Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Publication year range
1.
J Am Chem Soc ; 146(22): 15366-15375, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38768956

ABSTRACT

Inspired by the specificity of α-(2,9)-sialyl epitopes in bacterial capsular polysaccharides (CPS), a doubly fluorinated disaccharide has been validated as a vaccine lead against Neisseria meningitidis serogroups C and/or B. Emulating the importance of fluorine in drug discovery, this molecular editing approach serves a multitude of purposes, which range from controlling α-selective chemical sialylation to mitigating competing elimination. Conjugation of the disialoside with two carrier proteins (CRM197 and PorA) enabled a semisynthetic vaccine to be generated; this was then investigated in six groups of six mice. The individual levels of antibodies formed were compared and classified as highly glycan-specific and protective. All glycoconjugates induced a stable and long-term IgG response and binding to the native CPS epitope was achieved. The generated antibodies were protective against MenC and/or MenB; this was validated in vitro by SBA and OPKA assays. By merging the fluorinated glycan epitope of MenC with an outer cell membrane protein of MenB, a bivalent vaccine against both serogroups was created. It is envisaged that validation of this synthetic, fluorinated disialoside bioisostere as a potent antigen will open new therapeutic avenues.


Subject(s)
Halogenation , Animals , Mice , N-Acetylneuraminic Acid/chemistry , Meningococcal Vaccines/immunology , Meningococcal Vaccines/chemistry , Neisseria meningitidis, Serogroup B/immunology , Neisseria meningitidis, Serogroup B/chemistry , Meningitis, Meningococcal/prevention & control , Meningitis, Meningococcal/immunology
2.
Anal Biochem ; 683: 115363, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37866526

ABSTRACT

A selective and sensitive method was evaluated for quantitation of meningococcal X (Men X) polysaccharide in pentavalent meningococcal A, C, W, Y and X conjugate vaccine using different acid hydrolysis conditions like HCl, TFA, HF, HF-TFA, and HF-HCl. High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) using CarboPac PA10 column was used to identify the hydrolyzed products based on retention time and its comparison with monosaccharide standards. Complete release of glucosamine (GlcN) from Men X in monovalent bulk and pentavalent vaccine samples was achieved using HF hydrolysis at 80 °C for 2 h. The Men X HF-hydrolyzed polysaccharide to glucosamine along with the reference standard was identified using collision-induced dissociation (CID) electrospray mass spectroscopy and the MS/MS fragments of m/z 162, m/z 144 and m/z 84. Meningococcal polysaccharide concentration was determined with a correlation coefficient r2 >0.99 using polysaccharide reference standard. The serogroups A, W, and Y were converted to their monosaccharides units and quantified using this method however, milder acid hydrolysis 0.1 M HCl 80 °C 2 h for release of sialic acid for Men C polysaccharide was found to be more suitable. These methods will provide necessary tools and prove to be beneficial to laboratories developing new saccharide-based vaccine combinations.


Subject(s)
Meningococcal Vaccines , Neisseria meningitidis , Humans , Polysaccharides, Bacterial/analysis , Polysaccharides, Bacterial/chemistry , Vaccines, Combined , Hydrolysis , Tandem Mass Spectrometry , Meningococcal Vaccines/analysis , Meningococcal Vaccines/chemistry , Glucosamine , Chromatography, Ion Exchange/methods
3.
Biologicals ; 81: 101664, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36791627

ABSTRACT

Polysaccharide vaccines essentially used in the prevention of bacterial infections are known to be good immunogens when conjugated to an immunogenic protein using various cyanylating agents. Analysis of residual cyanide in polysaccharide conjugate vaccines is an ardent task due to the complexity of the sample matrices and the lack of suitable methods. We report a selective ion chromatography method with electrochemical detection using IonPac AS7 column for estimation of residual cyanide in meningococcal serogroups A, C, W, Y and X bulk conjugates in presence of other interfering ions. Gold electrode and Ag/AgCl reference electrode ensures sensitivity and reproducibility of cyanide quantitation. The calibration curve of the method is linear having r2 ≥0.990 over the concentration range 1.45 ng/mL to 93.10 ng/mL. The recovery of cyanide in bulk conjugates ranged between 96.0% and 108.9%. The limits of detection and quantitation were 0.50 ng/mL and 1.45 ng/mL which corresponds to 0.31 ng/µg and 0.91 ng/µg of polysaccharide respectively. The method validation and feasibility study were performed using Men W and Men X bulk conjugates respectively with in house residual cyanide specification due to unavailability of pharmacopeia guidelines. The method is reproducible and can accurately quantify residual cyanide in purified meningococcal bulk conjugates.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis , Humans , Cyanides , Reproducibility of Results , Serogroup , Meningococcal Vaccines/chemistry , Meningococcal Infections/prevention & control , Polysaccharides , Chromatography, Ion Exchange
4.
Glycoconj J ; 38(4): 411-419, 2021 08.
Article in English | MEDLINE | ID: mdl-33721150

ABSTRACT

Vaccination is the most cost-effective way to control disease caused by encapsulated bacteria; the capsular polysaccharide (CPS) is the primary virulence factor and vaccine target. Neisseria meningitidis (Nm) serogroups B, C, Y and W all contain sialic acid, a common surface feature of human pathogens. Two protein-based vaccines against serogroup B infection are available for human use while four tetravalent conjugate vaccines including serogroups C, W and Y have been licensed. The tetravalent Menveo® conjugate vaccine is well-defined: a simple monomeric structure of oligosaccharides terminally conjugated to amino groups of the carrier protein CRM197. However, not only is there a surprisingly low limit for antigen chain attachment to CRM197, but different serogroup saccharides have consistently different CRM197 loading, the reasons for which are unclear. Understanding this phenomenon is important for the long-term goal of controlling conjugation to prepare conjugate vaccines of optimal immunogenicity. Here we use molecular modeling to explore whether antigen flexibility can explain the varying antigen loading of the conjugates. Because flexibility is difficult to separate from other structural factors, we focus on sialic-acid containing CPS present in current glycoconjugate vaccines: serogroups NmC, NmW and NmY. Our simulations reveal a correlation between Nm antigen flexibility (NmW > NmC > NmY) and the number of chains attached to CRM197, suggesting that increased flexibility enables accommodation of additional chains on the protein surface. Further, in silico models of the glycoconjugates confirm the relatively large hydrodynamic size of the saccharide chains and indicate steric constraints to further conjugation.


Subject(s)
Antigens, Bacterial/chemistry , Bacterial Proteins/chemistry , Meningococcal Vaccines/chemistry , Molecular Dynamics Simulation , N-Acetylneuraminic Acid/chemistry , Humans , Meningococcal Vaccines/immunology
5.
Biologicals ; 70: 53-58, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33518432

ABSTRACT

Potency of meningococcal polysaccharide-protein conjugate vaccines relies on the polysaccharide content to prevent meningitis. NIBSC, as the official national control laboratory in UK, analysed ten different mono- and multi-meningococcal conjugate vaccines, using established International Standards for meningococcal serogroups A, C, W, Y and X, by resorcinol or HPAEC-PAD assay. Most saccharide contents were within ±20% of their claimed content for licensure with taking different O-acetylation levels into consideration, with only MenC content in two vaccines below (by 60% and 54%) the labelled value, however, previous study showed different dosage was not necessarily correlated to the immunogenicity of those vaccines. This study demonstrated the use of International Standards to quantify saccharide content in polysaccharide-based vaccines with different percentage of O-acetylation. These International Standards are suitable to serve as either quantitative standard or calibrator of in-house standards, with supplied stability data.


Subject(s)
Meningococcal Vaccines , Polysaccharides, Bacterial/administration & dosage , Antibodies, Bacterial , Immunogenicity, Vaccine , Meningococcal Infections/prevention & control , Meningococcal Vaccines/chemistry , Meningococcal Vaccines/standards , Polysaccharides, Bacterial/standards , Serogroup , Vaccine Potency , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/standards , World Health Organization
6.
Biologicals ; 60: 68-74, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31126703

ABSTRACT

Sodium dodecyl sulfate (SDS) is a commonly used surfactant in protein solubilization and also during the polysaccharide purification. A GC-MS method has been developed to quantitate residual SDS in meningococcal polysaccharide serogroups A,C,W,Y and X circumventing the need of spectroscopic assays and HPLC based methods which are either unstable or requires the confirmation by MS. The developed method is based on quantitative conversion of SDS to 1-dodecanol at elevated temperature. Meningococcal polysaccharides and SDS standards were treated with methanolic-HCl and extracted in n-Hexane. The conversion of SDS to 1-dodecanol was confirmed by mass spectra and separation was achieved using a DB-5ms column. The mass spectral analysis of 1-dodecanol showed characteristic ions at m/z 168, 140 and 125. The GC-MS method validation performed on intermediate and purified meningococcal polysaccharides showed linearity with r2 > 0.99 over the concentration range of 2.5-200 µg/ml with LOD and LOQ of 1.27 and 3.85 respectively. The method was found to be precise, robust and accurate with spike recovery ranging 83-117%. The GC-MS method can be used in the quantitation of residual SDS during polysaccharide purification and provides valuable information about consistency of polysaccharide manufacturing process for development of pentavalent meningococcal conjugate vaccine.


Subject(s)
Drug Contamination , Gas Chromatography-Mass Spectrometry , Meningococcal Vaccines/analysis , Neisseria meningitidis/chemistry , Polysaccharides, Bacterial/analysis , Sodium Dodecyl Sulfate/analysis , Meningococcal Vaccines/chemistry , Polysaccharides, Bacterial/chemistry , Sodium Dodecyl Sulfate/chemistry
7.
J Korean Med Sci ; 34(23): e169, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31197986

ABSTRACT

BACKGROUND: After the introduction of the meningococcal ACWY-CRM197 conjugate vaccine (MenACWY-CRM) in 2012 and the meningococcal ACWY-diphtheria toxoid conjugate vaccine (MenACWY-DT) in 2014, immunization was recommended for certain high-risk groups including new military recruits in Korea. However, comparative immunogenicity studies for these vaccines have not been performed in Korea. Here, we compared the immunogenicity of these two vaccines in healthy adults. METHODS: A total of 64 adults, 20-49 years of age, were randomly divided into two groups (1:1) to receive either of the two vaccines. The sera were obtained before and 1 month after vaccination and tested for serogroup-specific serum bactericidal activity using baby rabbit complement. RESULTS: There were no significant differences post-vaccination in the geometric mean indices and the seropositive rate to all serogroups between the vaccines. The proportion of seropositive subjects after vaccination ranged from 88% to 100%. CONCLUSION: Both meningococcal conjugate vaccines showed good immunogenicity in healthy Korean adults without statistically significant differences. Further investigations for serotype distribution of circulating meningococci and the immune interference between other diphtheria toxin-containing vaccines concomitantly used for military recruits are needed to optimize immunization policies. TRIAL REGISTRATION: Clinical Research Information Service Identifier: KCT0002460.


Subject(s)
Bacterial Proteins/chemistry , Diphtheria Toxoid/chemistry , Meningococcal Infections/prevention & control , Meningococcal Vaccines/immunology , Vaccines, Conjugate/immunology , Adult , Antibodies, Bacterial/blood , Female , Humans , Male , Meningococcal Infections/immunology , Meningococcal Vaccines/chemistry , Middle Aged , Neisseria meningitidis/immunology , Serogroup , Vaccines, Conjugate/chemistry , Young Adult
8.
Glycoconj J ; 35(1): 3-13, 2018 02.
Article in English | MEDLINE | ID: mdl-28929266

ABSTRACT

High temperature is known to cause some instability in polysaccharide-protein conjugated vaccines and studies under stress conditions may be useful in determining whether short-term accidental exposure to undesired conditions can compromise product quality. In this study, we examined the structural stability of three industrial batches of Brazilian Meningococcal C conjugate bulk (MPCT) incubated at 4, 37, and 55 °C for 5 weeks. The effect of exposure to the storage temperatures was monitored by HPLC-SEC, CZE, CD and NMR techniques. The immunological significance of any physicochemical changes observed in MPCT was determined by SBA and ELISA assays of serum from immunized mice. Fluorescence emission spectra at 4 and 37 °C were similar among all samples and compatible with the native fold of the carrier protein. Fluorescence spectra of MPCT stored at 55 °C decreased in intensity and had a significant red-shift, indicating conformational changes. Far-UV CD spectra revealed a trend toward loss of structural conformation as storage temperature was increased to 55 °C. The NMR data showed modified signal intensity of the aromatic and aliphatic residues, mainly for samples incubated at 55 °C, suggesting a partial loss of tertiary structure. About 50% free saccharide content was found in bulks stored at 55 °C, but no difference was observed in the IgG or SBA titers. The present study showed physicochemical methods alone are insufficient to predict the biological activity of a MPCT conjugate vaccine without extensive validation against immunological data. However, they provide a sensitive means of detecting changes induced in a vaccine exposed to adverse environmental condition.


Subject(s)
Meningococcal Vaccines/immunology , Absorption, Radiation , Animals , Immunogenicity, Vaccine , Meningococcal Vaccines/chemistry , Mice , Neisseria meningitidis, Serogroup C/immunology , Protein Stability
9.
Proc Natl Acad Sci U S A ; 112(48): 14823-8, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627237

ABSTRACT

Factor H binding protein (FHbp) is part of two vaccines recently licensed for prevention of sepsis and meningitis caused by serogroup B meningococci. FHbp is classified in three phylogenic variant groups that have limited antigenic cross-reactivity, and FHbp variants in one of the groups have low thermal stability. In the present study, we replaced two amino acid residues, R130 and D133, in a stable FHbp variant with their counterparts (L and G) from a less stable variant. The single and double mutants decreased thermal stability of the amino- (N-) terminal domain compared with the wild-type protein as measured by scanning calorimetry. We introduced the converse substitutions, L130R and G133D, in a less stable wild-type FHbp variant, which increased the transition midpoint (Tm) for the N-terminal domain by 8 and 12 °C; together the substitutions increased the Tm by 21 °C. We determined the crystal structure of the double mutant FHbp to 1.6 Å resolution, which showed that R130 and D133 mediated multiple electrostatic interactions. Monoclonal antibodies specific for FHbp epitopes in the N-terminal domain had higher binding affinity for the recombinant double mutant by surface plasmon resonance and to the mutant expressed on meningococci by flow cytometry. The double mutant also had decreased binding of human complement Factor H, which in previous studies increased the protective antibody responses. The stabilized mutant FHbp thus has the potential to stabilize protective epitopes and increase the protective antibody responses to recombinant FHbp vaccines or native outer membrane vesicle vaccines with overexpressed FHbp.


Subject(s)
Amino Acid Substitution , Antigens, Bacterial/chemistry , Bacterial Proteins/chemistry , Meningococcal Vaccines/chemistry , Neisseria meningitidis, Serogroup B , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Crystallography, X-Ray , Hot Temperature , Humans , Meningococcal Vaccines/genetics , Protein Stability
10.
Altern Lab Anim ; 46(5): 255-272, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30488711

ABSTRACT

The meningococcal C conjugate vaccine (MenCC) is an interesting model with which to test the efficacy of the Monocyte Activation Test (MAT) as an alternative method of pyrogen testing in the quality control of vaccines. The MenCC that has been produced by Bio-Manguinhos in Brazil is in the final development stage, and, as recommended in the guidelines for MenCC production, its pyrogen content must be determined by using the Limulus Amoebocyte Lysate (LAL) assay and the Rabbit Pyrogen Test (RPT). This represents an ideal opportunity to compare LAL and RPT data with data obtained by using a MAT system with cryopreserved whole blood and IL-6/IL-1ß as marker readouts. In order to assess the compatibility of the MAT with MenCC, endotoxin and non-endotoxin pyrogen content was quantified by using MenCC samples spiked with lipopolysaccharide (LPS), lipoteichoic acid or zymosan standards. The presence of the aluminium-based adjuvant interfered with the MAT, increasing the readout of IL-1ß in LPS-spiked MenCC batches. This infringed the product-specific validation criteria of the test, and led to IL-6 being chosen as the more suitable marker readout. No pyrogenic contaminants were identified in the MenCC batches tested, demonstrating consistency among the different systems (MAT, RPT and the LAL assay). In conclusion, the introduction of the MAT during MenCC development could contribute to the elimination of animal tests post-licensing, ensuring human protection based on an effective non-animal based method of quality control.


Subject(s)
Biological Assay/methods , Meningococcal Vaccines/chemistry , Monocytes/drug effects , Pyrogens/chemistry , Animal Testing Alternatives , Animals , Blood , Cryopreservation , Horseshoe Crabs , Humans , Interleukin-1beta , Interleukin-6 , Quality Control , Rabbits
11.
Biologicals ; 47: 33-45, 2017 May.
Article in English | MEDLINE | ID: mdl-28389172

ABSTRACT

Polysaccharide (PS) based meningococcal vaccines are primarily evaluated by physicochemical methods to ensure batches are consistently manufactured. As PS content is determined by different methods across numerous laboratories, there is a need for International Standards (IS) to calibrate the assays. Following the successful introduction of the WHO Meningococcal group C (MenC) IS in 2011, NIBSC initiated projects to prepare similar standards for groups A, W, Y and X (MenA/W/Y/X) to standardise all meningococcal- PS based vaccines. On the basis of results from a collaborative study to evaluate preparations of MenA and MenX PS, both were established by the WHO Expert Committee on Biological Standardization in Oct 2015 as; the First WHO International Standard for the Meningococcal Group A polysaccharide with a content of 0.845 ± 0.043 mg MenA PS per ampoule (expanded uncertainty with coverage factor of k=2.45 corresponding to a 95% level of confidence); the First WHO International Standard for the Meningococcal Group X polysaccharide with a content of 0.776 ± 0.089 mg MenX PS per ampoule (expanded uncertainty with coverage factor of k=2.45), as determined by quantitative NMR. The standards are available from NIBSC, who act as guardians and distributors of the material under the auspices of WHO.


Subject(s)
Meningococcal Vaccines , Neisseria meningitidis, Serogroup A/chemistry , Polysaccharides, Bacterial , Humans , Meningococcal Vaccines/chemistry , Meningococcal Vaccines/isolation & purification , Meningococcal Vaccines/standards , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/isolation & purification , Polysaccharides, Bacterial/standards
13.
Anal Chem ; 86(11): 5383-90, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24810004

ABSTRACT

Invasive bacterial meningitis caused by Neisseria meningitidis can be prevented by active immunization with meningococcal polysaccharide or polysaccharide-protein conjugate vaccines. In a tetravalent A/C/Y/W-135-DT meningococcal conjugate vaccine vial, or in a final formulated bulk, accurate identification and quantification of each polysaccharide are critical in product release. Determination of sialic acid serogroups (C, W-135, and Y) unambiguously is complex since all these serogroups contribute to the sialic acid monosaccharide peaks that overlap in the high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD). We report a quantification method that involves generation of monosaccharide standard plots for respective sugars mannosamine-6-phosphate, sialic acid, galactose- and glucose-derived from hydrolysis of mixtures of the four serogroups A, C, W, and Y reference polysaccharides. These plots were then used to obtain the unknown polysaccharide concentrations of A/C/Y/W-135 in vialed vaccine or from formulated final bulks. We also present our results of the HPAEC-PAD profiles on groups C, W-135, and Y polysaccharides when hydrolyzed individually and/or in mixtures to discuss the individual sialic acid peak contributions.


Subject(s)
Meningococcal Vaccines/chemistry , Neisseria meningitidis, Serogroup A/chemistry , Neisseria meningitidis, Serogroup C/chemistry , Neisseria meningitidis, Serogroup W-135/chemistry , Neisseria meningitidis, Serogroup Y/chemistry , Polysaccharides/analysis , Vaccines, Conjugate/analysis , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Galactose/chemistry , Glucose/chemistry , Hydrolysis , Mannose/chemistry , Polysaccharides/immunology , Sialic Acids/chemistry , Vaccines, Conjugate/immunology
14.
Glycoconj J ; 31(9): 637-47, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25256065

ABSTRACT

Multicomponent constructs, obtained by coupling different glycans to the carrier protein, have been proposed as a way to co-deliver multiple surface carbohydrates targeting different strains of one pathogen and reduce the number of biomolecules in the formulation of multivalent vaccines. To assess the feasibility of this approach for anti-microbial vaccines and investigate the potential immunodominance of one carbohydrate antigen over the others in these constructs, we designed a bivalent unimolecular vaccine against serogroup A (MenA) and C (MenC) meningococci, with the two different oligomers conjugated to same molecule of carrier protein (CRM197). The immune response elicited in mice by the bivalent MenAC construct was compared with the ones induced by the monovalent MenA and MenC vaccines and their combinations. After the second dose, the bivalent construct induced good levels of anti-MenA and anti-MenC antibodies with respect to the controls. However, the murine sera from the MenAC construct exhibited good anti-MenC bactericidal activity, and very low anti-MenA functionality when compared to the monovalent controls. This result was explained with the diverse relative avidities against MenA and MenC polysaccharides, which were measured in the generated sera. The immunodominant effect of the MenC antigen was fully overcome following the third immunization, when sera endowed with higher avidity and excellent bactericidal activity against both MenA and MenC expressing strains were elicited. Construction of multicomponent glycoconjugate vaccines against microbial pathogens is a feasible approach, but particular attention should be devoted to study and overcome possible occurrence of immune interference among the carbohydrates.


Subject(s)
Antibodies, Bacterial/biosynthesis , Antigens, Bacterial/immunology , Glycoconjugates/immunology , Meningitis, Meningococcal/prevention & control , Meningococcal Vaccines/immunology , Polysaccharides, Bacterial/immunology , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/chemistry , Carbohydrate Sequence , Glycoconjugates/chemistry , Immunity, Humoral/drug effects , Immunization , Injections, Subcutaneous , Meningitis, Meningococcal/blood , Meningitis, Meningococcal/immunology , Meningitis, Meningococcal/microbiology , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/chemistry , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Neisseria meningitidis/chemistry , Neisseria meningitidis/immunology , Polysaccharides, Bacterial/chemistry , Serogroup , Vaccines, Conjugate , Vaccines, Subunit
15.
Biologicals ; 42(6): 312-5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25218518

ABSTRACT

A novel murine hybridoma monoclonal antibody (MAb) was produced against the capsular polysaccharide (CP) of Neisseria meningitidis serogroup X (MenX) in order to develop a sandwich enzyme linked immunosorbent assay (ELISA) for the quantitation of the meningococcal polysaccharide. The MAb only reacted with the CP from MenX and did not react with CPs from N. meningitidis serogroups A, C, Y and W (MenA, MenC, MenY, MenW). The affinity constant (Ka) of the MAb measured by non-competitive ELISA was 7.25 × 10(7) M(-1). The application of this MAb in a sandwich ELISA was demonstrated by its ability to properly quantitate three lots of an experimental meningococcal CP-based vaccine. The MAb obtained in this work could be a valuable reagent for the detection and quantitation of future meningococcal vaccines containing MenX CP.


Subject(s)
Antibodies, Monoclonal/chemistry , Meningococcal Infections/prevention & control , Meningococcal Vaccines/chemistry , Neisseria meningitidis/metabolism , Polysaccharides/chemistry , Animals , Calibration , Enzyme-Linked Immunosorbent Assay , Limit of Detection , Meningococcal Infections/microbiology , Mice , Mice, Inbred BALB C , Serogroup , Species Specificity
16.
Article in English | MEDLINE | ID: mdl-38430603

ABSTRACT

Molecular size distribution (MSD) of polysaccharides serves as a key parameter that directly correlates to the immunogenicity of vaccine. MSD at meningococcal polysaccharide (A, C, Y and W) or conjugate bulk level is well established under detailed pharmacopeial and WHO guidelines. We report here, a newly developed method for determination of molecular size distribution of pentavalent Meningococcal conjugate vaccine comprising of A, C, Y, W and X (MenFive). Although serogroup specific molecular size could not be estimated here; lot to lot consistency monitoring, molecular aggregates distribution in final lot, are key takeaways of this method. Determination of MSD in pentavalent fill finished product was quite challenging. Various columns/detectors combination, buffers, physico-chemical conditions (temperature, 2-8 °C, 25 °C, 40 °C and 60 °C; flow rate, 0.3 mL to 0.8 mL), liquid/lyophilized formulations, were explored. Polymer-based packed columns were explored for estimation for MSD by aqueous size exclusion chromatography, using combinations of- Shodex OHPAK SB 807 HQ, Shodex OHPAK SB 806 HQ, G6000 PWXL, coupled with guard Shodex OHPAK SB-G-6B. MenFive showed heterogenous distribution of molecules ranging from 200 to 19000 kDa, indicating its complex nature. However, 1000-8000 kDa was dominant range, comprising of ≥ 50 % distribution of molecules, in both liquid as well as lyophilized formulations, with average molecular weight around 6000-6500 kDa. The molar mass distribution after slicing would provide an insight to the conformation of molecules through its presentation as HMW, LMW, aggregates and subsequently, the presence of dominant population of molecules of a particular molecular weight and its total contribution in the sample.


Subject(s)
Meningococcal Vaccines , Meningococcal Vaccines/chemistry , Vaccines, Conjugate/chemistry , Polysaccharides , Chromatography, Gel , Molecular Weight , Antibodies, Bacterial
17.
Carbohydr Polym ; 341: 122349, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876728

ABSTRACT

Meningococcal glycoconjugate vaccines sourced from capsular polysaccharides (CPSs) of pathogenic Neisseria meningitidis strains are well-established measures to prevent meningococcal disease. However, the exact structural factors responsible for antibody recognition are not known. CPSs of Neisseria meningitidis serogroups Y and W differ by a single stereochemical center, yet they evoke specific immune responses. Herein, we developed specific monoclonal antibodies (mAbs) targeting serogroups C, Y, and W and evaluated their ability to kill bacteria. We then used these mAbs to dissect structural elements responsible for carbohydrate-protein interactions. First, Men oligosaccharides were screened against the mAbs using ELISA to select putative lengths representing the minimal antigenic determinant. Next, molecular interaction features between the mAbs and serogroup-specific sugar fragments were elucidated using STD-NMR. Moreover, X-ray diffraction data with the anti-MenW CPS mAb enabled the elucidation of the sugar-antibody binding mode. Our findings revealed common traits in the epitopes of all three sialylated serogroups. The minimal binding epitopes typically comprise five to six repeating units. Moreover, the O-acetylation of the neuraminic acid moieties was fundamental for mAb binding. These insights hold promise for the rational design of optimized meningococcal oligosaccharides, opening new avenues for novel production methods, including chemical or enzymatic approaches.


Subject(s)
Antibodies, Monoclonal , Meningococcal Vaccines , Neisseria meningitidis , Polysaccharides, Bacterial , Serogroup , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Neisseria meningitidis/immunology , Neisseria meningitidis/chemistry , Meningococcal Vaccines/immunology , Meningococcal Vaccines/chemistry , Polysaccharides, Bacterial/immunology , Polysaccharides, Bacterial/chemistry , Antibodies, Bacterial/immunology , Epitopes/immunology , Epitopes/chemistry , Animals , Mice , Humans , Bacterial Capsules/immunology , Bacterial Capsules/chemistry , Antibody Formation/immunology
18.
J Proteome Res ; 12(4): 1898-908, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23410224

ABSTRACT

At present, only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. These vaccines however require detergent-extraction to remove endotoxin, which changes immunogenicity and causes production difficulties. To investigate this in more detail, the protein content of detergent-extracted OMV is compared with two detergent-free alternatives. A novel proteomics strategy has been developed that allows quantitative analysis of many biological replicates despite inherent multiplex restrictions of dimethyl labeling. This enables robust statistical analysis of relative protein abundance. The comparison with detergent-extracted OMV reveales that detergent-free OMV are enriched with membrane (lipo)proteins and contain less cytoplasmic proteins due to a milder purification process. These distinct protein profiles are substantiated with serum blot proteomics, confirming enrichment with immunogenic proteins in both detergent-free alternatives. Therefore, the immunogenic protein content of OMV vaccines depends at least partially on the purification process. This study demonstrates that detergent-free OMV have a preferred composition.


Subject(s)
Bacterial Outer Membrane Proteins/analysis , Meningococcal Vaccines/analysis , Meningococcal Vaccines/chemistry , Proteomics/methods , Animals , Bacterial Outer Membrane Proteins/isolation & purification , Bacterial Outer Membrane Proteins/metabolism , Cytoplasm/chemistry , Detergents/chemistry , Female , Lipoproteins/analysis , Lipoproteins/chemistry , Meningococcal Vaccines/pharmacology , Mice , Mice, Inbred BALB C , Neisseria meningitidis, Serogroup B/pathogenicity
19.
Electrophoresis ; 34(22-23): 3221-6, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24037919

ABSTRACT

Neisseria meningitidis group C is an encapsulated bacterium that causes several diseases and is associated with high mortality rates, thereby constituting a serious public health problem. Bio-Manguinhos/Fiocruz is developing a conjugate vaccine by covalent attachment of capsular polysaccharide to hydrazide-activated tetanus toxoid through reductive amination. It is necessary to quantify free components as a quality control process to prevent exacerbated adverse reactions and/or attenuation of vaccine immunogenicity. Thus, this study aimed to develop and validate a quality control method appropriate for the separation and quantification of free polysaccharide present in this conjugate N. meningitidis group C vaccine using CE. CZE was used to remove unbound polysaccharide, and the electrophoretic conditions were varied to optimize resolution. We were able to develop and validate the proposed method, which was linear and showed a matrix effect. Repeatability and partial reproducibility of the method were also evaluated. The robustness results showed that control of temperature is required for reliable results. The validated method will be used to evaluate the conjugate batches submitted for Phase III clinical studies and for routine quality control of the conjugate vaccine.


Subject(s)
Electrophoresis, Capillary/methods , Meningococcal Vaccines/chemistry , Polysaccharides/analysis , Electrophoresis, Capillary/standards , Limit of Detection , Linear Models , Reproducibility of Results
20.
Glycoconj J ; 30(9): 857-70, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23949787

ABSTRACT

Vaccination with meningococcal glycoconjugate vaccines has decreased the incidence of invasive meningitis worldwide. These vaccines contain purified capsular polysaccharides attached to a carrier protein. Because of derivatization chemistries used in the process, conjugation of polysaccharide to protein often results in heterogeneous mixtures. Well-defined vaccines are needed to determine the relationship between vaccine structure and generated immune response. Here, we describe efforts to produce well-defined vaccine candidates by chemoenzymatic synthesis. Chemically synthesized lactosides were substrates for recombinant sialyltransferase enzymes from Camplyobacter jejuni and Neisseria meningitidis serogroup C. These resulting oligosialic acids have the same α(2-9) sialic acid repeat structure as Neisseria polysaccharide capsule with the addition of a conjugatable azide aglycon. The degree of polymerization (DP) of carbohydrate products was controlled by inclusion of the inhibitor CMP-9-deoxy-NeuNAc. Polymers with estimated DP < 47 (median DP 25) and DP < 100 (median DP 51) were produced. The receptor binding domain of the tetanus toxin protein (TetHc) was coupled as a carrier to the enzymatically synthesized oligosialic acids. Recombinant TetHc was derivatized with an alkyne squarate. Protein modification sites were determined by trypsin proteolysis followed by LC/MS-MS(E) analysis of peptides. Oligosialic acid azides were conjugated to modified TetHc via click chemistry. These chemoenzymatically prepared glycoconjugates were reactive in immunoassays with specific antibodies against either group C polysaccharide or TetHc. Sera of mice immunized with oligosialic acid-TetHc glycoconjugates contained much greater levels of polysaccharide-reactive IgG than the sera of control mice receiving unconjugated oligosialic acids. There was no apparent difference between glycoconjugates containing oligosaccharides of DP < 47 and DP < 100. These results suggest that chemoenzymatic synthesis may provide a viable method for making defined meningococcal vaccine candidates.


Subject(s)
Meningococcal Vaccines/chemistry , Peptide Fragments/chemistry , Sialic Acids/chemistry , Tetanus Toxin/chemistry , Vaccines, Conjugate/chemistry , Amino Acid Sequence , Animals , Campylobacter jejuni/immunology , Meningococcal Vaccines/immunology , Mice , Molecular Sequence Data , Neisseria meningitidis/immunology , Peptide Fragments/immunology , Sialic Acids/immunology , Tetanus Toxin/immunology , Vaccines, Conjugate/immunology
SELECTION OF CITATIONS
SEARCH DETAIL