Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
Add more filters

Publication year range
1.
BMC Microbiol ; 24(1): 243, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965478

ABSTRACT

BACKGROUND: Lichens, traditionally considered as a simple partnership primarily between mycobiont and photobiont, are, in reality, complex holobionts comprised of a multitude of microorganisms. Lichen mycobiome represents fungal community residing within lichen thalli. While it is acknowledged that factors like the host lichen species and environmental conditions influence the structure of the lichen mycobiome, the existing research remains insufficient. To investigate which factor, host genus or location, has a greater impact on the lichen mycobiome, we conducted a comparative analysis of mycobiomes within Parmelia and Peltigera collected from both Turkey and South Korea, using high-throughput sequencing based on internal transcribed spacer region amplification. RESULTS: Overall, the lichen mycobiome was dominated by Capnodiales (Dothideomycetes), regardless of host or location. At the order level, the taxonomic composition was not significantly different according to lichen genus host or geographical distance. Hierarchical clustering of the top 100 abundant ASVs did not clearly indicate whether the lichen mycobiome was more influenced by host genus or location. Analyses of community similarity and partitioning variables revealed that the structure of the lichen mycobiome is more significantly influenced by location than by host genus. When analyzing the core mycobiome by host genus, the Peltigera mycobiome contained more ASV members than the Parmelia mycobiome. These two core mycobiomes also share common fungal strains, including basidiomycete yeast. Additionally, we used chi-squared tests to identify host genus-specialists and location-specialists. CONCLUSIONS: By comparing lichen mycobiomes of the same genera across different countries, our study advances our comprehension of these microbial communities. Our study elucidates that, although host species play a contributory role, geographic distance exerts a more pronounced impact on the structure of lichen mycobiome. We have made foundational contributions to understanding the lichen mycobiome occupying ecologically crucial niches. We anticipate that broader global-scale investigations into the fungal community structures will provide more detailed insights into fungal residents within lichens.


Subject(s)
DNA, Fungal , Lichens , Mycobiome , Republic of Korea , Turkey , Lichens/microbiology , Lichens/classification , DNA, Fungal/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Ascomycota/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Parmeliaceae/genetics
2.
Extremophiles ; 28(3): 40, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179679

ABSTRACT

Lichens are dual organisms, with one major mycobiont and one major photobiont in each lichen symbiosis, which can survive extreme environmental conditions in the Arctic. However, the diversity and distribution of lichen photobionts in the Arctic remain poorly understood compared to their mycobiont partners. This study explored the diversity of lichen mycobionts and photobionts in 197 lichen samples collected from the Ny-Ålesund region (Svalbard, High Arctic). The nuclear ribosomal internal transcribed spacer (ITS) regions were sequenced and phylogenetic analyses were performed. The relationships between mycobionts and photobionts, as well as the association patterns, were also investigated. A total of 48 species of lichen mycobionts (16 families, nine orders) and 31 species/lineages of photobionts were identified. These 31 photobiont species belonged to one class (Trebouxiophyceae) and five genera, including 22 species of Trebouxia, five species of Asterochloris, two species of Chloroidium, one species of Symbiochloris, and one species of Coccomyxa. The results indicated that most analyzed lichen mycobionts could associate with multiple photobiont species, and the photobionts also exhibited a similar pattern. The results provided an important reference dataset for characterizing the diversity of lichen mycobionts and photobionts in the High Arctic region.


Subject(s)
Lichens , Symbiosis , Lichens/classification , Lichens/microbiology , Phylogeny , Svalbard , Arctic Regions , Biodiversity , Mycobiome
3.
Mol Phylogenet Evol ; 155: 107020, 2021 02.
Article in English | MEDLINE | ID: mdl-33242583

ABSTRACT

Widespread geographic distributions in lichens have been usually explained by the high dispersal capacity of their tiny diaspores. However, recent phylogenetic surveys have challenged this assumption and provided compelling evidence for cryptic speciation and more restricted distribution ranges in diverse lineages of lichen-forming fungi. To evaluate these scenarios, we focus on the fungal genus Pseudephebe (Parmeliaceae) which includes amphitropical species, a distribution pattern whose origin has been a matter of debate since first recognized in the nineteenth century. In our study, a six-locus dataset and a broad specimen sampling covering almost all Earth's continents is used to investigate species delimitation in Pseudephebe. Population structure, gene flow and dating analyses, as well as genealogical reconstruction methods, are employed to disentangle the most plausible transcontinental migration routes, and estimate the timing of the origin of the amphitropical distribution and the Antarctic populations. Our results demonstrate the existence of three partly admixed phylogenetic species that diverged between the Miocene and Pliocene, and whose Quaternary distribution has been strongly driven by glacial cycles. Pseudephebe minuscula is the only species showing an amphitropical distribution, with populations in Antarctica, whereas the restricted distribution of P. pubescens and an undescribed Alaskan species might reflect the survival of these species in European and North American refugia. Our microevolutionary analyses suggest a Northern Hemisphere origin for P. minuscula, which could have dispersed into the Southern Hemisphere directly and/or through "mountain-hopping" during the Pleistocene. The Antarctic populations of this species are sorted into two genetic clusters: populations of the Antarctic Peninsula were grouped together with South American ones, and the Antarctic Continental populations formed a second cluster with Bolivian and Svalbard populations. Therefore, our data strongly suggest that the current distribution of P. minuscula in Antarctica is the outcome of multiple, recent colonizations. In conclusion, our results stress the need for integrating species delimitation and population analyses to properly approach historical biogeography in lichen-forming fungi.


Subject(s)
Genetic Speciation , Lichens/classification , Parmeliaceae/classification , Antarctic Regions , Ecosystem , Haplotypes/genetics , Phylogeny , Phylogeography , Polymorphism, Genetic , Sequence Analysis, DNA , Species Specificity , Time Factors
4.
Arch Microbiol ; 203(4): 1461-1469, 2021 May.
Article in English | MEDLINE | ID: mdl-33388791

ABSTRACT

Since lichens have been recognised as a potential natural source of bioactive substances, the aim of this study was to investigate the antimicrobial, lysozyme and antifungal effects of methanol, acetone and quencher extracts from four lichens: Diploschistes ocellatus, Flavoparmelia caperata, Squamarina cartilaginea and Xanthoria parietina. The results showed that the tested extracts had antimicrobial activity against Gram-positive and Gram-negative bacteria and anti-candida, and inhibit the spore germination of tested fungi. The different extracts varied in their effect as determined by the diameter of the inhibition zone, the highest values being observed with the methanol and acetone extracts (29.5 and 27.5 mm, respectively) for S. cartilaginea against Enterococcus faecalis. For powdered material (quencher), F. caperata showed the highest inhibition diameter (25.5 mm) against Staphylococcus aureus. The Minimum Inhibitory Concentration (MIC) values varied from 125 to 2000 µg mL-1. Methanol extracts of S. cartilaginea were more active against Enterobacter cloacae (MIC 125 µg mL-1) and Staphylococcus aureus (MIC 125 µg mL-1), and also affected lysozyme activity against Staphylococcus aureus, as well as the morphology of fungal hyphae. This study demonstrated that the investigated species are a potential source of bioactive compounds which are potentially important antimicrobial agents.


Subject(s)
Anti-Infective Agents/pharmacology , Ascomycota/classification , Ascomycota/metabolism , Lichens/metabolism , Muramidase/pharmacology , Anti-Infective Agents/metabolism , Candida/drug effects , Candida/growth & development , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lichens/classification , Microbial Sensitivity Tests , Muramidase/metabolism , Species Specificity , Spores, Fungal/drug effects , Spores, Fungal/growth & development
5.
Microb Ecol ; 81(2): 437-453, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32989484

ABSTRACT

Trebouxia sp. (TR9) and Coccomyxa simplex (Csol) are desiccation-tolerant lichen microalgae with different adaptive strategies in accordance with the prevailing conditions of their habitats. The remodelling of cell wall and extracellular polysaccharides depending on water availability are key elements in the tolerance to desiccation of both microalgae. Currently, there is no information about the extracellular proteins of these algae and other aero-terrestrial microalgae in response to limited water availability. To our knowledge, this is the first report on the proteins associated with the extracellular polymeric substances (EPS) of aero-terrestrial microalgae subjected to cyclic desiccation/rehydration. LC-MS/MS and bioinformatic analyses of the EPS-associated proteins in the two lichen microalgae submitted to four desiccation/rehydration cycles allowed the compilation of 111 and 121 identified proteins for TR9 and Csol, respectively. Both sets of EPS-associated proteins shared a variety of predicted biological functions but showed a constitutive expression in Csol and partially inducible in TR9. In both algae, the EPS-associated proteins included a number of proteins of unknown functions, some of which could be considered as small intrinsically disordered proteins related with desiccation-tolerant organisms. Differences in the composition and the expression pattern between the studied EPS-associated proteins would be oriented to preserve the biochemical and biophysical properties of the extracellular structures under the different conditions of water availability in which each alga thrives.


Subject(s)
Acclimatization , Extracellular Polymeric Substance Matrix/metabolism , Microalgae/physiology , Proteome/metabolism , Algal Proteins/metabolism , Cell Wall/metabolism , Chlorophyta/classification , Chlorophyta/metabolism , Chlorophyta/physiology , Desiccation , Lichens/classification , Lichens/metabolism , Lichens/physiology , Microalgae/classification , Microalgae/metabolism , Plant Proteins/metabolism , Species Specificity , Water/metabolism
6.
BMC Evol Biol ; 20(1): 2, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31906844

ABSTRACT

BACKGROUND: Regions within the nuclear ribosomal operon are a major tool for inferring evolutionary relationships and investigating diversity in fungi. In spite of the prevalent use of ribosomal markers in fungal research, central features of nuclear ribosomal DNA (nrDNA) evolution are poorly characterized for fungi in general, including lichenized fungi. The internal transcribed spacer (ITS) region of the nrDNA has been adopted as the primary DNA barcode identification marker for fungi. However, little is known about intragenomic variation in the nrDNA in symbiotic fungi. In order to better understand evolution of nrDNA and the utility of the ITS region for barcode identification of lichen-forming fungal species, we generated nearly complete nuclear ribosomal operon sequences from nine species in the Rhizoplaca melanophthalma species complex using short reads from high-throughput sequencing. RESULTS: We estimated copy numbers for the nrDNA operon, ranging from nine to 48 copies for members of this complex, and found low levels of intragenomic variation in the standard barcode region (ITS). Monophyly of currently described species in this complex was supported in phylogenetic inferences based on the ITS, 28S, intergenic spacer region, and some intronic regions, independently; however, a phylogenetic inference based on the 18S provided much lower resolution. Phylogenetic analysis of concatenated ITS and intergenic spacer sequence data generated from 496 specimens collected worldwide revealed previously unrecognized lineages in the nrDNA phylogeny. CONCLUSIONS: The results from our study support the general assumption that the ITS region of the nrDNA is an effective barcoding marker for fungi. For the R. melanophthalma group, the limited amount of potential intragenomic variability in the ITS region did not correspond to fixed diagnostic nucleotide position characters separating taxa within this species complex. Previously unrecognized lineages inferred from ITS sequence data may represent undescribed species-level lineages or reflect uncharacterized aspects of nrDNA evolution in the R. melanophthalma species complex.


Subject(s)
Ascomycota/genetics , DNA Barcoding, Taxonomic , Lichens/genetics , Ascomycota/classification , Cell Nucleus/genetics , DNA Barcoding, Taxonomic/methods , DNA, Fungal/genetics , DNA, Intergenic , DNA, Ribosomal , DNA, Ribosomal Spacer/genetics , High-Throughput Nucleotide Sequencing , Lichens/classification , Phylogeny , Symbiosis , Tandem Repeat Sequences
7.
Mol Phylogenet Evol ; 149: 106821, 2020 08.
Article in English | MEDLINE | ID: mdl-32294545

ABSTRACT

Lichens provide valuable systems for studying symbiotic interactions. In lichens, these interactions are frequently described in terms of availability, selectivity and specificity of the mycobionts and photobionts towards one another. The lichen-forming, green algal genus Trebouxia Puymaly is among the most widespread photobiont, associating with a broad range of lichen-forming fungi. To date, 29 species have been described, but studies consistently indicate that the vast majority of species-level lineages still lack formal description, and new, previously unrecognized lineages are frequently reported. To reappraise the diversity and the evolutionary relationships of species-level lineages in Trebouxia, we assembled DNA sequence data from over 1600 specimens, compiled from a range of sequences from previously published studies, axenic algal cultures, and lichens collected from poorly sampled regions. From these samples, we selected representatives of the currently known genetic diversity in the lichenized Trebouxia and inferred a phylogeny from multi-locus sequence data (ITS, rbcL, cox2). We demonstrate that the current formally described species woefully underrepresent overall species-level diversity in this important lichen-forming algal genus. We anticipate that an integrative taxonomic approach, incorporating morphological and physiological data from axenic cultures with genetic data, will be required to establish a robust, comprehensive taxonomy for Trebouxia. The data presented here provide an important impetus and reference dataset for more reliably characterizing diversity in lichenized algae and in using lichens to investigate the evolution of symbioses and holobionts.


Subject(s)
Biodiversity , Chlorophyta/classification , Lichens/classification , Phylogeny , Chlorophyta/anatomy & histology , Chlorophyta/genetics , Chlorophyta/ultrastructure , Genetic Loci , Lichens/genetics , Lichens/ultrastructure , Species Specificity
8.
Mol Phylogenet Evol ; 144: 106704, 2020 03.
Article in English | MEDLINE | ID: mdl-31821879

ABSTRACT

Genetic patterns of lichenized fungi often display a mosaic-like and difficult to interpret structure blurring their evolutionary history. The genetic diversity and phylogeographic pattern of a mycobiont of the predominantly Mediterranean dwelling lichen Solenopsora candicans were investigated on the base of extensive sampling (361 individuals, 77 populations) across its entire distribution range. We tested whether the genetic pattern of S. candicans mirrors paleoclimatic and paleogeological events in the Mediterranean and adjacent regions. The divergence time estimates indicated a Tertiary origin for S. candicans, with formation of intraspecific diversity initiated in the Late Miocene. The distribution of the most divergent haplotypes, mostly of a pre-Pleistocene origin, was restricted to the eastern or western extremities of the Mediterranean exhibiting Kiermack disjunction. The population genetic diversity analyses indicated multiple diversity centres and refugia for S. candicans across the entire Mediterranean Basin. While the south Mediterranean regions harboured both the Tertiary and Quaternary born diversity, conforming to the 'cumulative refugia' paradigm, the Apennine and Balkan Peninsulas in the north hosted mostly younger Pleistocene haplotypes and lineages. The recent population expansion of S. candicans might have occurred in the middle Pleistocene with a population burst in the Apennine and Balkan peninsulas. The presence of unique haplotypes in Central Europe indicates the existence of extra-Mediterranean microrefugia. This study presents the first comprehensive lichen phylogeography from the Mediterranean region and simultaneously reports for the first time the glacial survival of a warm-adapted lichen in the temperate zone.


Subject(s)
Genetic Variation , Lichens/classification , Lichens/genetics , Animals , Balkan Peninsula , Biological Evolution , Demography , Haplotypes , Mediterranean Region , Phylogeny , Phylogeography , Refugium , Time Factors
9.
Mol Phylogenet Evol ; 134: 226-237, 2019 05.
Article in English | MEDLINE | ID: mdl-30797939

ABSTRACT

Ecological preferences, partner compatibility, or partner availability are known to be important factors shaping obligate and intimate lichen symbioses. We considered a complex of Cladonia species, traditionally differentiated by the extent of sexual reproduction and the type of vegetative propagules, to assess if the reproductive and dispersal strategies affect mycobiont-photobiont association patterns. In total 85 lichen thalli from 72 European localities were studied, two genetic markers for both Cladonia mycobionts and Asterochloris photobionts were analyzed. Variance partitioning analysis by multiple regression on distance matrices was performed to describe and partition variance in photobiont genetic diversity. Asexually reproducing Cladonia in our study were found to be strongly specific to their photobionts, associating with only two closely related Asterochloris species. In contrast, sexually reproducing lichens associated with seven unrelated Asterochloris lineages, thus being photobiont generalists. The reproductive mode had the largest explanatory power, explaining 44% of the total photobiont variability. Reproductive and dispersal strategies are the key factors shaping photobiont diversity in this group of Cladonia lichens. A strict photobiont specialisation observed in two studied species may steer both evolutionary flexibility and responses to ecological changes of these organisms, and considerably limit their distribution ranges.


Subject(s)
Ascomycota/classification , Biodiversity , Chlorophyta/classification , Lichens/classification , Seed Dispersal/physiology , Symbiosis , Chlorophyta/genetics , Europe , Geography , Lichens/genetics , Phylogeny , Reproduction
10.
Mol Phylogenet Evol ; 126: 58-73, 2018 09.
Article in English | MEDLINE | ID: mdl-29656104

ABSTRACT

A major challenge to evolutionary biologists is to understand how biodiversity is distributed through space and time and across the tree of life. Diversification of organisms is influenced by many factors that act at different times and geographic locations but it is still not clear which have a significant impact and how drivers interact. To study diversification, we chose the lichen genus Sticta, by sampling through most of the global range and producing a time tree. We estimate that Sticta originated about 30 million years ago, but biogoegraphic analysis was unclear in estimating the origin of the genus. Furthermore, we investigated the effect of dispersal ability finding that Sticta has a high dispersal rate, as collections from Hawaii showed that divergent lineages colonized the islands at least four times. Symbiont interactions were investigated using BiSSE to understand if green-algal or cyanobacterial symbiont interactions influenced diversification, only to find that the positive results were driven almost completely by Type I error. On the other hand, another BiSSE analysis found that an association with Andean tectonic activity increases the speciation rate of species.


Subject(s)
Ascomycota/classification , Biodiversity , Phylogeny , Biological Evolution , Extinction, Biological , Lichens/classification , Phylogeography , Time Factors
11.
Glob Chang Biol ; 24(10): 4909-4918, 2018 10.
Article in English | MEDLINE | ID: mdl-30091212

ABSTRACT

Many global ecosystems have undergone shifts in fire regimes in recent decades, such as changes in fire size, frequency, and/or severity. Recent research shows that increases in fire size, frequency, and severity can lead to long-persisting deforestation, but the consequences of shifting fire regimes for biodiversity of other vegetative organisms (such as understory plants, fungi, and lichens) remain poorly understood. Understanding lichen responses to wildfire is particularly important because lichens play crucial roles in nutrient cycling and supporting wildlife in many ecosystems. Lichen responses to fire have been little studied, and most previous research has been limited to small geographic areas (e.g. studies of a single fire), making it difficult to establish generalizable patterns. To investigate long-term effects of fire severity on lichen communities, we sampled epiphytic lichen communities in 104 study plots across California's greater Sierra Nevada region in areas that burned in five wildfires, ranging from 4 to 16 years prior to sampling. The conifer forest ecosystems we studied have undergone a notable increase in fire severity in recent decades, and we sample across the full gradient of fire severity to infer how shifting fire regimes may influence landscape-level biodiversity. We find that low-severity fire has little to no effect on lichen communities. Areas that burned at moderate and high severities, however, have significantly and progressively lower lichen richness and abundance. Importantly, we observe very little postfire lichen recolonization on burned substrates even more than 15 years after fire. Our multivariate model suggests that the hotter, drier microclimates that occur after fire removes forest canopies may prevent lichen reestablishment, meaning that lichens are not likely to recolonize until mature trees regenerate. These findings suggest that altered fire regimes may cause broad and long-persisting landscape-scale biodiversity losses that could ultimately impact multiple trophic levels.


Subject(s)
Biodiversity , Fires , Forests , Lichens/classification , California , Conservation of Natural Resources , Environmental Monitoring , Lichens/growth & development , Models, Theoretical , Tracheophyta/growth & development , Trees/growth & development
12.
J Eukaryot Microbiol ; 65(6): 773-782, 2018 11.
Article in English | MEDLINE | ID: mdl-29603494

ABSTRACT

Some protists with microsporidian-like cell biological characters, including Mitosporidium, Paramicrosporidium, and Nucleophaga, have SSU rRNA gene sequences that are much less divergent than canonical Microsporidia. We analysed the phylogenetic placement and environmental diversity of microsporidian-like lineages that group near the base of the fungal radiation and show that they group in a clade with metchnikovellids and canonical microsporidians, to the exclusion of the clade including Rozella, in line with what is currently known of their morphology and cell biology. These results show that the phylogenetic scope of Microsporidia has been greatly underestimated. We propose that much of the lineage diversity previously thought to be cryptomycotan/rozellid is actually microsporidian, offering new insights into the evolution of the highly specialized parasitism of canonical Microsporidia. This insight has important implications for our understanding of opisthokont evolution and ecology, and is important for accurate interpretation of environmental diversity. Our analyses also demonstrate that many opisthosporidian (aphelid+rozellid+microsporidian) SSU V4 OTUs from Neotropical forest soils group with the short-branching Microsporidia, consistent with the abundance of their protist and arthropod hosts in soils. This novel diversity of Microsporidia provides a unique opportunity to investigate the evolutionary origins of a highly specialized clade of major animal parasites.


Subject(s)
Lichens/classification , Lichens/genetics , Microsporidia/classification , Microsporidia/genetics , Phylogeny , Animals , Arthropods/microbiology , Biodiversity , Chytridiomycota/genetics , DNA, Fungal/genetics , Ecology , Eukaryota , Evolution, Molecular , Flagella , Genome, Fungal , Lichens/cytology , Microsporidia/cytology , Soil Microbiology
13.
J Phycol ; 54(4): 494-504, 2018 08.
Article in English | MEDLINE | ID: mdl-29791719

ABSTRACT

Three vagrant (Circinaria hispida, Circinaria gyrosa, and Circinaria sp. 'paramerae') and one crustose (semi-vagrant, Circinaria sp. 'oromediterranea') lichens growing in very continental areas in the Iberian Peninsula were selected to study the phycobiont diversity. Mycobiont identification was checked using nrITS DNA barcoding: Circinaria sp. 'oromediterranea' and Circinaria sp. 'paramerae' formed a new clade. Phycobiont diversity was analyzed in 50 thalli of Circinaria spp. using nrITS DNA and LSU rDNA, with microalgae coexistence being found in all the species analyzed by Sanger sequencing. The survey of phycobiont diversity showed up to four different Trebouxia spp. as the primary phycobiont in 20 thalli of C. hispida, in comparison with the remaining Circinaria spp., where only one Trebouxia was the primary microalga. In lichen species showing coexistence, some complementary approaches are needed (454 pyrosequencing and/or ultrastructural analyses). Five specimens were selected for high-throughput screening (HTS) analyses: 22 Trebouxia OTUs were detected, 10 of them not previously known. TEM analyses showed three different cell morphotypes (Trebouxia sp. OTU A12, OTU S51, and T. cretacea) whose ultrastructure is described here in detail for the first time. HTS revealed a different microalgae pool in each species studied, and we cannot assume a specific pattern between these pools and the ecological and/or morphological characteristics. The mechanisms involved in the selection of the primary phycobiont and the other microalgae by the mycobiont are unknown, and require complex experimental designs. The systematics of the genus Circinaria is not yet well resolved, and more analyses are needed to establish a precise delimitation of the species.


Subject(s)
Ascomycota/physiology , Chlorophyta/physiology , Lichens/physiology , Microalgae/physiology , Symbiosis , Biodiversity , Chlorophyta/classification , Chlorophyta/genetics , Chlorophyta/ultrastructure , Genetic Variation , Lichens/classification , Lichens/genetics , Lichens/ultrastructure , Microalgae/classification , Microalgae/genetics , Microalgae/ultrastructure , Microscopy, Electron, Transmission , Phylogeny , Sequence Analysis, DNA , Spain
14.
BMC Evol Biol ; 17(1): 93, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28359299

ABSTRACT

BACKGROUND: Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments. RESULTS: We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated genome regions contained a number of genes associated with stress response, local environmental adaptation, and sexual reproduction. CONCLUSIONS: Taken together our results provide evidence for a complex interplay between demographic history and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological speciation.


Subject(s)
Ascomycota/genetics , Ascomycota/physiology , Lichens/genetics , Lichens/physiology , Adaptation, Physiological , Ascomycota/classification , Ecosystem , Genome, Fungal , Genomics , Lichens/classification , Mediterranean Region , Symbiosis
15.
Mol Phylogenet Evol ; 117: 10-29, 2017 12.
Article in English | MEDLINE | ID: mdl-28860010

ABSTRACT

Synteny can be maintained for certain genomic regions across broad phylogenetic groups. In these homologous genomic regions, sites that are under relaxed purifying selection, such as intergenic regions, could be used broadly as markers for population genetic and phylogenetic studies on species complexes. To explore the potential of this approach, we found 125 Collinear Orthologous Regions (COR) ranging from 1 to >10kb across nine genomes representing the Lecanoromycetes and Eurotiomycetes (Pezizomycotina, Ascomycota). Twenty-six of these COR were found in all 24 eurotiomycete genomes surveyed for this study. Given the high abundance and availability of fungal genomes we believe this approach could be adopted for other large groups of fungi outside the Pezizomycotina. Asa proof of concept, we selected three Collinear Orthologous Regions (COR1b, COR3, and COR16), based on synteny analyses of several genomes representing three classes of Ascomycota: Eurotiomycetes, Lecanoromycetes, and Lichinomycetes. COR16, for example, was found across these three classes of fungi. Here we compare the resolving power of these three new markers with five loci commonly used in phylogenetic studies of fungi, using section Polydactylon of the cyanolichen-forming genus Peltigera (Lecanoromycetes) - a clade with several challenging species complexes. Sequence data were subjected to three species discovery and two validating methods. COR markers substantially increased phylogenetic resolution and confidence, and highly contributed to species delimitation. The level of phylogenetic signal provided by each of the COR markers was higher than the commonly used fungal barcode ITS. High cryptic diversity was revealed by all methods. As redefined here, most species represent lineages that have relatively narrower, and more homogeneous biogeographical ranges than previously understood. The scabrosoid clade consists of ten species, seven of which are new. For the dolichorhizoid clade, twenty-two new species were discovered for a total of twenty-nine species in this clade.


Subject(s)
Ascomycota/classification , Ascomycota/genetics , Genetic Markers/genetics , Genome, Fungal/genetics , Genomics , Lichens/classification , Lichens/genetics , Phylogeny , DNA, Intergenic , Reproducibility of Results , Species Specificity , Synteny
16.
Proc Natl Acad Sci U S A ; 111(30): 11091-6, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-24982168

ABSTRACT

The number of Fungi is estimated at between 1.5 and 3 million. Lichenized species are thought to make up a comparatively small portion of this figure, with unrecognized species richness hidden among little-studied, tropical microlichens. Recent findings, however, suggest that some macrolichens contain a large number of unrecognized taxa, increasing known species richness by an order of magnitude or more. Here we report the existence of at least 126 species in what until recently was believed to be a single taxon: the basidiolichen fungus Dictyonema glabratum, also known as Cora pavonia. Notably, these species are not cryptic but morphologically distinct. A predictive model suggests an even larger number, with more than 400 species. These results call into question species concepts in presumably well-known macrolichens and demonstrate the need for accurately documenting such species richness, given the importance of these lichens in endangered ecosystems such as paramos and the alarming potential for species losses throughout the tropics.


Subject(s)
Basidiomycota/classification , Lichens/classification
17.
Molecules ; 22(5)2017 May 17.
Article in English | MEDLINE | ID: mdl-28513562

ABSTRACT

Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observed that the presence of iron, glucose, magnesium and potassium in growth media is essential for the successful isolation of members from different taxonomic groups. According to sequence data, most isolates besides the lichen mycobionts belong to the classes Dothideomycetes and Eurotiomycetes. With our approach we can further explore the hidden fungal diversity in lichens to assist in the search of novel compounds.


Subject(s)
Biodiversity , Culture Media/chemistry , Lichens/growth & development , Lichens/isolation & purification , DNA, Fungal/analysis , Glucose/pharmacology , Iron/pharmacology , Lichens/classification , Magnesium/pharmacology , Phylogeny , Potassium/pharmacology , Sequence Analysis, DNA , Symbiosis
18.
Environ Microbiol ; 18(5): 1546-60, 2016 05.
Article in English | MEDLINE | ID: mdl-26914009

ABSTRACT

Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats.


Subject(s)
Chlorophyta/physiology , Lichens/classification , Microalgae/physiology , Water/metabolism , Ascomycota/physiology , Cell Wall/physiology , Gene Expression Regulation, Plant/physiology , Stress, Physiological , Symbiosis
19.
Environ Microbiol ; 18(8): 2319-25, 2016 09.
Article in English | MEDLINE | ID: mdl-25808912

ABSTRACT

Antioxidant activity of symbiotic organisms known as lichens is an intriguing field of research because of its strong contribution to their ability to withstand extremes of physical and biological stress (e.g. desiccation, temperature, UV radiation and microbial infection). We present a comparative study on the antioxidant activities of 76 Icelandic and 41 Hawaiian lichen samples assessed employing the DPPH- and FRAP-based antioxidant assays. Utilizing this unprecedented sample size, we show that while highest individual sample activity is present in the Icelandic dataset, the overall antioxidant activity is higher for lichens found in Hawaii. Furthermore, we report that lichens from the genus Peltigera that have been described as strong antioxidant producers in studies on Chinese, Russian and Turkish lichens also show high antioxidant activities in both Icelandic and Hawaiian lichen samples. Finally, we show that opportunistic sampling of lichens in both Iceland and Hawaii will yield high numbers of lichen species that exclusively include green algae as photobiont.


Subject(s)
Antioxidants/analysis , Lichens/chemistry , Hawaii , Lichens/classification , Lichens/growth & development , Lichens/radiation effects , Ultraviolet Rays
20.
Mol Phylogenet Evol ; 99: 261-274, 2016 06.
Article in English | MEDLINE | ID: mdl-27033947

ABSTRACT

Identifying factors that influence species interactions is central to research in symbiotic systems. While lichens represent iconic models of symbiosis and play important roles in understanding the biology of symbiotic interactions, patterns of interactions in lichen symbionts and mechanisms governing these relationships are not well characterized. This is due, in part to the fact that current taxonomic approaches for recognizing diversity in lichen symbionts commonly fail to accurately reflect actual species diversity. In this study, we employed DNA-based approaches to circumscribed candidate species-level lineages in rock-posy lichen symbionts (mycobiont=Rhizoplaca s. lat. species; photobiont=Trebouxia species). Our results revealed a high degree of cryptic diversity in both the myco- and photobionts in these lichens. Using the candidate species circumscribed here, we investigated the specificity of the symbionts toward their partners and inferred the relative importance of various factors influencing symbiont interactions. Distinct mycobiont species complexes, ecozones, and biomes are significantly correlated with the occurrence of photobiont OTUs, indicating that complex interactions among mycobiont lineages, ecogeography, and microhabitat determine interactions between photobionts and their mycobionts in lichen symbiosis. One-to-one specificity between mycobiont and photobiont species was not found, with the exception of R. maheui that associated with a single Trebouxia OTU that was not found with other Rhizoplaca s. lat. species. We estimated the most recent common ancestor of the core Rhizoplaca group at c. 62.5Ma, similar in age to the diverse parmelioid core group in the well-studied family Parmeliaceae. However, in contrast to Parmeliaceae, species in Rhizoplaca were found to associate with a narrow range of photobionts. Our study provides important perspectives into species diversity and interactions in iconic lichen symbiotic systems and establishes a valuable framework for continuing research into rock-posy lichens.


Subject(s)
Chlorophyta/physiology , Lichens/physiology , Symbiosis , Biodiversity , Chlorophyta/classification , DNA, Fungal/chemistry , DNA, Fungal/isolation & purification , DNA, Fungal/metabolism , Lichens/classification , Lichens/genetics , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL