Biofuels/analysis , Chromatography, High Pressure Liquid , Gasoline/analysis , Gastrointestinal Tract/microbiology , Humans , Lactobacillus acidophilus/metabolism , Limosilactobacillus fermentum/metabolism , Metabolomics , Particle Size , Particulate Matter/analysis , Streptococcus salivarius/metabolism , Tandem Mass Spectrometry , Vehicle Emissions/analysis
13.
Phytother Res ; 31(3): 395-402, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28083890

ABSTRACT

Bio-guided fractionation of Aspergillus terreus extract leads to isolation of a novel terpenoidal secondary metabolite. The isolated compound and the total alcoholic extract of Aspergillus terreus showed a remarkable activity against microbial mouth infections; namely, Candida albicans, Lactobacillus acidophilus, Streptococcus gordonii, and S. mutan. Moreover, the Minimum Inhibitory Concentration of the isolated compound was determined and showed low values. The combination of each of the alcoholic extract of A. terreus and the isolated compound Coe-Comfort tissue conditioner inhibited the growth of Candida albicans at concentrations of 500 and 7.81 µg/mL, respectively, Lactobacillus acidophilus at concentrations of 250 and 7.81 µg/mL, respectively, Streptococcus gordonii at concentrations of 1000 and 62.50 µg/mL, respectively, and S. mutans at concentrations of 1000 and 125 µg/mL, respectively. The oral dosing of the extract and the isolated compound did not show any significant effect on the activity of alanine aminotransferase, aspirate aminotransferase, and the levels of blood urea and serum creatinine. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Anti-Infective Agents/isolation & purification , Anti-Infective Agents/therapeutic use , Aspergillus/chemistry , Chrysenes/therapeutic use , Infections/drug therapy , Mouth Diseases/drug therapy , Animals , Anti-Infective Agents/toxicity , Aspergillus/metabolism , Candida albicans/drug effects , Candida albicans/growth & development , Chrysenes/isolation & purification , Chrysenes/toxicity , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/growth & development , Male , Microbial Sensitivity Tests , Mouth/drug effects , Mouth/microbiology , Rats , Rats, Wistar , Toxicity Tests
14.
Molecules ; 22(10)2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29053619

ABSTRACT

Food-derived polysaccharides have advantages over synthetical compounds and have attracted interest globally for decades. In this study, we optimized the cellulase-assisted extraction of polysaccharides from white hyacinth bean (PWBs) with the aid of response surface methodology (RSM). The optimum extraction parameters were a pH of 7.79, a cellulase of 2.73%, and a ratio of water to material of 61.39, producing a high polysaccharide yield (3.32 ± 0.03)%. The scavenging ability of PWBs varied on three radicals (hydroxyl > 2,2-diphenyl-1-picrylhydrazyl (DPPH) > superoxide). Furthermore, PWBs contributed to the proliferation of three probiotic bacteria (Lactobacillus acidophilus LA5, Bifidobacterium bifidum BB01, and Lactobacillus bulgaricus LB6). These investigations of PWBs provide a novel bioresource for the exploitation of antioxidant and probiotic bacterial proliferation.


Subject(s)
Cellulase/metabolism , Hyacinthus/chemistry , Polysaccharides/isolation & purification , Bifidobacterium bifidum/drug effects , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Lactobacillus acidophilus/drug effects , Lactobacillus delbrueckii/drug effects , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Probiotics
15.
J Sci Food Agric ; 97(4): 1108-1115, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27282819

ABSTRACT

BACKGROUND: Grape pomace is a source of phenolic compounds, which are associated with health benefits in humans. Additionally, fermented dairy foods with probiotics can be good vehicles to deliver these bioactive compounds. The effects of the addition of grape pomace extract (GPE) on the total phenolic (TP) content, physico-chemical characteristics and viability of Lactobacillus acidophilus LA-5 or Lactobacillus rhamnosus HN001 in fermented goat milks prepared with grape juice were investigated. RESULTS: The TP concentration increased significantly in fermented milks with the addition of GPE. A protective effect of GPE on the viability of L. acidophilus was observed. However, after 14 days of storage, the populations of L. acidophilus were significantly lower when compared with those of L. rhamnosus, and only the last probiotic maintained its viability above 7 log CFU mL-1 throughout the period investigated. The sensory scores of flavor, color and overall acceptability of the fermented milk containing L. rhamnosus HN001 were significantly increased when GPE was added. CONCLUSION: The use of GPE might increase the functionality of probiotic fermented goat milk processed with L. rhamnosus HN001 and grape juice because grape polyphenols are known for their antioxidant properties and positive effect on the modulation of gut microbiota. © 2016 Society of Chemical Industry.


Subject(s)
Cultured Milk Products/analysis , Food Handling/methods , Fruit , Milk/metabolism , Polyphenols/analysis , Probiotics , Vitis , Animals , Bacteria/drug effects , Bacteria/growth & development , Bifidobacterium/drug effects , Bifidobacterium/growth & development , Color , Consumer Behavior , Goats , Humans , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/growth & development , Lacticaseibacillus rhamnosus/drug effects , Lacticaseibacillus rhamnosus/growth & development , Phenols/analysis , Taste
16.
Proteomics ; 16(9): 1361-75, 2016 05.
Article in English | MEDLINE | ID: mdl-26959526

ABSTRACT

Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D-DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress-related protein increasing in a range of +2.1 - +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to -2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α-galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; ß-galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Lactobacillus acidophilus/drug effects , Probiotics/metabolism , Proteome/genetics , Raffinose/pharmacology , Bacterial Adhesion , Bacterial Proteins/metabolism , Galactose/metabolism , Gene Ontology , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , HT29 Cells , Humans , Lactobacillus acidophilus/genetics , Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/metabolism , Molecular Sequence Annotation , Peptide Elongation Factor G/genetics , Peptide Elongation Factor G/metabolism , Prebiotics , Proteome/metabolism , Staining and Labeling , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism
17.
Appl Microbiol Biotechnol ; 100(19): 8475-84, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27376794

ABSTRACT

In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.


Subject(s)
Gene Expression , Lactobacillus acidophilus/genetics , Lactobacillus acidophilus/metabolism , Membrane Glycoproteins/metabolism , Osmotic Pressure , Lactobacillus acidophilus/drug effects , Sodium Chloride/metabolism
18.
J Dairy Sci ; 99(4): 2594-2605, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26874411

ABSTRACT

The effects of NaCl reduction (10.0, 7.5, 5.0, 2.5, and 0% NaCl) and its substitution with KCl (50% substitution at each given concentration) on morphology of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum was investigated using transmission electron microscopy. Changes in membrane composition, including fatty acids and phospholipids, were investigated using gas chromatography and thin layer chromatography. Adhesion ability of these bacteria to human intestinal epithelial-like Caco-2 cells, as affected by NaCl and its substitution with KCl, was also evaluated. Bacteria appeared elongated and the intracellular content appeared contracted when subjected to salt stress, as observed by transmission electron microscopy. Fatty acid content was altered with an increase in the ratio of unsaturated to saturated fatty acid content on increasing the NaCl-induced stress. Among the phospholipids, phosphatidylglycerol was reduced, whereas phosphatidylinositol and cardioplipin were increased when the bacteria were subjected to salt stress. There was a significant reduction in adhesion ability of the bacteria to Caco-2 cells when cultured in media supplemented with NaCl; however, the adhesion ability was improved on substitution with KCl at a given total salt concentration. The findings provide insights into bacterial membrane damage caused by NaCl.


Subject(s)
Bacterial Adhesion/drug effects , Cell Membrane/chemistry , Cell Membrane/drug effects , Gram-Positive Bacteria/drug effects , Intestines/microbiology , Probiotics , Animals , Bifidobacterium/drug effects , Caco-2 Cells , Humans , Lactobacillus acidophilus/drug effects , Lacticaseibacillus casei/drug effects , Sodium Chloride/pharmacology
19.
Int J Mol Sci ; 17(7)2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27376279

ABSTRACT

Electron microscopy was used to test whether or not (a) in statu nascendi synthesized, and in situ measured, nanoparticle size does not differ significantly from the size of nanoparticles after their purification; and (b) the generation of selenium is detrimental to the bacterial strains that produce them. Elemental nano-sized selenium produced by probiotic latic acid bacteria was used as a lactomicroselenium (lactomicroSel) inhibitor of cell growth in the presence of lactomicroSel, and was followed by time-lapse microscopy. The size of lactomicroSel produced by probiotic bacteria was measured in situ and after isolation and purification. For these measurements the TESLA BS 540 transmission electron microscope was converted from analog (aTEM) to digital processing (dTEM), and further to remote-access internet electron microscopy (iTEM). Lactobacillus acidophilus produced fewer, but larger, lactomicroSel nanoparticles (200-350 nm) than Lactobacillus casei (L. casei), which generated many, smaller lactomicroSel particles (85-200 nm) and grains as a cloudy, less electrodense material. Streptococcus thermophilus cells generated selenoparticles (60-280 nm) in a suicidic manner. The size determined in situ in lactic acid bacteria was significantly lower than those measured by scanning electron microscopy after the isolation of lactomicroSel particles obtained from lactobacilli (100-500 nm), but higher relative to those isolated from Streptococcus thermopilus (50-100 nm). These differences indicate that smaller lactomicroSel particles could be more toxic to the producing bacteria themselves and discrepancies in size could have implications with respect to the applications of selenium nanoparticles as prebiotics.


Subject(s)
Nanoparticles/chemistry , Probiotics/metabolism , Selenium/chemistry , Cell Line , Cell Proliferation/drug effects , Humans , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/growth & development , Lacticaseibacillus casei/drug effects , Lacticaseibacillus casei/growth & development , Microscopy, Electron , Nanoparticles/toxicity , Particle Size , Streptococcus thermophilus/drug effects , Streptococcus thermophilus/growth & development
20.
J Environ Sci Health B ; 51(4): 222-9, 2016.
Article in English | MEDLINE | ID: mdl-26766747

ABSTRACT

The application of nanotechnology in the agriculture and food sector is relatively recent compared to its usage in drug delivery or pharmaceuticals. Therefore, this paper presents a study of the effect of silver nanoparticles on probiotic bacteria based on the example of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Streptococcus thermophilus ST-Y31 isolated from fermented milk products. Probiotic bacteria are one of the most crucial groups of bacteria for the food industry, because of their claimed health-promoting properties. Studies have shown that the type and concentration of silver nanoparticle solutions have a significant impact on the tested probiotic bacteria which are profitable for the digestive system. In the presence of all tested silver nanoparticles, St. thermophilus ST-Y31 growth was inhibited significantly by the dilution method as opposed to the disk-diffusion method. Both the disk-diffusion and the dilution methods showed no significant differences between L. acidophilus LA-5 and B. animalis subsp. lactis BB-12. The concentrations 2 µg mL(-1) and 0.25 µg mL(-1) had the highest antibacterial activity and statistically significant impacts on the tested probiotic strains. To our knowledge, this is the first report on potential antimicrobial effect of nanosilver against the health-promoting probiotic bacteria L. acidophilus LA-5, B. animalis subsp. lactis BB-12 and St. thermophilus ST-Y31 isolated from fermented milk products.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cultured Milk Products/microbiology , Metal Nanoparticles/chemistry , Silver/pharmacology , Anti-Bacterial Agents/chemistry , Bifidobacterium/drug effects , Lactobacillus acidophilus/drug effects , Metal Nanoparticles/administration & dosage , Probiotics , Silver/chemistry , Streptococcus thermophilus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL