Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Phycol ; 60(3): 741-754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578201

ABSTRACT

Environmental changes associated with rapid climate change in the Arctic, such as the increased rates of sedimentation from climatic or anthropogenic sources, can enhance the impact of abiotic stressors on coastal ecosystems. High sedimentation rates can be detrimental to nearshore kelp abundance and distribution, possibly due to increased mortality at the spore settlement stage. Spore settlement and viability of the Arctic kelp Laminaria solidungula were examined through a series of lab-based sedimentation experiments. Spores were exposed to increasing sediment loads in three experimental designs simulating different sedimentation scenarios: sediment deposition above settled spores, settlement of spores on sediment-covered substrate, and simultaneous suspension of spores and sediments during settlement. Spore settlement was recorded upon completion of each experiment, and gametophyte abundance was assessed following a growth period with sediments removed to examine short-term spore viability via a gametophyte-to-settled-spore ratio. In all three types of sediment exposure, the addition of sediments caused a 30%-40% reduction in spore settlement relative to a no-sediment control. Spore settlement decreased significantly between the low and high sediment treatments when spores were settled onto sediment-covered substrates. In all experiments, increasing amounts of sediment had no significant effect on spore viability, indicating that spores that had settled under different short-term sediment conditions were viable. Our results indicate that depending on spore-sediment interaction type, higher rates of sedimentation resulting from increased sediment loading could affect L. solidungula spore settlement success with potential impacts on the long-term persistence of a diverse and productive benthic habitat.


Subject(s)
Geologic Sediments , Laminaria , Spores , Laminaria/physiology , Spores/physiology , Arctic Regions , Kelp/physiology
2.
J Phycol ; 53(4): 778-789, 2017 08.
Article in English | MEDLINE | ID: mdl-28434206

ABSTRACT

The genus Laminaria has a wide distribution range compared with other kelp genera because it is found in both the North and the South Atlantic, on both sides of the North Pacific, as well as in the Mediterranean. Hypotheses behind this biogeographical pattern have been discussed by several authors but have not yet been fully evaluated with time-calibrated phylogenies. Based on the analysis of four molecular markers (ITS2, rbcL, atp8 and trnWI), our goal was to reassess the Laminaria species diversity in South Africa, assess its relationship with the other species distributed in the South Atlantic and reconstruct the historical biogeography of the genus. Our results confirm the occurrence of a single species, L. pallida, in southern Africa, and its sister relationship with the North Atlantic L. ochroleuca. Both species belonged to a clade containing the other South Atlantic species: L. abyssalis from Brazil, and the Mediterranean L. rodriguezii. Our time-calibrated phylogenies suggest that Laminaria originated in the northern Pacific around 25 mya, followed by at least two migration events through the Bering Strait after its opening (~5.32 mya). Today, the first is represented by L. solidungula in the Arctic, while the second gave rise to the rest of the Atlantic species. The colonization of the North Atlantic was followed by a gradual colonization southward along the west coast of Europe, into the Mediterranean (~2.07 mya) and two recent, but disconnected, migrations (~1.34 and 0.87 mya) across the equator, giving rise to L. abyssalis in Brazil and L. pallida in southern Africa, respectively.


Subject(s)
Biodiversity , Biological Evolution , Laminaria/classification , Laminaria/physiology , Phylogeny , Algal Proteins/genetics , Algal Proteins/metabolism , Atlantic Ocean , Laminaria/genetics , Phylogeography , Sequence Analysis, DNA
3.
Mar Drugs ; 15(10)2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29039806

ABSTRACT

The incorporation of brown algae into biopolymer beads or foams for metal sorption has been previously reported. However, the direct use of these biomasses for preparing foams is a new approach. In this study, two kinds of porous foams were prepared by ionotropic gelation using algal biomass (AB, Laminaria digitata) or alginate (as the reference) and applied for Pb(II) sorption. These foams (manufactured as macroporous discs) were packed in filtration holders (simulating fixed-bed column) and the system was operated in either a recirculation or a one-pass mode. Sorption isotherms, uptake kinetics and sorbent reuse were studied in the recirculation mode (analogous to batch system). In the one-pass mode (continuous fixed-bed system), the influence of parameters such as flow rate, feed metal concentration and bed height were investigated on both sorption and desorption. In addition, the effect of Cu(II) on Pb(II) recovery from binary solutions was also studied in terms of both sorption and desorption. Sorption isotherms are well fitted by the Langmuir equation while the pseudo-second order rate equation described well both sorption and desorption kinetic profiles. The study of material regeneration confirms that the reuse of the foams was feasible with a small mass loss, even after 9 cycles. In the one-pass mode, for alginate foams, a slower flow rate led to a smaller saturation volume, while the effect of flow rate was less marked for AB foams. Competitive study suggests that the foams have a preference for Pb(II) over Cu(II) but cannot selectively remove Pb(II) from the binary solution.


Subject(s)
Chelating Agents/chemistry , Filtration/methods , Laminaria/physiology , Lead/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Alginates/chemistry , Biomass , Bioreactors , Copper/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Models, Chemical , Porosity
4.
Proc Biol Sci ; 282(1818): 20150587, 2015 11 07.
Article in English | MEDLINE | ID: mdl-26511045

ABSTRACT

Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications.


Subject(s)
Carbon Dioxide/pharmacology , Ecosystem , Seawater/chemistry , Acids/chemistry , Animals , Anthozoa/physiology , Bryozoa/physiology , Carbonates/chemistry , Hydrogen-Ion Concentration , Laminaria/physiology , Mediterranean Sea , Rhodophyta/physiology
5.
Planta ; 239(2): 521-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24253307

ABSTRACT

Iodide (I⁻) retained by the brown macroalga Laminaria digitata at millimolar levels, possesses antioxidant activities, but the wider physiological significance of its accumulation remains poorly understood. In its natural habitat in the lower intertidal, L. digitata experiences salinity changes and osmotic homeostasis is achieved by regulating the organic osmolyte mannitol. However, I⁻ may also holds an osmotic function. Here, impacts of hypo- and hypersaline conditions on I⁻ release from, and accumulation by, L. digitata were assessed. Additionally, mannitol accumulation was determined at high salinities, and physiological responses to externally elevated iodine concentrations and salinities were characterised by chl a fluorometry. Net I⁻ release rates increased with decreasing salinity. I⁻ was accumulated at normal (35 S A) and high salinities (50 S A); this coincided with enhanced rETRmax and qP causing pronounced photoprotection capabilities via NPQ. At 50 S A elevated tissue iodine levels impeded the well-established response of mannitol accumulation and prevented photoinhibition. Contrarily, low tissue iodine levels limited photoprotection capabilities and resulted in photoinhibition at 50 S A, even though mannitol was accumulated. The results indicate a, so far, undescribed osmotic function of I⁻ in L. digitata and, thus, multifunctional principles of this halogen in kelps. The osmotic function of mannitol may have been substituted by that of I⁻ under hypersaline conditions, suggesting a complementary role of inorganic and organic solutes under salinity stress. This study also provides first evidence that iodine accumulation in L. digitata positively affects photo-physiology.


Subject(s)
Acclimatization , Iodine/pharmacology , Laminaria/drug effects , Chlorophyll/metabolism , Iodine/analysis , Iodine/metabolism , Laminaria/growth & development , Laminaria/physiology , Mannitol/analysis , Mannitol/metabolism , Osmotic Pressure , Salinity , Stress, Physiological
6.
Mar Environ Res ; 198: 106518, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648698

ABSTRACT

Kelp forests occur on more than a quarter of the world's coastlines, serving as foundation species supporting high levels of biodiversity. They are also a major source of organic matter in coastal ecosystems, with the majority of primary production released and exported as detritus. Kelp detritus also provides food and shelter for macroinvertebrates, which comprise important components of inshore food-webs. Hitherto, research on kelp detritus-associated macroinvertebrate assemblages remains relatively limited. We quantified spatiotemporal variability in the structure of detritus-associated macroinvertebrate assemblages within Laminaria hyperborea forests and evaluated the influence of putative drivers of the observed variability in assemblages across eight study sites within four regions of the United Kingdom in May and September 2015. We documented 5167 individuals from 106 taxa with Malacostraca, Gastropoda, Isopoda and Bivalvia the most abundant groups sampled. Assemblage structure varied across months, sites, and regions, with highest richness in September compared to May. Many taxa were unique to individual regions, with few documented in all regions. Finally, key drivers of assemblage structure included detritus tissue nitrogen content, depth, sea surface temperature, light intensity, as well as L. hyperborea canopy density and canopy biomass. Despite their dynamic composition and transient existence, accumulations of L. hyperborea detritus represent valuable repositories of biodiversity and represent an additional kelp forest component which influences secondary productivity, and potentially kelp forest food-web dynamics.


Subject(s)
Biodiversity , Invertebrates , Laminaria , Animals , Laminaria/physiology , Invertebrates/physiology , Ecosystem , Environmental Monitoring , Food Chain , Atlantic Ocean , United Kingdom , Biomass , Seaweed
7.
Mar Environ Res ; 200: 106652, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39088885

ABSTRACT

Kelp species function as important foundation organisms in coastal marine ecosystems where they provide biogenic habitat and ameliorate environmental conditions, often facilitating the development of diverse understorey assemblages. The structure of kelp forests is influenced by a variety of environmental factors, changes in which can result in profound shifts in ecological structure and functioning. Intense storm-induced wave action in particular, can severely impact kelp forest ecosystems. Given that storms are anticipated to increase in frequency and intensity in response to anthropogenic climate change, it is critical to understand their potential impacts on kelp forest ecosystems. During the 2021/22 northeast Atlantic storm season, the United Kingdom (UK) was subject to several intense storms, of which the first and most severe was Storm Arwen. Due to the unusual northerly wind direction, the greatest impacts of Storm Arwen were felt along the northeast coast of the UK where wind gusts exceeded 90 km/h, and inshore significant wave heights of 7.2 m and wave periods of 9.3 s were recorded. Here, we investigated temporal and spatial variation in the structure of L. hyperborea forests and associated understorey assemblages along the northeast coast of the UK over the 2021/22 storm season. We found significant changes in the cover, density, length, biomass, and age structure of L. hyperborea populations and the composition of understorey assemblages following the storm season, particularly at our most north facing site. We suggest continuous monitoring of these systems to further our understanding of temporal variation and potential recovery trajectories, alongside enhanced management to promote resilience to future perturbations.


Subject(s)
Climate Change , Ecosystem , Laminaria , Seasons , Seaweed , Biodiversity , Biomass , Environmental Monitoring , Laminaria/physiology , Seaweed/physiology , United Kingdom
8.
Environ Sci Technol ; 46(19): 10413-21, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22934673

ABSTRACT

Tidally exposed macroalgae emit large amounts of I(2) and iodocarbons that produce hotspots of iodine chemistry and intense particle nucleation events in the coastal marine boundary layer. Current emission rates are poorly characterized, however, with reported emission rates varying by 3 orders of magnitude. In this study, I(2) emissions from 25 Laminaria digitata samples were investigated in a simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). The chamber design allowed gradual extraction of seawater to simulate tidal emersion of algae. Samples were exposed to air with or without O(3) and to varying irradiances. Emission of I(2) occurred in four distinct stages: (1) moderate emissions from partially submerged samples; (2) a strong release by fully emerged samples; (3) slowing or stopping of I(2) release; and (4) later pulses of I(2) evident in some samples. Emission rates were highly variable and ranged from 7 to 616 pmol min(-1) gFW(-1) in ozone-free air, with a median value of 55 pmol min(-1) gFW(-1) for 20 samples.


Subject(s)
Iodine , Laminaria/physiology , Marine Biology/methods , Seaweed/physiology , Air , Chlorophyll/analysis , Chlorophyll A , Iodine/analysis , Marine Biology/instrumentation , Ozone , Spectrum Analysis/methods
9.
Environ Sci Technol ; 46(19): 10422-8, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22934718

ABSTRACT

Laboratory studies into particle formation from Laminaria digitata macroalgae were undertaken to elucidate aerosol formation for a range of I(2) (0.3-76 ppb(v)) and O(3) (<3-96 ppb(v)) mixing ratios and light levels (E(PAR) = 15, 100, and 235 µmol photons m(-2) s(-1)). No clear pattern was observed for I(2) or aerosol parameters as a function of light levels. Aerosol mass fluxes and particle number concentrations, were, however, correlated with I(2) mixing ratios for low O(3) mixing ratios of <3 ppb(v) (R(2) = 0.7 and 0.83, respectively for low light levels, and R(2) = 0.95 and 0.98, respectively for medium light levels). Additional experiments into particle production as a function of laboratory-generated I(2), over a mixing ratio range of 1-8 ppb(v), were conducted under moderate O(3) mixing ratios (∼24 ppb(v)) where a clear, 100-fold or greater, increase in the aerosol number concentrations and mass fluxes was observed compared to the low O(3) experiments. A linear relationship between particle concentration and I(2) was found, in reasonable agreement with previous studies. Scaling the laboratory relationship to aerosol concentrations typical of the coastal boundary layer suggests a I(2) mixing ratio range of 6-93 ppt(v) can account for the observed particle production events. Aerosol number concentration produced from I(2) is more than a factor of 10 higher than that produced from CH(2)I(2) for the same mixing ratios.


Subject(s)
Iodine , Laminaria/physiology , Marine Biology/methods , Aerosols/analysis , Aerosols/chemistry , Air Pollutants/analysis , Kelp , Light , Ozone
10.
Planta ; 233(4): 737-48, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21188416

ABSTRACT

The emission of molecular iodine (I(2)) from the stipe, the meristematic area and the distal blade of the brown macroalga Laminaria digitata (Hudson) Lamouroux (Phaeophyceae) was monitored under low light and dark conditions. Photosynthetic parameters were determined to investigate both the extent of stress experienced by different thallus parts and the effects of emersion on photosynthesis. Immediately after air exposure, intense I(2) emission was detectable from all thallus parts. I(2) emission declined continuously over a period of 180 min following the initial burst, but was not affected by the light regime. The total number of mole of I(2) emitted by stipes was approximately 10 times higher than those emitted from other thallus parts. Initial I(2) emission rates (measured within 30 min of exposure to air) were highest for stipes (median values: 2,999 and 5,222 pmol g(-1) dw min(-1) in low light and dark, respectively) and lower, by one order of magnitude, for meristematic regions and distal blades. After exposure to air for between 60 and 180 min, I(2) emission rates of all thallus parts were reduced by 70-80%. Air exposure resulted in a decrease of the maximum photosystem II (PSII) efficiency (F(v)/F(m)) by 3%, and in a 25-55% increase of the effective PSII quantum efficiency (F(v)/F'(m)); this was caused by a higher fraction of open reaction centres (q(P)), whereas the efficiency of the latter in capturing energy (F'(v)/F'(m)) remained constant. The results indicate the presence of an iodine pool which is easily volatilised and depleted due to air exposure, even under apparently low stress conditions.


Subject(s)
Iodine/analysis , Laminaria/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Air , Biomass , Time Factors , Water
11.
Sci Rep ; 10(1): 8279, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427928

ABSTRACT

Macrocystis pyrifera and Lessonia spicata are economically and ecologically relevant brown seaweeds that recently have been classified as members of two separated families within Laminariales (kelps). Here we describe for the first time the Macrocystis pyrifera x Lessonia spicata hybridization in the wild (Chiloe Island, Southeastern Pacific), where populations of the two parents exist sympatrically. Externally, this hybrid exhibited typical features of its parents M. pyrifera (cylindrical and flexible distal stipes, serrate frond margins and presence of sporophylls) and L. spicata (rigid and flat main stipe and first bifurcation), as well as intermediate features between them (thick unfused haptera in the holdfast). Histological sections revealed the prevalence of mucilage ducts within stipes and fronds (absent in Lessonia) and fully developed unilocular sporangia in the sporophylls. Molecular analyses confirmed the presence of the two parental genotypes for ITS1 nrDNA and the M. pyrifera genotype for two predominantly maternally inherited cytoplasmic markers (COI and rbcLS spacer) in the tissue of the hybrid. A metabolome-wide approach revealed that this hybrid is more chemically reminiscent to M. pyrifera. Nevertheless, several hits were identified as Lessonia exclusive or more remarkably, not present in any of the parent. Meiospores developed into apparently fertile gametophytes, which gave rise to F1 sporophytes that reached several millimeters before suddenly dying. In-vitro reciprocal crossing of Mar Brava gametophytes from both species revealed that although it is rare, interfamilial hybridization between the two species is possible but mostly overcome by pseudogamy of female gametophytes.


Subject(s)
Genotyping Techniques/methods , Laminaria/physiology , Macrocystis/physiology , Metabolomics/methods , DNA, Algal/genetics , Genotype , Hybridization, Genetic , Plant Breeding , Sporangia/physiology , Sympatry
12.
PLoS One ; 15(6): e0235388, 2020.
Article in English | MEDLINE | ID: mdl-32604405

ABSTRACT

The plasticity of different kelp populations to heat stress has seldom been investigated excluding environmental effects due to thermal histories, by raising a generation under common garden conditions. Comparisons of populations in the absence of environmental effects allow unbiased quantification of the meta-population adaptive potential and resolution of population-specific differentiation. Following this approach, we tested the hypothesis that genetically distinct arctic and temperate kelp exhibit different thermal phenotypes, by comparing the capacity of their microscopic life stages to recover from elevated temperatures. Gametophytes of Laminaria digitata (Arctic and North Sea) grown at 15°C for 3 years were subjected to common garden conditions with static or dynamic (i.e., gradual) thermal treatments ranging between 15 and 25°C and also to darkness. Gametophyte growth and survival during thermal stress conditions, and subsequent sporophyte recruitment at two recovery temperatures (5 and 15°C), were investigated. Population-specific responses were apparent; North Sea gametophytes exhibited higher growth rates and greater sporophyte recruitment than those from the Arctic when recovering from high temperatures, revealing differential thermal adaptation. All gametophytes performed poorly after recovery from a static 8-day exposure at 22.5°C compared to the response under a dynamic thermal treatment with a peak temperature of 25°C, demonstrating the importance of gradual warming and/or acclimation time in modifying thermal limits. Recovery temperature markedly affected the capacity of gametophytes to reproduce following high temperatures, regardless of the population. Recovery at 5°C resulted in higher sporophyte production following a 15°C and 20°C static exposure, whereas recovery at 15°C was better for gametophyte exposures to static 22.5°C or dynamic heat stress to 25°C. The subtle performance differences between populations originating from sites with contrasting local in situ temperatures support our hypothesis that their thermal plasticity has diverged over evolutionary time scales.


Subject(s)
Acclimatization/physiology , Heat-Shock Response/physiology , Laminaria/physiology , Arctic Regions , Germ Cells, Plant/growth & development , Germ Cells, Plant/physiology , Global Warming , Hot Temperature , Laminaria/growth & development , North Sea , Phenotype , Reproduction/physiology , Temperature
13.
Chembiochem ; 10(6): 977-82, 2009 Apr 17.
Article in English | MEDLINE | ID: mdl-19294727

ABSTRACT

With a little kelp from my friends: In response to biotic and abiotic stress, the brown algal kelp Laminaria digitata releases volatile fatty acid aldehydes under laboratory conditions and in its natural environment (red). In response to 4-HHE treatment, L. digitata releases (13S)-HOTrE (green). These results support the hypothesis that these compounds may mediate kelp responses to stress.


Subject(s)
Aldehydes/chemistry , Aldehydes/metabolism , Laminaria/physiology , Stress, Physiological , Aldehydes/analysis , Biomimetics , Copper/pharmacology , Laminaria/drug effects , Laminaria/metabolism , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Oxidative Stress , Salinity , Temperature , Tidal Waves , Ultraviolet Rays/adverse effects , Volatilization
14.
Sci Total Environ ; 673: 750-755, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31003102

ABSTRACT

A process to produce both biodiesel and alginate in an integrated manner from a brown seaweed, Laminaria japonica, was established. Mannitol, a major carbon constituent in L. japonica, served to produce neutral lipids via the heterotrophic cultivation of an oleaginous yeast, Cryptococcus sp.; and simultaneously alginate, a high value product, was extracted to enhance the economic feasibility of the entire process. Only autoclave pretreatment, without need of any chemical agents, was enough to recover all the essential nutrients for the yeast cultivation. Specifically, it could recover 6.4 g L-1 of mannitol to a degree comparable to 6.6 g L-1 obtained by acid-aided pretreatment using 1.5% (v/v) of H2SO4. Maximum fatty acids methyl esters (FAME) content was 30.37% with FAME productivity of 0.56 g L-1 d-1, and the produced FAME could meet the biodiesel quality standards. Na2CO3-based method showed the best efficiency of alginate recovery, yielding 21.06% (w/w). This study supports that L. japonica can indeed be a promising low-cost feedstock for biodiesel production, and it is more so when a high-value product alginate is co-produced.


Subject(s)
Alginates/metabolism , Biofuels , Laminaria/physiology , Cryptococcus/physiology , Seaweed/physiology
15.
Sci China C Life Sci ; 51(12): 1129-36, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19093088

ABSTRACT

The responses of the early development of Laminaria japonica collected from Kiaochow Bay in China to enhanced ultraviolet-B radiation (UV-B, 280-320 nm) were studied in the laboratory. The low UV-B radiations (11.7-23.4 J x m(-2) x d(-1)) had no significant effects on zoospores attachment, but when the UV-B dose > 35.1 J x m(-2) x d(-1) the attachment decreased significantly compared with the control. Germination of embryospores was >93% under the low (11.7-35.1 J x m(-2) x d(-1)) doses, and in the range of 78.5%-88.5% under the high (46.8-70.2 J x m(-2) x d(-1)) UV-B doses, indicating a significant radiation effect. Under the higher UV-B exposure (35.1-70.2 J x m(-2) x d(-1)), all of the few gametophytes formed from embryospores died 120 h post-release. After exposure to the low UV-B radiation (11.7-23.4 J x m(-2) x d(-1)), the formation of sporophytes decreased and the female gametophyte clones increased compared with the control. However, the sex ratio and the relative growth of female gametophytes/sporophytes had not significantly changed. According to the results, enhanced UV-B radiation has a significant effect on the early development of L. japonica under laboratory conditions, suggesting that the UV-B radiation could not be overlooked as one of the important environmental factors influencing the ontogeny of macroalgae living in marine ecosystems.


Subject(s)
Laminaria , Dose-Response Relationship, Radiation , Laminaria/physiology , Laminaria/radiation effects , Ultraviolet Rays
16.
Sci China C Life Sci ; 51(12): 1116-20, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19093086

ABSTRACT

The life cycle of seaweed Laminaria japonica involves a generation alternation between diploid sporophyte and haploid gametophte. The expression of foreign genes in sporophte has been proved. In this research, the recombinant expression in gametophyte was investigated by particle bombardment with the rt-PA gene encoding the recombinant human tissue-type plasminogen activator (Reteplase), which is a thrombolytic agent for acute myocardial infarction (AMI). Transgenic gametophytes were selected by their resistance to herbicide phosphiothricin (PPT), and proliferated in an established bubble column photo-bioreactor. According to the results from quantitative ELISA, Southern blotting, and fibrin agarose plate assay (FAPA) for bioactivity, it was showed that the rt-PA gene had been integrated into the genome of gametophytes of L. japonica, and the expression product showed the expected bioactivity, implying the proper post-transcript modification in haploid gametophyte.


Subject(s)
Fibrinolytic Agents/metabolism , Gene Transfer Techniques , Laminaria/cytology , Laminaria/physiology , Recombinant Proteins/metabolism , Tissue Plasminogen Activator/metabolism , Bioreactors , Humans , Laminaria/genetics , Male , Recombinant Proteins/genetics , Tissue Plasminogen Activator/genetics
17.
Cryo Letters ; 28(3): 217-24, 2007.
Article in English | MEDLINE | ID: mdl-17898909

ABSTRACT

Little attention has been given to the effect of interactions between different cryogenic parameters on the viability of cryopreserved algae. Gametophytes of Laminaria japonica were cryopreserved in liquid nitrogen by two-step cooling, and interactions were tested for optimizing the cooling protocol and improving freeze-tolerance. UNOVA of a general linear model suggested that interactions between both cooling rate and holding time and between holding temperature and holding time significantly affected the survival of thawed gametophytes. Based on the magnitude of effect, the importance order of factors was found to be: holding temperature, holding time, cooling rate, cooling rate x holding temperature, holding temperature x holding time. UNOVA also suggested significant main effects of pre-culture conditions and sex on survival of thawed gametophytes. Under the optimal procedure, post-thaw survivals obtained were 84 percent for male and 69 percent for female gametophytes. Male gametophytes were observed to be more tolerant to the whole procedure of cryopreservation than females. Following thawing viable gametophytes could grow asexually or give rise to morphologically normal sporophytes.


Subject(s)
Cryopreservation/methods , Gametogenesis , Laminaria/growth & development , Laminaria/physiology , Survival Rate , Temperature , Time Factors
18.
Mar Environ Res ; 113: 174-82, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26608411

ABSTRACT

Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L. hyperborea. Because no genetic baseline is currently available for this species, our results may represent a first step in informing conservation and mitigation strategies.


Subject(s)
Climate Change , Cold Temperature , Laminaria/physiology , Demography , Ecosystem , Europe , Oceans and Seas , Phylogeography
19.
PLoS One ; 10(3): e0119670, 2015.
Article in English | MEDLINE | ID: mdl-25821954

ABSTRACT

POINT 1: Management of crops, commercialized or protected species, plagues or life-cycle evolution are subjects requiring comparisons among different demographic strategies. The simpler methods fail in relating changes in vital rates with changes in population viability whereas more complex methods lack accuracy by neglecting interactions among vital rates. POINT 2: The difference between the fitness (evaluated by the population growth rate λ) of two alternative demographies is decomposed into the contributions of the differences between the pair-wised vital rates and their interactions. This is achieved through a full Taylor expansion (i.e. remainder = 0) of the demographic model. The significance of each term is determined by permutation tests under the null hypothesis that all demographies come from the same pool. POINT 3: An example is given with periodic demographic matrices of the microscopic haploid phase of two kelp cryptic species observed to partition their niche occupation along the Chilean coast. The method provided clear and synthetic results showing conditional differentiation of reproduction is an important driver for their differences in fitness along the latitudinal temperature gradient. But it also demonstrated that interactions among vital rates cannot be neglected as they compose a significant part of the differences between demographies. POINT 4: This method allows researchers to access the effects of multiple effective changes in a life-cycle from only two experiments. Evolutionists can determine with confidence the effective causes for changes in fitness whereas population managers can determine best strategies from simpler experimental designs.


Subject(s)
Adaptation, Physiological , Algorithms , Biomass , Ecosystem , Laminaria/physiology , Models, Biological , Genetic Fitness , Hot Temperature , Spores/physiology
20.
PLoS One ; 10(5): e0128588, 2015.
Article in English | MEDLINE | ID: mdl-26010152

ABSTRACT

Saccharina (Laminaria) is one of the most important economic seaweeds. Previously, four genetic linkage maps of Saccharina have been constructed and five QTLs have been identified. However, they were not enough for its breeding. In this work, Saccharina longissima (♀) and Saccharina japonica (♂), which showed obvious differences in morphology and genetics, were applied in hybridization to yield the F2 mapping population with 102 individuals. Using these 102 F2 hybrids, the genetic linkage map of Saccharina was constructed by MapMaker software based on 37 amplified fragment length polymorphisms (AFLPs), 22 sequence-related amplified polymorphisms (SRAPs) and 139 simple sequence repeats (SSRs) markers. Meanwhile, QTL analysis was performed for six economic traits. The linkage map constructed in this research consisted of 422 marker loci (137 AFLPs, 57 SRAPs and 228 SSRs), which formed 45 linkage groups (LGs) with an average marker space of 7.92 cM; they spanned a total length of 2233.1 cM, covering the whole estimated genome size. A total of 29 QTLs were identified for six economic traits, which explained 1.06 to 64.00% of phenotypic variation, including three QTLs for frond length (FL) and raw weight (RW), five QTLs for frond width (FW), two QTLs for frond fascia width (FFW) and frond thickness (FT), and fourteen QTLs for base shape (BS). The results of this research will improve the breeding efficiency and be beneficial for marker-assisted selection (MAS) schemes in Saccharina breeding.


Subject(s)
Chromosome Mapping/methods , Laminaria/genetics , Quantitative Trait Loci , Chimera/genetics , Genetic Markers/genetics , Genome , Laminaria/physiology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL