Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.270
Filter
Add more filters

Publication year range
1.
Clin Infect Dis ; 78(3): 756-764, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38340060

ABSTRACT

BACKGROUND: Each year 25 000-32 000 children develop rifampicin- or multidrug-resistant tuberculosis (RR/MDR-TB), and many more require preventive treatment. Levofloxacin is a key component of RR/MDR-TB treatment and prevention, but the existing pharmacokinetic data in children have not yet been comprehensively summarized. We aimed to characterize levofloxacin pharmacokinetics through an individual patient data meta-analysis of available studies and to determine optimal dosing in children. METHODS: Levofloxacin concentration and demographic data were pooled from 5 studies and analyzed using nonlinear mixed effects modeling. Simulations were performed using current World Health Organization (WHO)-recommended and model-informed optimized doses. Optimal levofloxacin doses were identified to target median adult area under the time-concentration curve (AUC)24 of 101 mg·h/L given current standard adult doses. RESULTS: Data from 242 children (2.8 years [0.2-16.8] was used). Apparent clearance was 3.16 L/h for a 13-kg child. Age affected clearance, reaching 50% maturation at birth and 90% maturation at 8 months. Nondispersible tablets had 29% lower apparent oral bioavailability compared to dispersible tablets. Median exposures at current WHO-recommended doses were below the AUC target for children weighing <24 kg and under <10 years, resulting in approximately half of the exposure in adults. Model-informed doses of 16-33 mg/kg for dispersible tablets or 16-50 mg/kg for nondispersible tablets were required to meet the AUC target without significantly exceeding the median adult Cmax. CONCLUSIONS: Revised weight-band dosing guidelines with doses of >20 mg/kg are required to ensure adequate exposure. Further studies are needed to determine safety and tolerability of these higher doses.


Subject(s)
Levofloxacin , Tuberculosis, Multidrug-Resistant , Child , Adult , Infant, Newborn , Humans , Infant , Antitubercular Agents , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/prevention & control , Rifampin/therapeutic use , Rifampin/pharmacokinetics , Tablets/therapeutic use
2.
Clin Infect Dis ; 78(Suppl 1): S38-S46, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38294118

ABSTRACT

BACKGROUND: Fluoroquinolones lack approval for treatment of tularemia but have been used extensively for milder illness. Here, we evaluated fluoroquinolones for severe illness. METHODS: In an observational study, we identified case-patients with respiratory tularemia from July to November 2010 in Jämtland County, Sweden. We defined severe tularemia by hospitalization for >24 hours and severe bacteremic tularemia by Francisella tularensis subsp. holarctica growth in blood or pleural fluid. Clinical data and drug dosing were retrieved from electronic medical records. Chest images were reexamined. We used Kaplan-Meier curves to evaluate time to defervescence and hospital discharge. RESULTS: Among 67 case-patients (median age, 66 years; 81% males) 30-day mortality was 1.5% (1 of 67). Among 33 hospitalized persons (median age, 71 years; 82% males), 23 had nonbacteremic and 10 had bacteremic severe tularemia. Subpleural round consolidations, mediastinal lymphadenopathy, and unilateral pleural fluid were common on chest computed tomography. Among 29 hospitalized persons with complete outcome data, ciprofloxacin/levofloxacin (n = 12), ciprofloxacin/levofloxacin combinations with doxycycline and/or gentamicin (n = 11), or doxycycline as the single drug (n = 6) was used for treatment. One disease relapse occurred with doxycycline treatment. Treatment responses were rapid, with median fever duration 41.0 hours in nonbacteremic and 115.0 hours in bacteremic tularemia. Increased age-adjusted Charlson comorbidity index predicted severe bacteremic tularemia (odds ratio, 2.7 per score-point; 95% confidence interval, 1.35-5.41). A 78-year-old male with comorbidities and delayed ciprofloxacin/gentamicin treatment died. CONCLUSIONS: Fluoroquinolone treatment is effective for severe tularemia. Subpleural round consolidations and mediastinal lymphadenopathy were typical findings on computed tomography among case-patients in this study.


Subject(s)
Bacteremia , Francisella tularensis , Francisella , Lymphadenopathy , Tularemia , Male , Humans , Aged , Female , Tularemia/drug therapy , Doxycycline/therapeutic use , Fluoroquinolones/therapeutic use , Fluoroquinolones/pharmacology , Levofloxacin/therapeutic use , Ciprofloxacin/therapeutic use , Treatment Outcome , Bacteremia/drug therapy , Gentamicins/therapeutic use
3.
Antimicrob Agents Chemother ; 68(5): e0158323, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38597667

ABSTRACT

Clofazimine is included in drug regimens to treat rifampicin/drug-resistant tuberculosis (DR-TB), but there is little information about its interaction with other drugs in DR-TB regimens. We evaluated the pharmacokinetic interaction between clofazimine and isoniazid, linezolid, levofloxacin, and cycloserine, dosed as terizidone. Newly diagnosed adults with DR-TB at Klerksdorp/Tshepong Hospital, South Africa, were started on the then-standard treatment with clofazimine temporarily excluded for the initial 2 weeks. Pharmacokinetic sampling was done immediately before and 3 weeks after starting clofazimine, and drug concentrations were determined using validated liquid chromatography-tandem mass spectrometry assays. The data were interpreted with population pharmacokinetics in NONMEM v7.5.1 to explore the impact of clofazimine co-administration and other relevant covariates on the pharmacokinetics of isoniazid, linezolid, levofloxacin, and cycloserine. Clofazimine, isoniazid, linezolid, levofloxacin, and cycloserine data were available for 16, 27, 21, 21, and 6 participants, respectively. The median age and weight for the full cohort were 39 years and 52 kg, respectively. Clofazimine exposures were in the expected range, and its addition to the regimen did not significantly affect the pharmacokinetics of the other drugs except levofloxacin, for which it caused a 15% reduction in clearance. A posteriori power size calculations predicted that our sample sizes had 97%, 90%, and 87% power at P < 0.05 to detect a 30% change in clearance of isoniazid, linezolid, and cycloserine, respectively. Although clofazimine increased the area under the curve of levofloxacin by 19%, this is unlikely to be of great clinical significance, and the lack of interaction with other drugs tested is reassuring.


Subject(s)
Antitubercular Agents , Clofazimine , Cycloserine , Drug Interactions , Isoniazid , Levofloxacin , Linezolid , Tuberculosis, Multidrug-Resistant , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Humans , Tuberculosis, Multidrug-Resistant/drug therapy , Adult , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/therapeutic use , Male , Female , Linezolid/pharmacokinetics , Linezolid/therapeutic use , Isoniazid/pharmacokinetics , Isoniazid/therapeutic use , Levofloxacin/pharmacokinetics , Levofloxacin/therapeutic use , Cycloserine/pharmacokinetics , Cycloserine/therapeutic use , Middle Aged , South Africa , Young Adult , Drug Therapy, Combination
4.
Antimicrob Agents Chemother ; 68(5): e0134823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38572960

ABSTRACT

Mycobacterium abscessus (M. abscessus) inherently displays resistance to most antibiotics, with the underlying drug resistance mechanisms remaining largely unexplored. Efflux pump is believed to play an important role in mediating drug resistance. The current study examined the potential of efflux pump inhibitors to reverse levofloxacin (LFX) resistance in M. abscessus. The reference strain of M. abscessus (ATCC19977) and 60 clinical isolates, including 41 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massilense, were investigated. The drug sensitivity of M. abscessus against LFX alone or in conjunction with efflux pump inhibitors, including verapamil (VP), reserpine (RSP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or dicyclohexylcarbodiimide (DCC), were determined by AlarmarBlue microplate assay. Drug-resistant regions of the gyrA and gyrB genes from the drug-resistant strains were sequenced. The transcription level of the efflux pump genes was monitored using qRT-PCR. All the tested strains were resistant to LFX. The drug-resistant regions from the gyrA and gyrB genes showed no mutation associated with LFX resistance. CCCP, DCC, VP, and RSP increased the susceptibility of 93.3% (56/60), 91.7% (55/60), 85% (51/60), and 83.3% (50/60) isolates to LFX by 2 to 32-fold, respectively. Elevated transcription of seven efflux pump genes was observed in isolates with a high reduction in LFX MIC values in the presence of efflux pump inhibitors. Efflux pump inhibitors can improve the antibacterial activity of LFX against M. abscessus in vitro. The overexpression of efflux-related genes in LFX-resistant isolates suggests that efflux pumps are associated with the development of LFX resistance in M. abscessus.


Subject(s)
Anti-Bacterial Agents , Levofloxacin , Microbial Sensitivity Tests , Mycobacterium abscessus , Reserpine , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/genetics , Reserpine/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , Humans , Verapamil/pharmacology
5.
Antimicrob Agents Chemother ; 68(7): e0011224, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38888319

ABSTRACT

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.


Subject(s)
Aminoglycosides , Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Lipoglycopeptides , Microbial Sensitivity Tests , Respiratory Tract Infections , Animals , Lipoglycopeptides/pharmacology , Rabbits , Anthrax/drug therapy , Anthrax/microbiology , Anthrax/mortality , Bacillus anthracis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aminoglycosides/pharmacology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Disease Models, Animal , Levofloxacin/pharmacology , Female
6.
Annu Rev Med ; 73: 183-195, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35084993

ABSTRACT

The last 5 years have seen major shifts in defining whom to test and how to treat Helicobacter pylori infection. Peptic ulcer has changed from a chronic disease to a one-off condition, and countries with a high incidence of gastric cancer have begun implementing population-wide screening and treatment. A proactive approach to testing and treatment of H. pylori is now recommended, including outreach to family members of individuals diagnosed with active infection as well as high-risk local populations such as immigrants from high-risk countries. Increasing antimicrobial resistance has resulted in an overall decline in treatment success, causing a rethinking of the approach to development of treatment guidelines as well as the need to adopt the principles of antibiotic usage and antimicrobial stewardship. Required changes include abandoning empiric use of clarithromycin, metronidazole, and levofloxacin triple therapies. Here, we discuss these transformations and give guidance regarding testing and use of therapies that are effective when given empirically.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Anti-Bacterial Agents/therapeutic use , Clarithromycin/therapeutic use , Drug Therapy, Combination , Helicobacter Infections/diagnosis , Helicobacter Infections/drug therapy , Helicobacter Infections/epidemiology , Humans , Levofloxacin/therapeutic use , Metronidazole/therapeutic use
7.
Microbiology (Reading) ; 170(2)2024 02.
Article in English | MEDLINE | ID: mdl-38373028

ABSTRACT

Metal homeostasis is maintained by the uptake, storage and efflux of metal ions that are necessary for the survival of the bacterium. Homeostasis is mostly regulated by a group of transporters categorized as ABC transporters and P-type ATPases. On the other hand, efflux pumps often play a role in drug-metal cross-resistance. Here, with the help of antibiotic sensitivity, antibiotic/dye accumulation and semi-quantitative biofilm formation assessments we report the ability of Rv3270, a P-type ATPase known for its role in combating Mn2+ and Zn2+ metal ion toxicity in Mycobacterium tuberculosis, in influencing the extrusion of multiple structurally unrelated drugs and enhancing the biofilm formation of Escherichia coli and Mycobacterium smegmatis. Overexpression of Rv3270 increased the tolerance of host cells to norfloxacin, ofloxacin, sparfloxacin, ampicillin, oxacillin, amikacin and isoniazid. A significantly lower accumulation of norfloxacin, ethidium bromide, bocillin FL and levofloxacin in cells harbouring Rv3270 as compared to host cells indicated its role in enhancing efflux activity. Although over-expression of Rv3270 did not alter the susceptibility levels of levofloxacin, rifampicin and apramycin, the presence of a sub-inhibitory concentration of Zn2+ resulted in low-level tolerance towards these drugs. Of note, the expression of Rv3270 enhanced the biofilm-forming ability of the host cells strengthening its role in antimicrobial resistance. Therefore, the study indicated that the over-expression of Rv3270 enhances the drug efflux activity of the micro-organism where zinc might facilitate drug-metal cross-resistance for some antibiotics.


Subject(s)
Carrier Proteins , Mycobacterium tuberculosis , P-type ATPases , Mycobacterium tuberculosis/genetics , Levofloxacin , Norfloxacin , Anti-Bacterial Agents/pharmacology , Oxacillin
8.
Am J Gastroenterol ; 119(4): 646-654, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37983769

ABSTRACT

INTRODUCTION: Antibiotic resistance is one of the main factors that determine the efficacy of treatments to eradicate Helicobacter pylori infection. Our aim was to evaluate the effectiveness of first-line and rescue treatments against H. pylori in Europe according to antibiotics resistance. METHODS: Prospective, multicenter, international registry on the management of H. pylori (European Registry on H. pylori Management). All infected and culture-diagnosed adult patients registered in the Spanish Association of Gastroenterology-Research Electronic Data Capture from 2013 to 2021 were included. RESULTS: A total of 2,852 naive patients with culture results were analyzed. Resistance to clarithromycin, metronidazole, and quinolones was 22%, 27%, and 18%, respectively. The most effective treatment, regardless of resistance, were the 3-in-1 single capsule with bismuth, metronidazole, and tetracycline (91%) and the quadruple with bismuth, offering optimal cure rates even in the presence of bacterial resistance to clarithromycin or metronidazole. The concomitant regimen with tinidazole achieved an eradication rate of 99% (90/91) vs 84% (90/107) with metronidazole. Triple schedules, sequential, or concomitant regimen with metronidazole did not achieve optimal results. A total of 1,118 non-naive patients were analyzed. Resistance to clarithromycin, metronidazole, and quinolones was 49%, 41%, and 24%, respectively. The 3-in-1 single capsule (87%) and the triple therapy with levofloxacin (85%) were the only ones that provided encouraging results. DISCUSSION: In regions where the antibiotic resistance rate of H. pylori is high, eradication treatment with the 3-in-1 single capsule, the quadruple with bismuth, and concomitant with tinidazole are the best options in naive patients. In non-naive patients, the 3-in-1 single capsule and the triple therapy with levofloxacin provided encouraging results.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Adult , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Metronidazole/therapeutic use , Clarithromycin/therapeutic use , Levofloxacin/therapeutic use , Bismuth/therapeutic use , Amoxicillin/therapeutic use , Tinidazole , Prospective Studies , Drug Therapy, Combination , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial
9.
J Antimicrob Chemother ; 79(5): 1045-1050, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38507272

ABSTRACT

OBJECTIVES: Staphylococcus epidermidis bone and joint infections (BJIs) on material are often difficult to treat. The activity of delafloxacin has not yet been studied on S. epidermidis in this context. The aim of this study was to assess its in vitro activity compared with other fluoroquinolones, against a large collection of S. epidermidis clinical strains. METHODS: We selected 538 S. epidermidis strains isolated between January 2015 and February 2023 from six French teaching hospitals. One hundred and fifty-two strains were ofloxacin susceptible and 386 were ofloxacin resistant. Identifications were performed by MS and MICs were determined using gradient concentration strips for ofloxacin, levofloxacin, moxifloxacin and delafloxacin. RESULTS: Ofloxacin-susceptible strains were susceptible to all fluoroquinolones. Resistant strains had higher MICs of all fluoroquinolones. Strains resistant to ofloxacin (89.1%) still showed susceptibility to delafloxacin when using the Staphylococcus aureus 2021 CA-SFM/EUCAST threshold of 0.25 mg/L. In contrast, only 3.9% of the ofloxacin-resistant strains remained susceptible to delafloxacin with the 0.016 mg/L S. aureus breakpoint according to CA-SFM/EUCAST guidelines in 2022. The MIC50 was 0.094 mg/L and the MIC90 was 0.38 mg/L. CONCLUSIONS: We showed low delafloxacin MICs for ofloxacin-susceptible S. epidermidis strains and a double population for ofloxacin-resistant strains. Despite the absence of breakpoints for S. epidermidis, delafloxacin may be an option for the treatment of complex BJI, including strains with MICs of ≤0.094 mg/L, leading to 64% susceptibility. This study underlines the importance for determining specific S. epidermidis delafloxacin breakpoints for the management of BJI on material.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus epidermidis , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/isolation & purification , Humans , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Retrospective Studies , Ofloxacin/pharmacology , Levofloxacin/pharmacology , Drug Resistance, Bacterial , Moxifloxacin/pharmacology , France
10.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622558

ABSTRACT

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Subject(s)
Acinetobacter baumannii , Carbapenems , Carbapenems/pharmacology , Meropenem/pharmacology , Molecular Docking Simulation , Real-Time Polymerase Chain Reaction , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Imipenem/pharmacology , Drug Resistance , Microbial Sensitivity Tests , beta-Lactamases/genetics
11.
BMC Microbiol ; 24(1): 122, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600509

ABSTRACT

BACKGROUND: Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS: A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS: The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS: The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.


Subject(s)
COVID-19 , Coinfection , Escherichia coli Infections , Humans , Escherichia coli , Ertapenem/pharmacology , Levofloxacin/pharmacology , Meropenem/pharmacology , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Imipenem/pharmacology , Porins/genetics , Porins/pharmacology , Microbial Sensitivity Tests
12.
Arch Biochem Biophys ; 751: 109848, 2024 01.
Article in English | MEDLINE | ID: mdl-38065249

ABSTRACT

Lysozyme complexes with amikacin and levofloxacin were studied by spectroscopy approaches as well as using a tritium probe. Tritium was used as a labeling agent to trace labeled compound concentration in a system of two immiscible liquids and in the atomic form to determine the possible position of the binding site. Co-adsorption of protein and drug at the liquid-liquid interface was analyzed by scintillation phase method that allowed us to directly determine the amount of protein and drug in the mixed adsorption layer. Also, tensiometric measuring of the interfacial tension was used for calculation of binding parameters accordingly to Fainerman model. The treatment of complexes with atomic tritium followed by trypsinolysis and analysis of tritium distribution in the lysozyme peptides reveals the binding sites, binding energies in which were analyzed using molecular docking. Formation of complexes with amikacin and levofloxacin preserves secondar structure of protein. However, the formation of complex with amikacin leads to the almost total loss of the enzymatic activity of lysozyme and the redshift of the maximum on the lysozyme fluorescence band. A slight decrease in the distribution coefficient of lysozyme in the presence of amikacin assumes that the complex has higher hydrophilicity in comparison to lysozyme without additives. The most favorable for binding were the positions of the active centers that included amino acids Asp52 and Glu35, as well as in the vicinity of peptide His15-Arg21, with the participation of amino acids Tyr20, Arg14. In the case of levofloxacin, the formation of lysozyme-ligand complex in aqueous solution is possible without changing the microenvironment of the active center of the protein. Binding of levofloxacin to the active center of the enzyme was the most favorable, but Asp52 and Glu35 that are responsible for the enzymatic activity of lysozyme, were not affected.


Subject(s)
Amikacin , Muramidase , Molecular Docking Simulation , Muramidase/chemistry , Tritium/chemistry , Levofloxacin , Spectrometry, Fluorescence , Peptides , Amino Acids
13.
BMC Cancer ; 24(1): 262, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402399

ABSTRACT

BACKGROUND: Advanced pancreatic cancer is one of the leading causes of cancer-related deaths. For patients with advanced pancreatic cancer, gemcitabine and nanoparticle albumin-binding paclitaxel (nabPTX) combination (GEM/nabPTX) therapy is one of the recommended first-line treatments. Several retrospective studies have suggested that the addition of levofloxacin improves the efficacy of GEM/nabPTX therapy in patients with advanced pancreatic cancer. This prospective study aims to evaluate whether the addition of antibiotics improves the treatment efficacy of GEM/nabPTX as a first-line chemotherapy in patients with advanced pancreatic cancer. METHODS: This multicenter, prospective, randomized, phase 2 trial will included 140 patients. Patients with advanced pancreatic cancer will be randomized in a 1:1 ratio to either the GEM/nabPTX therapy group or the GEM/nabPTX plus levofloxacin group. The primary endpoint for the two groups is median progression-free survival time (mPFS) for the full analysis set (FAS). The secondary endpoints for the two groups are median overall survival (mOS), response rate (RR), disease control rate (DCR), and adverse event (AE) for the FAS and mPFS, mOS, RR, DCR, and AE for the per-protocol set. This study will enroll patients treated with GEM/nabPTX as the first-line chemotherapy for stage IV pancreatic adenocarcinoma. DISCUSSION: GEM/nabPTX is a standard first-line chemotherapy regimen for patients with advanced pancreatic cancer. Recently, the superiority of 5-fluorouracil, liposomal irinotecan, and oxaliplatin combination therapy (NALIRIFOX) to GEM/nabPTX as first-line therapy for pancreatic cancer has been reported. However, the efficacy of NALIRIFOX is inadequate. Based on previous retrospective studies, it is hypothesized that treatment efficacy will improve when levofloxacin is added to GEM/nabPTX therapy. If the AEs (such as leukopenia, neutropenia, and peripheral neuropathy) that occur at an increased rate with levofloxacin and GEM/nabPTX combination therapy can be carefully monitored and properly managed, this simple intervention can be expected to improve the prognosis of patients with advanced pancreatic cancer. TRIAL REGISTRATION: This study was registered with the Japan Registry of Clinical Trials (jRCT; registry number: jRCTs021230005).


Subject(s)
Adenocarcinoma , Nanoparticles , Pancreatic Neoplasms , Humans , Adenocarcinoma/drug therapy , Albumins/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Clinical Trials, Phase II as Topic , Gemcitabine , Levofloxacin/therapeutic use , Multicenter Studies as Topic , Paclitaxel/therapeutic use , Pancreatic Neoplasms/pathology , Prospective Studies , Randomized Controlled Trials as Topic , Retrospective Studies
14.
Mol Pharm ; 21(6): 2838-2853, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38662637

ABSTRACT

Levofloxacin hemihydrate (LVXh) is a complex fluoroquinolone drug that exists in both hydrated and anhydrous/dehydrated forms. Due to the complexity of such a compound, the primary aim of this study was to investigate the amorphization capabilities and solid-state transformations of LVXh when exposed to mechanical treatment using ball milling. Spray drying was utilized as a comparative method for investigating the capabilities of complete LVX amorphous (LVXam) formation. The solid states of the samples produced were comprehensively characterized by powder X-ray diffraction, thermal analysis, infrared spectroscopy, Rietveld method, and dynamic vapor sorption. The kinetics of the process and the quantification of phases at different time points were conducted by Rietveld refinement. The impact of the different mills, milling conditions, and parameters on the composition of the resulting powders was examined. A kinetic investigation of samples produced using both mills disclosed that it was in fact possible to partially amorphize LVXh upon mechanical treatment. It was discovered that LVXh first transformed to the anhydrous/dehydrated form γ (LVXγ), as an intermediate phase, before converting to LVXam. The mechanism of LVXam formation by ball milling was successfully revealed, and a new method of forming LVXγ and LVXam by mechanical forces was developed. Spray drying from water depicted that complete amorphization of LVXh was possible. The amorphous form of LVX had a glass transition temperature of 80 °C. The comparison of methods highlighted that the formation of LVXam is thus both mechanism- and process-dependent. Dynamic vapor sorption studies of both LVXam samples showed comparable stability properties and crystallized to the most stable hemihydrate form upon analysis. In summary, this work contributed to the detailed understanding of solid-state transformations of essential fluoroquinolones while employing greener and more sustainable manufacturing methods.


Subject(s)
Levofloxacin , X-Ray Diffraction , Levofloxacin/chemistry , X-Ray Diffraction/methods , Powders/chemistry , Kinetics , Drug Compounding/methods , Anti-Bacterial Agents/chemistry , Calorimetry, Differential Scanning/methods , Crystallization , Chemistry, Pharmaceutical/methods
15.
Langmuir ; 40(13): 7021-7028, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38501919

ABSTRACT

Photodynamic therapy (PDT) stands as an efficacious modality for the treatment of cancer and various diseases, in which optimization of the electron transfer and augmentation of the production of lethal reactive oxygen species (ROS) represent pivotal challenges to enhance its therapeutic efficacy. Empirical investigations have established that the spontaneous initiation of redox reactions associated with electron transfer is feasible and is located in the gas-liquid interfaces. Meanwhile, nanobubbles (NBs) are emerging as entities capable of furnishing a plethora of such interfaces, attributed to their stability and large surface/volume ratio in bulk water. Thus, NBs provide a chance to expedite the electron-transfer kinetics within the context of PDT in an ambient environment. In this paper, we present a pioneering exploration into the impact of nitrogen nanobubbles (N2-NBs) on the electron transfer of the photosensitizer levofloxacin (LEV). Transient absorption spectra and time-resolved decay spectra, as determined through laser flash photolysis, unequivocally reveal that N2-NBs exhibit a mitigating effect on the decay of the LEV excitation triplet state, thereby facilitating subsequent processes. Of paramount significance is the observation that the presence of N2-NBs markedly accelerates the electron transfer of LEV, albeit with a marginal inhibitory influence on its energy-transfer reaction. This observation is corroborated through absorbance measurements and offers compelling evidence substantiating the role of NBs in expediting electron transfer within the ambit of PDT. The mechanism elucidated herein sheds light on how N2-NBs intricately influence both electron-transfer and energy-transfer reactions in the photosensitizer LEV. These findings not only contribute to a nuanced understanding of the underlying processes but also furnish novel insights that may inform the application of NBs in the realm of photodynamic therapy.


Subject(s)
Levofloxacin , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Levofloxacin/pharmacology , Photochemical Processes , Oxidation-Reduction , Electron Transport
16.
Langmuir ; 40(24): 12671-12680, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38853520

ABSTRACT

The design of single-atom nanozymes with dual active sites to increase their activity and for the detection and degradation of contaminants is rare and challenging. In this work, a single-atom nanozyme (FeCu-NC) based on a three-dimensional porous Fe/Cu dual active site was developed as a colorimetric sensor for both the quantitative analysis of isoniazid (INH) and the efficient degradation of levofloxacin (LEV). FeCu-NC was synthesized using a salt template and freeze-drying method with a three-dimensional hollow porous structure and dual active sites (Fe-Nx and Cu-Nx). In terms of morphology and structure, FeCu-NC exhibits excellent peroxidase-like activity and catalytic properties. Therefore, a colorimetric sensor was constructed around FeCu-NC for sensitive and rapid quantitative analysis of INH with a linear range of 0.9-10 µM and a detection limit as low as 0.3 µM, and the sensor was successfully applied to the analysis of INH in human urine. In addition, FeCu-NC promoted the efficient degradation of LEV by peroxymonosulfate activation, with a degradation rate of 90.4% for LEV at 30 min. This work sheds new light on the application of single-atom nanozymes to antibiotics for colorimetric sensing and degradation.


Subject(s)
Copper , Iron , Isoniazid , Levofloxacin , Isoniazid/chemistry , Isoniazid/analysis , Levofloxacin/urine , Levofloxacin/analysis , Levofloxacin/chemistry , Iron/chemistry , Copper/chemistry , Humans , Peroxidase/chemistry , Peroxidase/metabolism , Colorimetry/methods , Nanostructures/chemistry , Catalysis
17.
Br J Clin Pharmacol ; 90(5): 1213-1221, 2024 May.
Article in English | MEDLINE | ID: mdl-38317382

ABSTRACT

AIMS: Levofloxacin is a quinolone antibiotic with a broad antibacterial spectrum. It is frequently used in elderly patients with pneumonia. The pharmacokinetic profile of elderly patients changes with age, but data on the pharmacokinetics of levofloxacin in these patients are limited. The aim of this study was to establish a population pharmacokinetic model of levofloxacin in elderly patients with pneumonia and to optimize individualized dosing regimens based on this newly developed model. METHODS: This is a prospective, open-label pharmacokinetic study in elderly patients with pneumonia. Blood samples were collected using an opportunistic approach. The plasma concentrations of levofloxacin were determined by high-performance liquid chromatography. A population pharmacokinetic model was established using nonlinear mixed-effect model software. Monte Carlo simulations were used for dose simulation and dose optimization. RESULTS: Data from 51 elderly patients with pneumonia were used for the population pharmacokinetic analysis. A one-compartment model with first-order elimination was most suitable for describing the data, and the estimated glomerular filtration rate was the only covariate that had a significant impact on the model. The final model estimated that the mean clearance of levofloxacin in elderly patients with pneumonia was 5.26 L/h. Monte Carlo simulation results showed that the optimal dosing regimen for levofloxacin was 750 mg once a day in elderly patients with pneumonia, with a minimum inhibitory concentration of 2 mg/L. CONCLUSIONS: The population pharmacokinetic model of levofloxacin in elderly patients with pneumonia was established, and the dose optimization of levofloxacin was completed through Monte Carlo simulation.


Subject(s)
Anti-Bacterial Agents , Levofloxacin , Models, Biological , Monte Carlo Method , Pneumonia , Humans , Levofloxacin/pharmacokinetics , Levofloxacin/administration & dosage , Levofloxacin/blood , Aged , Male , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Female , Aged, 80 and over , Prospective Studies , Pneumonia/drug therapy , Dose-Response Relationship, Drug , Glomerular Filtration Rate , Computer Simulation
18.
Helicobacter ; 29(2): e13076, 2024.
Article in English | MEDLINE | ID: mdl-38680067

ABSTRACT

BACKGROUND: The systematic use of susceptibility testing and tailored first-line treatment for Helicobacter pylori eradication has yet to be established. AIM: To compare 14-day tailored PCR-guided triple therapy to 14-day non-Bismuth concomitant quadruple therapy for first-line Helicobacter pylori eradication. PATIENTS AND METHODS: We performed a multicenter, parallel-group, randomized noninferiority controlled trial. Naive adult patients with Helicobacter pylori infection were treated with 14-day tailored PCR-guided triple therapy (esomeprazole 40 mg and amoxicillin 1000 mg b.d. plus clarithromycin 500 mg or levofloxacin 500 mg b.d. according to clarithromycin susceptibility) or 14-day non-Bismuth concomitant quadruple therapy (esomeprazole 40 mg, amoxicillin 1000 mg, clarithromycin 500 mg, and metronidazole 500 mg b.d.). The primary endpoint was H. pylori eradication. RESULTS: We screened 991 patients for eligibility and randomized 241 patients. The first-line eradication rate was 99.2% in the tailored PCR-guided group and 95.9% in the control group (ITT population; absolute difference of +3.30%, with a lower bound of CI at -0.68%). Both first-line therapies were well tolerated, with a formally significant difference in favor of the tailored PCR-guided group (61.4% vs. 41.2%, p = 0.003). Economic analyses revealed a lower cost of the tailored PCR-guided arm, with a 92% chance of being jointly more effective and less expensive than the control arm in the ITT population. CONCLUSION: In a country with a high level of clarithromycin resistance, the results of our study demonstrated the noninferiority of 14-day tailored PCR-guided triple therapy as a first-line H. pylori eradication therapy compared to 14-day non-Bismuth quadruple therapy (ClinicalTrials.gov NCT02576236).


Subject(s)
Anti-Bacterial Agents , Clarithromycin , Drug Therapy, Combination , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Male , Female , Middle Aged , Helicobacter pylori/drug effects , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Adult , Clarithromycin/therapeutic use , Clarithromycin/administration & dosage , Polymerase Chain Reaction/methods , Amoxicillin/therapeutic use , Amoxicillin/administration & dosage , Aged , Treatment Outcome , Metronidazole/therapeutic use , Metronidazole/administration & dosage , Levofloxacin/therapeutic use , Levofloxacin/administration & dosage , Young Adult
19.
Helicobacter ; 29(1): e13038, 2024.
Article in English | MEDLINE | ID: mdl-37983899

ABSTRACT

BACKGROUND: To investigate the antibiotic resistance of Helicobacter pylori (H. pylori) strains to clarithromycin, metronidazole, amoxicillin, levofloxacin, furazolidone, and tetracycline in Chinese children. MATERIALS AND METHODS: This multicenter, retrospective study was conducted from January 2016 through May 2023. Gastric mucosa biopsies were obtained from pediatric participants who underwent upper gastrointestinal endoscopy at 96 hospitals in northern, southwestern, and southeastern China. The susceptibility of H. pylori to six commonly used antibiotics was determined by agar dilution method. RESULTS: Among the 3074 H. pylori isolates, 36.7% were resistant to clarithromycin, 77.3% to metronidazole, 16.6% to levofloxacin, and 0.3% to amoxicillin. No strains were detected to be resistant to furazolidone or tetracycline. During the 8-year study period, resistance to clarithromycin and metronidazole showed a significant upward trend, while the resistance pattern of the other antibiotics demonstrated a slight but nonsignificant fluctuation. Significant regional differences were found in the distribution of clarithromycin resistance among the northern (66.0%), southwestern (48.2%), and southeastern (34.6%) regions. The metronidazole resistance rate was significantly lower in the southeastern coastal region (76.3%) than in the other two regions (88.2% in the north and 87.7% in the southwest). Multi-drug resistance for two or more antibiotics was detected in 36.3% of the H. pylori strains, and the predominant multi-resistance pattern was the dual resistance to clarithromycin and metronidazole. CONCLUSIONS: The prevalence of H. pylori resistance to clarithromycin and metronidazole is rather high in Chinese children and has been increasing over time. A relatively high resistance rate to levofloxacin was also noticed in children, while almost all strains were susceptible to amoxicillin, furazolidone, and tetracycline. It will be of great clinical significance to continuously monitor the antibiotic-resistance patterns of H. pylori in the pediatric population.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Child , Humans , Clarithromycin , Metronidazole/pharmacology , Levofloxacin , Helicobacter Infections/epidemiology , Helicobacter Infections/drug therapy , Furazolidone , Retrospective Studies , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Amoxicillin/pharmacology , Tetracycline , Drug Resistance, Microbial , China/epidemiology , Drug Resistance, Bacterial
20.
Helicobacter ; 29(2): e13060, 2024.
Article in English | MEDLINE | ID: mdl-38581134

ABSTRACT

BACKGROUND: Treatment of Helicobacter pylori gastric infection is complex and associated with increased rates of therapeutic failure. This research aimed to characterize the H. pylori infection status, strain resistance to antimicrobial agents, and the predominant lesion pattern in the gastroduodenal mucosa of patients with clinical suspicion of refractoriness to first- and second-line treatment who were diagnosed and treated in a health center in Guayaquil, Ecuador. METHODS: A total of 374 patients with upper gastrointestinal symptoms and H. pylori infection were preselected and prescribed one of three triple therapy regimens for primary infection, as judged by the treating physician. Subsequently, 121 patients who returned to the follow-up visit with persistent symptoms after treatment were studied. RESULTS: All patients had H. pylori infection. Histopathological examination diagnosed chronic active gastritis in 91.7% of cases; premalignant lesions were observed in 15.8%. The three triple therapy schemes applied showed suboptimal efficacy (between 47.6% and 77.2%), with the best performance corresponding to the scheme consisting of a proton pump inhibitor + amoxicillin + levofloxacin. Bacterial strains showed very high phenotypic resistance to all five antimicrobials tested: clarithromycin, 82.9%; metronidazole, 69.7%; amoxicillin and levofloxacin, almost 50%; tetracycline, 38.2%. Concurrent resistance to clarithromycin-amoxicillin was 43.4%, to tetracycline-metronidazole 30.3%, to amoxicillin-levofloxacin 27.6%, and to clarithromycin-metronidazole 59.2%. CONCLUSIONS: In vitro testing revealed resistance to all five antibiotics, indicating that H. pylori exhibited resistance phenotypes to these antibiotics. Consequently, the effectiveness of triple treatments may be compromised, and further studies are needed to assess refractoriness in quadruple and concomitant therapies.


Subject(s)
Anti-Infective Agents , Helicobacter Infections , Helicobacter pylori , Humans , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Metronidazole/pharmacology , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Levofloxacin/pharmacology , Ecuador , Anti-Bacterial Agents/pharmacology , Amoxicillin/pharmacology , Tetracycline/therapeutic use , Tetracycline/pharmacology , Drug Therapy, Combination
SELECTION OF CITATIONS
SEARCH DETAIL