Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Am J Hum Genet ; 108(9): 1725-1734, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34433009

ABSTRACT

Copy-number variations (CNVs) are a common cause of congenital limb malformations and are interpreted primarily on the basis of their effect on gene dosage. However, recent studies show that CNVs also influence the 3D genome chromatin organization. The functional interpretation of whether a phenotype is the result of gene dosage or a regulatory position effect remains challenging. Here, we report on two unrelated families with individuals affected by bilateral hypoplasia of the femoral bones, both harboring de novo duplications on chromosome 10q24.32. The ∼0.5 Mb duplications include FGF8, a key regulator of limb development and several limb enhancer elements. To functionally characterize these variants, we analyzed the local chromatin architecture in the affected individuals' cells and re-engineered the duplications in mice by using CRISPR-Cas9 genome editing. We found that the duplications were associated with ectopic chromatin contacts and increased FGF8 expression. Transgenic mice carrying the heterozygous tandem duplication including Fgf8 exhibited proximal shortening of the limbs, resembling the human phenotype. To evaluate whether the phenotype was a result of gene dosage, we generated another transgenic mice line, carrying the duplication on one allele and a concurrent Fgf8 deletion on the other allele, as a control. Surprisingly, the same malformations were observed. Capture Hi-C experiments revealed ectopic interaction with the duplicated region and Fgf8, indicating a position effect. In summary, we show that duplications at the FGF8 locus are associated with femoral hypoplasia and that the phenotype is most likely the result of position effects altering FGF8 expression rather than gene dosage effects.


Subject(s)
Chromosome Duplication , Chromosomes, Human, Pair 10/chemistry , DNA Copy Number Variations , Fibroblast Growth Factor 8/genetics , Lower Extremity Deformities, Congenital/genetics , Adolescent , Alleles , Animals , CRISPR-Cas Systems , Child, Preschool , Chromatin/chemistry , Chromatin/metabolism , Chromosomes, Human, Pair 10/metabolism , Enhancer Elements, Genetic , Family , Female , Femur/abnormalities , Femur/diagnostic imaging , Femur/metabolism , Fibroblast Growth Factor 8/metabolism , Gene Editing , Heterozygote , Humans , Infant , Lower Extremity Deformities, Congenital/diagnostic imaging , Lower Extremity Deformities, Congenital/metabolism , Lower Extremity Deformities, Congenital/pathology , Male , Mice , Mice, Transgenic , Pedigree , Phenotype
2.
Circulation ; 145(8): 606-619, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35113653

ABSTRACT

BACKGROUND: The pathogenic missense variant p.G125R in TBX5 (T-box transcription factor 5) causes Holt-Oram syndrome (also known as hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. METHODS: We analyzed ECGs of an extended family pedigree of Holt-Oram syndrome patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiologic analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single-nuclei and tissue RNA sequencing), and epigenetic profiling (assay for transposase-accessible chromatin using sequencing, H3K27ac [histone H3 lysine 27 acetylation] CUT&RUN [cleavage under targets and release under nuclease sequencing]). RESULTS: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in Holt-Oram syndrome patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles, and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials were prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared with controls. Transcriptional profiling of atria revealed the most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and noncoding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R-sensitive, putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA-binding motifs of members of the SP (specificity protein) and KLF (Krüppel-like factor) families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, alters transcriptional regulation, and changes cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. CONCLUSIONS: Our data reveal that a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.


Subject(s)
Abnormalities, Multiple , Gene Expression Regulation , Heart Defects, Congenital , Heart Septal Defects, Atrial , Heterozygote , Lower Extremity Deformities, Congenital , Mutation, Missense , Pedigree , T-Box Domain Proteins , Upper Extremity Deformities, Congenital , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Amino Acid Substitution , Animals , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Female , Heart Atria/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Heart Septal Defects, Atrial/genetics , Heart Septal Defects, Atrial/metabolism , Humans , Lower Extremity Deformities, Congenital/genetics , Lower Extremity Deformities, Congenital/metabolism , Male , Mice , Mice, Mutant Strains , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Upper Extremity Deformities, Congenital/genetics , Upper Extremity Deformities, Congenital/metabolism
3.
Hum Mol Genet ; 27(21): 3747-3760, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30016433

ABSTRACT

The arterial and venous poles of the mammalian heart are hotspots of congenital heart defects (CHD) such as those observed in 22q11.2 deletion (or DiGeorge) and Holt-Oram syndromes. These regions of the heart are derived from late differentiating cardiac progenitor cells of the Second Heart Field (SHF) located in pharyngeal mesoderm contiguous with the elongating heart tube. The T-box transcription factor Tbx1, encoded by the major 22q11.2 deletion syndrome gene, regulates SHF addition to both cardiac poles from a common progenitor population. Despite the significance of this cellular addition the mechanisms regulating the deployment of common progenitor cells to alternate cardiac poles remain poorly understood. Here we demonstrate that Tbx5, mutated in Holt-Oram syndrome and essential for venous pole development, is activated in Tbx1 expressing cells in the posterior region of the SHF at early stages of heart tube elongation. A subset of the SHF transcriptional program, including Tbx1 expression, is subsequently downregulated in Tbx5 expressing cells, generating a transcriptional boundary between Tbx1-positive arterial pole and Tbx5-positive venous pole progenitor cell populations. We show that normal downregulation of the definitive arterial pole progenitor cell program in the posterior SHF is dependent on both Tbx1 and Tbx5. Furthermore, retinoic acid (RA) signaling is required for Tbx5 activation in Tbx1-positive cells and blocking RA signaling at the time of Tbx5 activation results in atrioventricular septal defects at fetal stages. Our results reveal sequential steps of cardiac progenitor cell patterning and provide mechanistic insights into the origin of common forms of CHD.


Subject(s)
Abnormalities, Multiple/metabolism , Coronary Vessels/metabolism , DiGeorge Syndrome/metabolism , Heart Defects, Congenital/metabolism , Heart Septal Defects, Atrial/metabolism , Lower Extremity Deformities, Congenital/metabolism , Signal Transduction , Stem Cells/metabolism , T-Box Domain Proteins/metabolism , Tretinoin/metabolism , Upper Extremity Deformities, Congenital/metabolism , Abnormalities, Multiple/genetics , Animals , DiGeorge Syndrome/genetics , Gene Expression Regulation, Developmental , Heart Defects, Congenital/genetics , Heart Septal Defects/genetics , Heart Septal Defects/metabolism , Heart Septal Defects, Atrial/genetics , Lower Extremity Deformities, Congenital/genetics , Mice , Mice, Transgenic , Upper Extremity Deformities, Congenital/genetics
4.
Hum Mol Genet ; 26(5): 942-954, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28164238

ABSTRACT

TBX5, a member of the T-box family of transcription factors, is a dosage sensitive regulator of heart development. Mutations in TBX5 are responsible for Holt-Oram Syndrome, an autosomal dominant disease with variable and partially penetrant cardiac defects suggestive of the existence of genetic and environmental modifiers. KLF13, a member of the Krüppel-like family of zinc finger proteins is co-expressed with TBX5 in several cardiac cells including atrial cardiomyocytes and cells of the interatrial septum. We report that KLF13 interacts physically and functionally with TBX5 to synergistically activate transcription of cardiac genes. We show that TBX5 contacts KLF13 via its T-domain and find that several disease-causing mutations therein have decreased KLF13 interaction. Whereas Klf13 heterozygote mice have no detectable cardiac defects, loss of a Klf13 allele in Tbx5 heterozygote mice significantly increases the penetrance of TBX5-dependent cardiac abnormalities including atrial, atrial-ventricular and ventricular septal defects. The results reveal for the first time combinatorial interaction between a T-box protein and a KLF family member and its importance for heart and possibly other organ development. The data also suggest that, in human, KLF13 may be a genetic modifier of the Holt-Oram Syndrome gene TBX5.


Subject(s)
Abnormalities, Multiple/genetics , Cell Cycle Proteins/genetics , Heart Atria/metabolism , Heart Defects, Congenital/genetics , Heart Septal Defects, Atrial/genetics , Kruppel-Like Transcription Factors/genetics , Lower Extremity Deformities, Congenital/genetics , Repressor Proteins/genetics , T-Box Domain Proteins/genetics , Upper Extremity Deformities, Congenital/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Animals , Cell Cycle Proteins/metabolism , Disease Models, Animal , Gene Expression Regulation , Heart Atria/pathology , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Heart Septal Defects, Atrial/metabolism , Heart Septal Defects, Atrial/pathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heterozygote , Humans , Kruppel-Like Transcription Factors/metabolism , Lower Extremity Deformities, Congenital/metabolism , Lower Extremity Deformities, Congenital/pathology , Mice , Mutation , Protein Binding , Protein Domains/genetics , Protein Interaction Maps/genetics , Repressor Proteins/metabolism , T-Box Domain Proteins/metabolism , Transcriptional Activation/genetics , Upper Extremity Deformities, Congenital/metabolism , Upper Extremity Deformities, Congenital/pathology
5.
Hum Mol Genet ; 21(14): 3255-63, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22543974

ABSTRACT

Recent studies have identified the genetic underpinnings of a growing number of diseases through targeted exome sequencing. However, this strategy ignores the large component of the genome that does not code for proteins, but is nonetheless biologically functional. To address the possible involvement of regulatory variation in congenital heart diseases (CHDs), we searched for regulatory mutations impacting the activity of TBX5, a dosage-dependent transcription factor with well-defined roles in the heart and limb development that has been associated with the Holt-Oram syndrome (heart-hand syndrome), a condition that affects 1/100 000 newborns. Using a combination of genomics, bioinformatics and mouse genetic engineering, we scanned ∼700 kb of the TBX5 locus in search of cis-regulatory elements. We uncovered three enhancers that collectively recapitulate the endogenous expression pattern of TBX5 in the developing heart. We re-sequenced these enhancer elements in a cohort of non-syndromic patients with isolated atrial and/or ventricular septal defects, the predominant cardiac defects of the Holt-Oram syndrome, and identified a patient with a homozygous mutation in an enhancer ∼90 kb downstream of TBX5. Notably, we demonstrate that this single-base-pair mutation abrogates the ability of the enhancer to drive expression within the heart in vivo using both mouse and zebrafish transgenic models. Given the population-wide frequency of this variant, we estimate that 1/100 000 individuals would be homozygous for this variant, highlighting that a significant number of CHD associated with TBX5 dysfunction might arise from non-coding mutations in TBX5 heart enhancers, effectively decoupling the heart and hand phenotypes of the Holt-Oram syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Enhancer Elements, Genetic , Heart Defects, Congenital/genetics , Heart Septal Defects, Atrial/genetics , Lower Extremity Deformities, Congenital/genetics , T-Box Domain Proteins/genetics , Upper Extremity Deformities, Congenital/genetics , Abnormalities, Multiple/embryology , Abnormalities, Multiple/metabolism , Animals , Animals, Genetically Modified , Base Sequence , Heart/embryology , Heart Defects, Congenital/embryology , Heart Defects, Congenital/metabolism , Heart Septal Defects, Atrial/embryology , Heart Septal Defects, Atrial/metabolism , Homozygote , Humans , Lower Extremity Deformities, Congenital/embryology , Lower Extremity Deformities, Congenital/metabolism , Mice , Molecular Sequence Data , Point Mutation , T-Box Domain Proteins/metabolism , Upper Extremity Deformities, Congenital/embryology , Upper Extremity Deformities, Congenital/metabolism , Zebrafish
6.
Stem Cell Res ; 60: 102706, 2022 04.
Article in English | MEDLINE | ID: mdl-35168097

ABSTRACT

Keipert syndrome(KS, OMIM:301026) is a rare X-linked recessive inherited disorder characterized by distinctive facial appearance and digital abnormalities, and the disease is caused by hemizygous mutations in the GPC4 gene encoding the heparan sulfate proteoglycan glypican 4. We first established an induced pluripotent stem cell line (ATCi002-A) from PBMCs collected from a two-year-old boy patient with c.877 + 1G > A variant in the GPC4 gene, via reprogramming with KLF4, SOX2, OCT3/4, and c-MYC. Through identification examination, the iPSCs (ATCi002-A) stably expressed pluripotency-associated stem cell markers, and maintained a normal karyotype, and showed proliferative potential for differentiation of the three-germ layer.


Subject(s)
Genetic Diseases, X-Linked , Induced Pluripotent Stem Cells , Lower Extremity Deformities, Congenital , Cell Differentiation , Cellular Reprogramming , Child, Preschool , China , Deafness/congenital , Genetic Diseases, X-Linked/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Lower Extremity Deformities, Congenital/metabolism , Male , Mutation
7.
Elife ; 72018 08 01.
Article in English | MEDLINE | ID: mdl-30067223

ABSTRACT

In historical attempts to treat morning sickness, use of the drug thalidomide led to the birth of thousands of children with severe birth defects. Despite their teratogenicity, thalidomide and related IMiD drugs are now a mainstay of cancer treatment; however, the molecular basis underlying the pleiotropic biology and characteristic birth defects remains unknown. Here we show that IMiDs disrupt a broad transcriptional network through induced degradation of several C2H2 zinc finger transcription factors, including SALL4, a member of the spalt-like family of developmental transcription factors. Strikingly, heterozygous loss of function mutations in SALL4 result in a human developmental condition that phenocopies thalidomide-induced birth defects such as absence of thumbs, phocomelia, defects in ear and eye development, and congenital heart disease. We find that thalidomide induces degradation of SALL4 exclusively in humans, primates, and rabbits, but not in rodents or fish, providing a mechanistic link for the species-specific pathogenesis of thalidomide syndrome.


Subject(s)
Duane Retraction Syndrome/metabolism , Proteolysis/drug effects , Thalidomide/pharmacology , Transcription Factors/metabolism , Abnormalities, Multiple/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , CYS2-HIS2 Zinc Fingers , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , HEK293 Cells , Heart Defects, Congenital/metabolism , Heart Septal Defects, Atrial/metabolism , Humans , Lower Extremity Deformities, Congenital/metabolism , Peptide Hydrolases/metabolism , Phenotype , Protein Binding/drug effects , Reproducibility of Results , Species Specificity , Substrate Specificity , Teratogens/toxicity , Thalidomide/chemistry , Transcription Factors/chemistry , Ubiquitin-Protein Ligases/metabolism , Upper Extremity Deformities, Congenital/metabolism
8.
Environ Pollut ; 145(2): 538-44, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16769163

ABSTRACT

In 1998, the Aznalcóllar mine tailings dyke in southwestern Spain broke, flooding the Agrio-Guadiamar river system with acid tailings up to the borders of one of the largest breeding colonies of white storks in the western Palearctic, Dehesa de Abajo. Over the following years, a high proportion of nestlings developed leg defects not seen before the spill, prompting this study. Nestlings with deformed legs had significantly lower plasma phosphorous (P) and higher Ca:P ratios than non-deformed cohorts in the first two years, but in the third year, when more, younger birds were studied, plasma P ranged from much higher to much lower in the affected colony compared with reference birds. Coefficients of variation for phosphorous were 19% and 60%, in reference and contaminated colonies, respectively. Storks from the contaminated colony were unable to control P levels and Ca:P ratios within the narrow limits necessary for normal bone development.


Subject(s)
Birds/metabolism , Bone and Bones/abnormalities , Lower Extremity Deformities, Congenital/chemically induced , Mining , Water Pollutants, Chemical/toxicity , Alkaline Phosphatase/blood , Animals , Biomarkers/blood , Bone and Bones/metabolism , Calcium/blood , Disasters , Environmental Exposure/adverse effects , Hazardous Waste/adverse effects , Industrial Waste/adverse effects , Lower Extremity Deformities, Congenital/blood , Lower Extremity Deformities, Congenital/metabolism , Nesting Behavior , Phosphorus/blood , Spain , Tarsus, Animal/abnormalities , Tarsus, Animal/metabolism , Tibia/abnormalities
9.
Mol Med Rep ; 13(5): 4349-56, 2016 May.
Article in English | MEDLINE | ID: mdl-27035640

ABSTRACT

Previous genome-wide association studies have demonstrated that single nucleotide polymorphisms in T­box (TBX)5 are associated with increased susceptibility to atrial fibrillation (AF), and a recent study has causally linked a TBX5 mutation to atypical Holt-Oram syndrome and paroxysmal AF. However, the prevalence and spectrum of TBX5 mutations in patients with AF remain to be elucidated. In the present study, a cohort of 190 unrelated patients with idiopathic AF were prospectively recruited, with 400 unrelated healthy individuals recruited as controls. The coding exons and flanking introns of the TBX5 gene were sequenced in the participants. The functional characteristics of the mutant TBX5 were delineated in contrast with its wild­type counterpart using a dual­luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.P132S, was identified in an index patient with AF, with a mutational prevalence of ~0.53%. Genetic analysis of the proband's family showed that the mutation co­segregated with AF, and was transmitted in an autosomal dominant pattern. The missense mutation was absent in the 800 control chromosomes, and the altered amino acid was completely evolutionarily conserved across species. Functional analyses revealed that the mutant TBX5 had significantly reduced transcriptional activity. Furthermore, the mutation markedly decreased the synergistic activation between TBX5 and NK2 homeobox 5, another transcription factor which has been causatively linked to AF. The present study was the first, to the best of our knowledge, to report on the association between a TBX5 loss­of­function mutation and increased susceptibility to AF. These results provide novel insight into the molecular mechanism underpinning AF, and have potential implications in the development of novel prophylactic and therapeutic strategies for AF, the most common form of sustained cardiac arrhythmia.


Subject(s)
Abnormalities, Multiple/genetics , Atrial Fibrillation/genetics , Genetic Predisposition to Disease , Heart Defects, Congenital/genetics , Heart Septal Defects, Atrial/genetics , Lower Extremity Deformities, Congenital/genetics , Mutation, Missense , T-Box Domain Proteins/genetics , Upper Extremity Deformities, Congenital/genetics , Abnormalities, Multiple/metabolism , Adult , Atrial Fibrillation/metabolism , Cell Line , Female , Genome-Wide Association Study , Heart Defects, Congenital/metabolism , Heart Septal Defects, Atrial/metabolism , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Humans , Lower Extremity Deformities, Congenital/metabolism , Male , Middle Aged , Prospective Studies , T-Box Domain Proteins/metabolism , Upper Extremity Deformities, Congenital/metabolism
10.
Cell Death Differ ; 22(6): 1012-24, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25430793

ABSTRACT

Receptor-interacting protein kinase 4 (RIPK4)-deficient mice have epidermal defects and fusion of all external orifices. These are similar to Bartsocas-Papas syndrome and popliteal pterygium syndrome (PPS) in humans, for which causative mutations have been documented in the RIPK4 and IRF6 (interferon regulatory factor 6) gene, respectively. Although genetically distinct, these syndromes share the anomalies of marked pterygia, syndactyly, clefting and hypoplastic genitalia. Despite the strong resemblance of these two syndromes, no molecular connection between the transcription factor IRF6 and the kinase RIPK4 was known and the mechanism underlying the phenotype was unclear. Here we describe that RIPK4 deficiency in mice causes epithelial fusions associated with abnormal periderm development and aberrant ectopic localization of E-cadherin on the apical membrane of the outer peridermal cell layers. In Xenopus, RIPK4 depletion causes the absence of ectodermal epiboly and concomitant gastrulation defects that phenocopy ectopic expression of dominant-negative IRF6. We found that IRF6 controls RIPK4 expression and that wild-type, but not kinase-dead, RIPK4 can complement the gastrulation defect in Xenopus caused by IRF6 malfunctioning. In contrast to the mouse, we observed only minor effects on cadherin membrane expression in Xenopus RIPK4 morphants. However, gastrulation defects were associated with a virtual absence of cortical actin in the ectodermal cells that face the blastocoel cavity and this was phenocopied in embryos expressing dominant-negative IRF6. A role for RIPK4 in actin cytoskeleton organization was also revealed in mouse epidermis and in human epithelial HaCaT cells. In conclusion, we showed that in mice RIPK4 is implicated in cortical actin organization and in E-cadherin localization or function, which can explain the characteristic epithelial fusions observed in PPSs. In addition, we provide a novel molecular link between IRF6 and RIPK4 that unifies the different PPSs to a common molecular pathway.


Subject(s)
Cleft Lip/metabolism , Cleft Palate/metabolism , Eye Abnormalities/metabolism , Fingers/abnormalities , Interferon Regulatory Factors/metabolism , Knee Joint/abnormalities , Lower Extremity Deformities, Congenital/metabolism , Protein Serine-Threonine Kinases/metabolism , Syndactyly/metabolism , Urogenital Abnormalities/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Cleft Lip/genetics , Cleft Palate/genetics , Eye Abnormalities/genetics , Humans , Immunohistochemistry , Interferon Regulatory Factors/genetics , Keratinocytes/cytology , Keratinocytes/metabolism , Knee Joint/metabolism , Lentivirus , Lower Extremity Deformities, Congenital/genetics , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Protein Serine-Threonine Kinases/genetics , Syndactyly/genetics , Urogenital Abnormalities/genetics
11.
Cardiovasc Res ; 88(1): 130-9, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20519243

ABSTRACT

AIMS: Holt-Oram syndrome (HOS) is a heart/hand syndrome clinically characterized by upper limb and cardiac malformations. Mutations in T-box transcription factor 5 (TBX5) underlie this syndrome, the majority of which lead to premature stops. In this study, we present our functional analyses of five (novel) missense TBX5 mutations identified in HOS patients, most of whom presented with severe cardiac malformations. METHODS AND RESULTS: Functional characterization of mutant proteins shows a dramatic loss of DNA-binding capacity, as well as diminished binding to known cardiac interaction partners NKX2-5 and GATA4. The disturbance of these interactions leads to a loss of function, as measured by the reduced activation of Nppa and FGF10 in rat heart derived cells, although with variable severity. Two out of the five mutations are peculiar: one, p.H220del, is associated with additional extra-cardiac defects, perhaps by interfering with other T-box dependant pathways, and another, p.I106V, leads to limb defects only, which is supported by its normal interaction with cardiac-specific interaction partners. CONCLUSION: Overall, our data are consistent with the hypothesis that these novel missense mutations in TBX5 lead to functional haploinsufficiency and result in a reduced transcriptional activation of target genes, which is likely central to the pathogenesis of HOS.


Subject(s)
Heart Defects, Congenital/genetics , Mutation, Missense , T-Box Domain Proteins/genetics , Upper Extremity Deformities, Congenital/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Amino Acid Sequence , Animals , Atrial Natriuretic Factor/genetics , Binding Sites , Case-Control Studies , Cell Line , DNA Mutational Analysis , Electrophoretic Mobility Shift Assay , Fibroblast Growth Factor 10/genetics , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Genotype , Heart Defects, Congenital/metabolism , Heart Septal Defects, Atrial/genetics , Heart Septal Defects, Atrial/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Immunoprecipitation , Lower Extremity Deformities, Congenital/genetics , Lower Extremity Deformities, Congenital/metabolism , Models, Molecular , Molecular Sequence Data , Phenotype , Promoter Regions, Genetic , Protein Binding , Protein Conformation , Rats , Recombinant Fusion Proteins/metabolism , T-Box Domain Proteins/chemistry , T-Box Domain Proteins/metabolism , Transfection , Upper Extremity Deformities, Congenital/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL