Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Virol ; 98(7): e0050424, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38899934

ABSTRACT

Animal models of authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require operation in biosafety level 3 (BSL-3) containment. In the present study, we established a mouse model employing a single-cycle infectious virus replicon particle (VRP) system of SARS-CoV-2 that can be safely handled in BSL-2 laboratories. The VRP [ΔS-VRP(G)-Luc] contains a SARS-CoV-2 genome in which the spike gene was replaced by a firefly luciferase (Fluc) reporter gene (Rep-Luci), and incorporates the vesicular stomatitis virus glycoprotein on the surface. Intranasal inoculation of ΔS-VRP(G)-Luc can successfully transduce the Rep-Luci genome into mouse lungs, initiating self-replication of Rep-Luci and, accordingly, inducing acute lung injury mimicking the authentic SARS-CoV-2 pathology. In addition, the reporter Fluc expression can be monitored using a bioluminescence imaging approach, allowing a rapid and convenient determination of viral replication in ΔS-VRP(G)-Luc-infected mouse lungs. Upon treatment with an approved anti-SARS-CoV-2 drug, VV116, the viral replication in infected mouse lungs was significantly reduced, suggesting that the animal model is feasible for antiviral evaluation. In summary, we have developed a BSL-2-compliant mouse model of SARS-CoV-2 infection, providing an advanced approach to study aspects of the viral pathogenesis, viral-host interactions, as well as the efficacy of antiviral therapeutics in the future.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious and pathogenic in humans; thus, research on authentic SARS-CoV-2 has been restricted to biosafety level 3 (BSL-3) laboratories. However, due to the scarcity of BSL-3 facilities and trained personnel, the participation of a broad scientific community in SARS-CoV-2 research had been greatly limited, hindering the advancement of our understanding on the basic virology as well as the urgently necessitated drug development. Previously, our colleagues Jin et al. had generated a SARS-CoV-2 replicon by replacing the essential spike gene in the viral genome with a Fluc reporter (Rep-Luci), which can be safely operated under BSL-2 conditions. By incorporating the Rep-Luci into viral replicon particles carrying vesicular stomatitis virus glycoprotein on their surface, and via intranasal inoculation, we successfully transduced the Rep-Luci into mouse lungs, developing a mouse model mimicking SARS-CoV-2 infection. Our model can serve as a useful platform for SARS-CoV-2 pathological studies and antiviral evaluation under BSL2 containment.


Subject(s)
Antiviral Agents , COVID-19 , Disease Models, Animal , Genes, Reporter , SARS-CoV-2 , Virus Replication , Animals , SARS-CoV-2/physiology , SARS-CoV-2/genetics , Mice , COVID-19/virology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Lung/virology , Lung/pathology , Betacoronavirus/physiology , Betacoronavirus/genetics , Pneumonia, Viral/virology , Coronavirus Infections/virology , Containment of Biohazards , Pandemics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Female , Mice, Inbred BALB C , Chlorocebus aethiops , Replicon , Vero Cells , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism
2.
Anal Chem ; 96(22): 9236-9243, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38767294

ABSTRACT

The early detection of nonalcoholic fatty liver disease (NAFLD) through bioluminescent probes is of great significance. However, there remains a challenge to apply them in nontransgenic natural animals due to the lack of exogenous luciferase. To address this issue, we herein report a new strategy for in situ monitoring of endogenous hydrogen sulfide (H2S) in the liver of NAFLD mice by leveraging a H2S-responsive bioluminescent probe (H-Luc) combined with firefly luciferase (fLuc) mRNA delivery. The probe H-Luc was created by installing a H2S recognition moiety, 2,4-dinitrophenol, onto the luciferase substrate (d-luciferin), which is allowed to release cage-free d-luciferin in the presence of H2S via a nucleophilic aromatic substitution reaction. In the meantime, the intracellular luciferase was introduced by lipid nanoparticle (LNP)-mediated fLuc mRNA delivery, rendering it suitable for bioluminescence (BL) imaging in vitro and in vivo. Based on this luciferase-luciferin system, the endogenous H2S could be sensitively and selectively detected in living cells, showing a low limit of detection (LOD) value of 0.72 µM. More importantly, after systematic administration of fLuc mRNA-loaded LNPs in vivo, H-Luc was able to successfully monitor the endogenous H2S levels in the NAFLD mouse model for the first time, displaying a 28-fold higher bioluminescence intensity than that in the liver of normal mice. We believe that this strategy may shed new light on the diagnosis of inflammatory liver disease, further elucidating the roles of H2S.


Subject(s)
Hydrogen Sulfide , Luciferases, Firefly , Luminescent Measurements , Non-alcoholic Fatty Liver Disease , RNA, Messenger , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/analysis , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Mice , RNA, Messenger/metabolism , RNA, Messenger/administration & dosage , Humans , Luminescent Agents/chemistry , Nanoparticles/chemistry , Mice, Inbred C57BL
3.
Anal Chem ; 96(18): 6978-6985, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38652863

ABSTRACT

Drug-induced liver injury (DILI) is a common liver disease with a high rate of morbidity, and its pathogenesis is closely associated with the overproduction of highly reactive hypochlorite (ClO-) in the liver. However, bioluminescence imaging of endogenous hypochlorite in nontransgenic natural mice remains challenging. Herein, to address this issue, we report a strategy for imaging ClO- in living cells and DILI mice by harnessing a bioluminescent probe formylhydrazine luciferin (ClO-Luc) combined with firefly luciferase (fLuc) mRNA-loaded lipid nanoparticles (LNPs). LNPs could efficiently deliver fLuc mRNA into living cells and in vivo, expressing abundant luciferase in the cytoplasm in situ. In the presence of ClO-, probe ClO-Luc locked by formylhydrazine could release cage-free d-luciferin through oxidation and follow-up hydrolysis reactions, further allowing for bioluminescence imaging. Moreover, based on the luciferase-luciferin system, it was able to sensitively and selectively detect ClO- in vitro with a limit of detection of 0.59 µM and successfully monitor the endogenous hypochlorite generation in the DILI mouse model for the first time. We postulate that this work provides a new method to elucidate the roles of ClO- in related diseases via bioluminescence imaging.


Subject(s)
Chemical and Drug Induced Liver Injury , Hypochlorous Acid , Liposomes , Luciferases, Firefly , Luminescent Measurements , Nanoparticles , RNA, Messenger , Animals , Hypochlorous Acid/metabolism , Mice , Nanoparticles/chemistry , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/diagnostic imaging , RNA, Messenger/metabolism , RNA, Messenger/genetics , Luminescent Agents/chemistry , Humans , Lipids/chemistry , Optical Imaging
4.
BMC Biotechnol ; 24(1): 22, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664752

ABSTRACT

BACKGROUND: The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS: Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS: Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.


Subject(s)
Dependovirus , Genetic Vectors , Poloxamer , Animals , Humans , HEK293 Cells , Poloxamer/pharmacology , Poloxamer/chemistry , Mice , Dependovirus/genetics , Genetic Vectors/genetics , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Temperature , Genes, Reporter
5.
Photochem Photobiol Sci ; 23(5): 997-1010, 2024 May.
Article in English | MEDLINE | ID: mdl-38693447

ABSTRACT

Firefly luciferases emit yellow-green light and are pH-sensitive, changing the bioluminescence color to red in the presence of heavy metals, acidic pH and high temperatures. These pH and metal-sensitivities have been recently harnessed for intracellular pH indication and toxic metal biosensing. However, whereas the structure of the pH sensor and the metal binding site, which consists mainly of two salt bridges that close the active site (E311/R337 and H310/E354), has been identified, the specific role of residue H310 in pH and metal sensing is still under debate. The Amydetes vivianii firefly luciferase has one of the lowest pH sensitivities among the group of pH-sensitive firefly luciferases, displaying high bioluminescent activity and special spectral selectivity for cadmium and mercury, which makes it a promising analytical reagent. Using site-directed mutagenesis, we have investigated in detail the role of residue H310 on pH and metal sensitivity in this luciferase. Negatively charged residues at position 310 increase the pH sensitivity and metal sensitivity; H310G considerably increases the size of the cavity, severely impacting the activity, H310R closes the cavity, and H310F considerably decreases both pH and metal sensitivities. However, no substitution completely abolished pH and metal sensitivities. The results indicate that the presence of negatively charged and basic side chains at position 310 is important for pH sensitivity and metals coordination, but not essential, indicating that the remaining side chains of E311 and E354 may still coordinate some metals in this site. Furthermore, a metal binding site search predicted that H310 mutations decrease the affinity mainly for Zn, Ni and Hg but less for Cd, and revealed the possible existence of additional binding sites for Zn, Ni and Hg.


Subject(s)
Fireflies , Histidine , Luciferases, Firefly , Mutagenesis, Site-Directed , Hydrogen-Ion Concentration , Animals , Luciferases, Firefly/metabolism , Luciferases, Firefly/chemistry , Luciferases, Firefly/genetics , Fireflies/enzymology , Histidine/chemistry , Histidine/metabolism , Color , Metals, Heavy/chemistry , Metals, Heavy/metabolism , Mercury/chemistry , Mercury/metabolism , Cadmium/chemistry , Cadmium/metabolism
6.
Methods Mol Biol ; 2722: 79-87, 2024.
Article in English | MEDLINE | ID: mdl-37897601

ABSTRACT

Thermospermine (Tspm) is a polyamine found to play a crucial role in xylem development in Arabidopsis thaliana. Tspm promotes the translation of the SACL genes by counteracting the activity of a cis element in their 5'-leader region that suppresses the translation of the main ORF. Here we describe a method to test the Tspm-dependent translational regulation of the 5'-leader of the SACL mRNAs in Nicotiana benthamiana leaves and A. thaliana mesophyll protoplasts with a dual luciferase assay. The dual luciferase reporter system is used to assess gene expression and is based on the detection of the Firefly luciferase luminescence driven by a specific promoter. However, it can also be used to evaluate the cis elements found in 5'-leader that influence the translation of the main ORF in a transcript. We have used a modified version of the pGreenII 0800 LUC plasmid carrying a double 35S promoter, followed by a poly-linker sequence in phase with the Firefly luciferase gene (pGreen2x35SLUC) where the full 5'-leader sequence of SACL3 was cloned. This construct was used for Agrobacterium tumefaciens infiltration of N. benthamiana leaves and for transfection of A. thaliana mesophyll protoplasts, followed by mock or Tspm treatments. The resulting translation of the Firefly luciferase in these organisms and conditions was then tested by measuring luminescence with the dual luciferase assay and a luminometer. These experiments have allowed us to quantify the positive effect of Tspm in the translation of SACL3 transcripts.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Xylem/metabolism , Genes, Reporter , Gene Expression Regulation, Plant
7.
Cell Transplant ; 33: 9636897231224174, 2024.
Article in English | MEDLINE | ID: mdl-38235662

ABSTRACT

Fireflies produce light through luciferase-catalyzed reactions involving luciferin, oxygen, and adenosine triphosphate, distinct from other luminescent organisms. This unique feature has revolutionized molecular biology and physiology, serving as a valuable tool for cellular research. Luciferase-based bioluminescent imaging enabled the creation of transgenic animals, such as Firefly Rats. Firefly Rats, created in 2006, ubiquitously express luciferase and have become a critical asset in scientific investigations. These rats have significantly contributed to transplantation and tissue engineering studies. Their low immunogenicity reduces graft rejection risk, making them ideal for long-term tracking of organ/tissue/cellular engraftments. Importantly, in the islet transplantation setting, the ubiquitous luciferase expression in these rats does not alter islet morphology or function, ensuring accurate assessments of engrafted islets. Firefly Rats have illuminated the path of transplantation research worldwide for over a decade and continue accelerating scientific advancements in many fields.


Subject(s)
Fireflies , Islets of Langerhans Transplantation , Animals , Rats , Fireflies/metabolism , Luciferases , Animals, Genetically Modified , Diagnostic Imaging , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Luminescent Measurements
8.
Viruses ; 16(4)2024 03 31.
Article in English | MEDLINE | ID: mdl-38675893

ABSTRACT

The administration route affects the biodistribution of a gene transfer vector and the expression of a transgene. A simian adenovirus 1 vector carrying firefly luciferase and GFP reporter genes (SAdV1-GFluc) were constructed, and its biodistribution was investigated in a mouse model by bioluminescence imaging and virus DNA tracking with real-time PCR. Luciferase activity and virus DNA were mainly found in the liver and spleen after the intravenous administration of SAdV1-GFluc. The results of flow cytometry illustrated that macrophages in the liver and spleen as well as hepatocytes were the target cells. Repeated inoculation was noneffective because of the stimulated serum neutralizing antibodies (NAbs) against SAdV-1. A transient, local expression of low-level luciferase was detected after intragastric administration, and the administration could be repeated without compromising the expression of the reporter gene. Intranasal administration led to a moderate, constant expression of a transgene in the whole respiratory tract and could be repeated one more time without a significant increase in the NAb titer. An immunohistochemistry assay showed that respiratory epithelial cells and macrophages in the lungs were transduced. High luciferase activity was restricted at the injection site and sustained for a week after intramuscular administration. A compromised transgene expression was observed after a repeated injection. When these mice were intramuscularly injected for a third time with the human adenovirus 5 (HAdV-5) vector carrying a luciferase gene, the luciferase activity recovered and reached the initial level, suggesting that the sequential use of SAdV-1 and HAdV-5 vectors was practicable. In short, the intranasal inoculation or intramuscular injection may be the preferred administration routes for the novel SAdV-1 vector in vaccine development.


Subject(s)
Adenoviruses, Simian , Genes, Reporter , Genetic Vectors , Animals , Genetic Vectors/genetics , Mice , Adenoviruses, Simian/genetics , Tissue Distribution , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Transgenes , Virus Replication , Luciferases, Firefly/genetics , Mice, Inbred BALB C , Female , Transduction, Genetic , Models, Animal , Spleen/metabolism , Spleen/virology , Liver/metabolism , Liver/virology , Antibodies, Neutralizing/immunology , Gene Expression , Injections, Intramuscular , Administration, Intranasal
9.
CRISPR J ; 7(3): 156-167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38922054

ABSTRACT

CRISPR-Cas technology is a widely utilized gene-editing tool that involves gRNA-guided sequence recognition and Cas nuclease-mediated cleavage. The design and evaluation of gRNA are essential for enhancing CRISPR/Cas editing efficiency. Various assays such as single-strand annealing, in vitro cleavage, and T7 endonuclease I (T7EI) are commonly used to assess gRNA-mediated Cas protein cleavage activity. In this study, a firefly luciferase and Renilla luciferase co-expressed and a cleavage-based single-plasmid dual-luciferase surrogate reporter was built to evaluate the gRNA-mediated Cas12a cleavage efficiency. The cleavage activities of CRISPR-Cas12a can be quantitatively determined by the recovery degree of firefly luciferase activity. The cleavage efficiency of CRISPR-Cas12a can be quantitatively measured by the recovery of firefly luciferase activity. By using this system, the cleavage efficiency of CRISPR-Cas12a on hepatitis B virus (HBV)/D expression plasmid was evaluated, revealing a negative correlation between gRNA cleavage efficiency and HBV gene expression measured using an enzyme-linked immunosorbent assay. This simple, efficient, and quantifiable system only requires the dual-luciferase vector and CRISPR-Cas12a vector, making it a valuable tool for selecting effective gRNAs for gene editing.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Gene Editing , Genes, Reporter , Luciferases , Plasmids , RNA, Guide, CRISPR-Cas Systems , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Plasmids/genetics , Humans , Luciferases/genetics , Luciferases/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Hepatitis B virus/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
10.
Sci Rep ; 14(1): 13602, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38866899

ABSTRACT

Mouse models for the study of pancreatic ductal adenocarcinoma (PDAC) are well-established and representative of many key features observed in human PDAC. To monitor tumor growth, cancer cells that are implanted in mice are often transfected with reporter genes, such as firefly luciferase (Luc), enabling in vivo optical imaging over time. Since Luc can induce an immune response, we aimed to evaluate whether the expression of Luc could affect the growth of KPC tumors in mice by inducing immunogenicity. Although both cell lines, KPC and Luc transduced KPC (KPC-Luc), had the same proliferation rate, KPC-Luc tumors had significantly smaller sizes or were absent 13 days after orthotopic cell implantation, compared to KPC tumors. This coincided with the loss of bioluminescence signal over the tumor region. Immunophenotyping of blood and spleen from KPC-Luc tumor-bearing mice showed a decreased number of macrophages and CD4+ T cells, and an increased accumulation of natural killer (NK) cells in comparison to KPC tumor mice. Higher infiltration of CD8+ T cells was found in KPC-Luc tumors than in their controls. Moreover, the immune response against Luc peptide was stronger in splenocytes from mice implanted with KPC-Luc cells compared to those isolated from KPC wild-type mice, indicating increased immunogenicity elicited by the presence of Luc in the PDAC tumor cells. These results must be considered when evaluating the efficacy of anti-cancer therapies including immunotherapies in immunocompetent PDAC or other cancer mouse models that use Luc as a reporter for bioluminescence imaging.


Subject(s)
Carcinoma, Pancreatic Ductal , Disease Models, Animal , Pancreatic Neoplasms , Animals , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Mice , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Humans , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Luciferases, Firefly/genetics , Luciferases/metabolism , Luciferases/genetics
11.
Nat Commun ; 15(1): 6328, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068192

ABSTRACT

Disruption of alternative splicing frequently causes or contributes to human diseases and disorders. Consequently, there is a need for efficient and sensitive reporter assays capable of screening chemical libraries for compounds with efficacy in modulating important splicing events. Here, we describe a screening workflow employing dual Nano and Firefly luciferase alternative splicing reporters that affords efficient, sensitive, and linear detection of small molecule responses. Applying this system to a screen of ~95,000 small molecules identified compounds that stimulate or repress the splicing of neuronal microexons, a class of alternative exons often disrupted in autism and activated in neuroendocrine cancers. One of these compounds rescues the splicing of several analyzed microexons in the cerebral cortex of an autism mouse model haploinsufficient for Srrm4, a major activator of brain microexons. We thus describe a broadly applicable high-throughput screening system for identifying candidate splicing therapeutics, and a resource of small molecule modulators of microexons with potential for further development in correcting aberrant splicing patterns linked to human disorders and disease.


Subject(s)
Alternative Splicing , Exons , Genes, Reporter , High-Throughput Screening Assays , Luciferases, Firefly , Small Molecule Libraries , Animals , Alternative Splicing/drug effects , Humans , High-Throughput Screening Assays/methods , Mice , Exons/genetics , Small Molecule Libraries/pharmacology , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , HEK293 Cells , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Neurons/metabolism , Neurons/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL