Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42.708
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 40: 559-587, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35113732

ABSTRACT

The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.


Subject(s)
Microbiota , T-Lymphocytes , Animals , Humans
2.
Annu Rev Immunol ; 40: 143-167, 2022 04 26.
Article in English | MEDLINE | ID: mdl-34990209

ABSTRACT

The gut microbiome influences many host physiologies, spanning gastrointestinal function, metabolism, immune homeostasis, neuroactivity, and behavior. Many microbial effects on the host are orchestrated by bidirectional interactions between the microbiome and immune system. Imbalances in this dialogue can lead to immune dysfunction and immune-mediated conditions in distal organs including the brain. Dysbiosis of the gut microbiome and dysregulated neuroimmune responses are common comorbidities of neurodevelopmental, neuropsychiatric, and neurological disorders, highlighting the importance of the gut microbiome-neuroimmune axis as a regulator of central nervous system homeostasis. In this review, we discuss recent evidence supporting a role for the gut microbiome in regulating the neuroimmune landscape in health and disease.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Brain , Dysbiosis , Humans , Neuroimmunomodulation
3.
Annu Rev Immunol ; 39: 1-18, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902314

ABSTRACT

An imbalance in the microbiota may contribute to many human illnesses, which has prompted efforts to rebalance it by targeting the microbes themselves. However, by supplying the habitat, the host wields a prominent influence over microbial growth at body surfaces, raising the possibility that rebalancing the microbiota by targeting our immune system would be a viable alternative. Host control mechanisms that sculpt the microbial habitat form a functional unit with the microbiota, termed microbiota-nourishing immunity, that confers colonization resistance against pathogens. The host components of microbiota-nourishing immunity can be viewed as habitat filters that select for microbial traits licensing growth and survival in host habitat patches. Here we review current knowledge of how host-derived habitat filters shape the size, species composition, and spatial heterogeneity of the microbiota and discuss whether these host control mechanisms could be harnessed for developing approaches to rebalance microbial communities during dysbiosis.


Subject(s)
Dysbiosis , Microbiota , Animals , Humans
4.
Annu Rev Immunol ; 39: 449-479, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902310

ABSTRACT

The immune system has coevolved with extensive microbial communities living on barrier sites that are collectively known as the microbiota. It is increasingly clear that microbial antigens and metabolites engage in a constant dialogue with the immune system, leading to microbiota-specific immune responses that occur in the absence of inflammation. This form of homeostatic immunity encompasses many arms of immunity, including B cell responses, innate-like T cells, and conventional T helper and T regulatory responses. In this review we summarize known examples of innate-like T cell and adaptive immunity to the microbiota, focusing on fundamental aspects of commensal immune recognition across different barrier sites. Furthermore, we explore how this cross talk is established during development, emphasizing critical temporal windows that establish long-term immune function. Finally, we highlight how dysregulation of immunity to the microbiota can lead to inflammation and disease, and we pinpoint outstanding questions and controversies regarding immune system-microbiota interactions.


Subject(s)
Microbiota , Adaptive Immunity , Animals , B-Lymphocytes , Humans , Immunity, Innate , T-Lymphocytes
5.
Annu Rev Immunol ; 38: 147-170, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340573

ABSTRACT

Metabolism is one of the strongest drivers of interkingdom interactions-including those between microorganisms and their multicellular hosts. Traditionally thought to fuel energy requirements and provide building blocks for biosynthetic pathways, metabolism is now appreciated for its role in providing metabolites, small-molecule intermediates generated from metabolic processes, to perform various regulatory functions to mediate symbiotic relationships between microbes and their hosts. Here, we review recent advances in our mechanistic understanding of how microbiota-derived metabolites orchestrate and support physiological responses in the host, including immunity, inflammation, defense against infections, and metabolism. Understanding how microbes metabolically communicate with their hosts will provide us an opportunity to better describe how a host interacts with all microbes-beneficial, pathogenic, and commensal-and an opportunity to discover new ways to treat microbial-driven diseases.


Subject(s)
Disease Susceptibility , Energy Metabolism , Homeostasis , Microbiota , Symbiosis , Animals , Disease Susceptibility/immunology , Host-Pathogen Interactions , Humans , Immune System/immunology , Immune System/metabolism , Microbiota/immunology
6.
Annu Rev Immunol ; 38: 171-202, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340577

ABSTRACT

Innate lymphocyte populations are emerging as key effectors in tissue homeostasis, microbial defense, and inflammatory skin disease. The cells are evolutionarily ancient and carry conserved principles of function, which can be achieved through shared or unique specific mechanisms. Recent technological and treatment advances have provided insight into heterogeneity within and between individuals and species. Similar pathways can extend through to adaptive lymphocytes, which softens the margins with innate lymphocyte populations and allows investigation of nonredundant pathways of immunity and inflammation that might be amenable to therapeutic intervention. Here, we review advances in understanding of innate lymphocyte biology with a focus on skin disease and the roles of commensal and pathogen responses and tissue homeostasis.


Subject(s)
Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Skin Diseases/etiology , Skin Diseases/metabolism , Animals , Biomarkers , Homeostasis , Host-Pathogen Interactions/immunology , Humans , Microbiota/immunology , Signal Transduction , Skin Diseases/pathology
7.
Annu Rev Immunol ; 37: 405-437, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30673535

ABSTRACT

Pathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.


Subject(s)
Disease Resistance/immunology , Immunity, Innate , Infections/immunology , Microbiota/immunology , Animals , Host-Pathogen Interactions , Humans , Immune Tolerance , Immunomodulation
8.
Annu Rev Biochem ; 93(1): 565-601, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38640018

ABSTRACT

Human lectins are integral to maintaining microbial homeostasis on the skin, in the blood, and at mucosal barriers. These proteins can recognize microbial glycans and inform the host about its microbial status. In accordance with their roles, their production can vary with tissue type. They also can have unique structural and biochemical properties, and they can influence microbial colonization at sites proximal and distal to their tissue of origin. In line with their classification as innate immune proteins, soluble lectins have long been studied in the context of acute infectious disease, but only recently have we begun to appreciate their roles in maintaining commensal microbial communities (i.e., the human microbiota). This review provides an overview of soluble lectins that operate at host-microbe interfaces, their glycan recognition properties, and their roles in physiological and pathological mechanisms.


Subject(s)
Immunity, Innate , Lectins , Polysaccharides , Humans , Lectins/metabolism , Lectins/chemistry , Lectins/genetics , Polysaccharides/metabolism , Polysaccharides/chemistry , Microbiota , Animals , Host-Pathogen Interactions , Host Microbial Interactions/immunology
9.
Annu Rev Immunol ; 35: 199-228, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28142322

ABSTRACT

Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.


Subject(s)
Immunity, Innate , Immunotherapy/methods , Intestinal Mucosa/immunology , Microbiota/immunology , Neoplasms/immunology , Adaptive Immunity , Animals , Antineoplastic Agents/therapeutic use , Carcinogenesis , Humans , Inflammation , Neoplasms/microbiology , Neoplasms/therapy , Wound Healing
10.
Cell ; 187(12): 2905-2906, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848675

ABSTRACT

Microbial communities perform many important functions, such as carbon sequestration, decomposition, pathogen resistance, etc., but quantitatively predicting functions of new communities remains a major challenge. In this issue of Cell, Diaz-Colunga et al. report a new simple statistical regularity that enables such predictions.


Subject(s)
Environmental Microbiology , Microbiota , Bacteria/metabolism , Bacteria/genetics , Microbiota/physiology , Models, Biological
11.
Cell ; 187(1): 17-43, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181740

ABSTRACT

Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.


Subject(s)
Microbiota , Social Factors , Symbiosis , Animals , Humans , Noncommunicable Diseases , Virulence
12.
Cell ; 187(19): 5119-5120, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303680

ABSTRACT

Life as we know it began with microbes. Microbes sustain life on Earth, and every now and then, a microbe emerges that threatens the survival of an entire species. The dangers and benefits of microbial life are both enormous, as is their potential to help us live long, healthy, sustainable lives. Microbiology at Cell celebrates 50 years, and we're proud to showcase the marvelous and yet mysterious microbial world in our anniversary focus issue.


Subject(s)
Microbiology , Microbiology/trends , Humans , Bacteria/metabolism , Bacteria/genetics , Microbiota
13.
Cell ; 187(9): 2126-2128, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670070

ABSTRACT

The landscape of the intratumoral microbiome in tumor metastases is largely unchartered. In this issue of Cell, Voest et al. profiled the tumor metastasis-associated microbiome in a pancancer cohort of 4,160 biopsies from 26 cancer types. This dataset offers a useful resource for understanding the role of the microbiome in metastatic cancers.


Subject(s)
Microbiota , Neoplasm Metastasis , Humans , Neoplasms/pathology , Neoplasms/microbiology
14.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38552609

ABSTRACT

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Subject(s)
Neoplasms , Humans , Carcinogenesis , Microbiota , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Obesity/complications , Quality of Life
15.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38280374

ABSTRACT

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Subject(s)
Complement C3 , Intestinal Mucosa , Microbiota , Animals , Humans , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Neutrophils , Complement C3/metabolism , Stromal Cells/metabolism
16.
Cell ; 187(20): 5775-5795.e15, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39214080

ABSTRACT

Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Humans , Metagenome/genetics , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Food Microbiology , Metagenomics/methods , Bacteria/genetics , Bacteria/classification
17.
Cell ; 187(19): 5431-5452.e20, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303691

ABSTRACT

Breastfeeding and microbial colonization during infancy occur within a critical time window for development, and both are thought to influence the risk of respiratory illness. However, the mechanisms underlying the protective effects of breastfeeding and the regulation of microbial colonization are poorly understood. Here, we profiled the nasal and gut microbiomes, breastfeeding characteristics, and maternal milk composition of 2,227 children from the CHILD Cohort Study. We identified robust colonization patterns that, together with milk components, predict preschool asthma and mediate the protective effects of breastfeeding. We found that early cessation of breastfeeding (before 3 months) leads to the premature acquisition of microbial species and functions, including Ruminococcus gnavus and tryptophan biosynthesis, which were previously linked to immune modulation and asthma. Conversely, longer exclusive breastfeeding supports a paced microbial development, protecting against asthma. These findings underscore the importance of extended breastfeeding for respiratory health and highlight potential microbial targets for intervention.


Subject(s)
Breast Feeding , Milk, Human , Humans , Female , Milk, Human/microbiology , Infant , Child, Preschool , Asthma/microbiology , Asthma/prevention & control , Asthma/immunology , Microbiota , Gastrointestinal Microbiome , Male , Cohort Studies , Infant, Newborn
18.
Cell ; 187(17): 4571-4585.e15, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39094567

ABSTRACT

Our understanding of the normal variation in the upper respiratory tract (URT) microbiota across the human lifespan and how these relate to host, environment, and health is limited. We studied the microbiota of 3,104 saliva (<10 year-olds)/oropharynx (≥10 year-olds) and 2,485 nasopharynx samples of 3,160 Dutch individuals 0-87 years of age, participating in a cross-sectional population-wide study (PIENTER-3) using 16S-rRNA sequencing. The microbiota composition was strongly related to age, especially in the nasopharynx, with maturation occurring throughout childhood and adolescence. Clear niche- and age-specific associations were found between the microbiota composition and host/environmental factors and health outcomes. Among others, social interaction, sex, and season were associated with the nasopharyngeal microbial community. By contrast, the oral microbiota was more related to antibiotics, tobacco, and alcohol use. We present an atlas of the URT microbiota across the lifespan in association with environment and health, establishing a baseline for future research.


Subject(s)
Microbiota , Humans , Aged , Child, Preschool , Adult , Child , Middle Aged , Adolescent , Aged, 80 and over , Male , Female , Infant , Young Adult , RNA, Ribosomal, 16S/genetics , Cross-Sectional Studies , Infant, Newborn , Respiratory System/microbiology , Longevity , Nasopharynx/microbiology , Saliva/microbiology , Environment
19.
Cell ; 187(19): 5453-5467.e15, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39163860

ABSTRACT

Drug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally screened 444,054 previously reported putative small protein families from 1,773 human metagenomes for antimicrobial properties, identifying 323 candidates encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 70.5% displaying antimicrobial activity. As these compounds were different compared with previously reported antimicrobial peptides, we termed them smORF-encoded peptides (SEPs). SEPs killed bacteria by targeting their membrane, synergizing with each other, and modulating gut commensals, indicating a potential role in reconfiguring microbiome communities in addition to counteracting pathogens. The lead candidates were anti-infective in both murine skin abscess and deep thigh infection models. Notably, prevotellin-2 from Prevotella copri presented activity comparable to the commonly used antibiotic polymyxin B. Our report supports the existence of hundreds of antimicrobials in the human microbiome amenable to clinical translation.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Microbiota , Humans , Animals , Mice , Anti-Bacterial Agents/pharmacology , Microbiota/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Metagenome , Female , Open Reading Frames , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Prevotella/drug effects
20.
Cell ; 187(14): 3761-3778.e16, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38843834

ABSTRACT

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.


Subject(s)
Antimicrobial Peptides , Machine Learning , Microbiota , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/genetics , Humans , Animals , Anti-Bacterial Agents/pharmacology , Mice , Metagenome , Bacteria/drug effects , Bacteria/genetics , Gastrointestinal Microbiome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL