Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Parasite Immunol ; 43(12): e12893, 2021 12.
Article in English | MEDLINE | ID: mdl-34637545

ABSTRACT

Toxoplasma gondii (T. gondii) is a neurotropic protozoan parasite, which can cause mental and behavioural disorders. The present study aimed to elucidate the effects and underlying molecular mechanisms of sertraline (SERT) on T. gondii-induced depression-like behaviours. In the present study, a mouse model and a microglial cell line (BV2 cells) model were established by infecting with the T. gondii RH strain. In in vivo and in vitro experiments, the underlying molecular mechanisms of SERT in inhibiting depression-like behaviours and cellular perturbations caused by T. gondii infection were investigated in the mouse brain and BV2 cells. The administration of SERT significantly ameliorated depression-like behaviours in T. gondii-infected mice. Furthermore, SERT inhibited T. gondii proliferation. Treatment with SERT significantly inhibited the activation of microglia and decreased levels of pro-inflammatory cytokines such as tumour necrosis factor-alpha, and interferon-gamma, by down-regulating tumour necrosis factor receptor 1/nuclear factor-kappa B signalling pathway, thereby ameliorating the depression-like behaviours induced by T. gondii infection. Our study provides insight into the underlying molecular mechanisms of the newly discovered role of SERT against T. gondii-induced depression-like behaviours.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Depression/drug therapy , Mice , Microglia/metabolism , Microglia/parasitology , Sertraline/metabolism , Sertraline/pharmacology , Toxoplasma/physiology , Toxoplasmosis/drug therapy , Toxoplasmosis/metabolism
2.
Int J Mol Sci ; 22(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803262

ABSTRACT

In this study, we confirmed that the number of resident homeostatic microglia increases during chronic Toxoplasma gondii infection. Given that the progression of Alzheimer's disease (AD) worsens with the accumulation of amyloid ß (Aß) plaques, which are eliminated through microglial phagocytosis, we hypothesized that T. gondii-induced microglial proliferation would reduce AD progression. Therefore, we investigated the association between microglial proliferation and Aß plaque burden using brain tissues isolated from 5XFAD AD mice (AD group) and T. gondii-infected AD mice (AD + Toxo group). In the AD + Toxo group, amyloid plaque burden significantly decreased compared with the AD group; conversely, homeostatic microglial proliferation, and number of plaque-associated microglia significantly increased. As most plaque-associated microglia shifted to the disease-associated microglia (DAM) phenotype in both AD and AD + Toxo groups and underwent apoptosis after the lysosomal degradation of phagocytosed Aß plaques, this indicates that a sustained supply of homeostatic microglia is required for alleviating Aß plaque burden. Thus, chronic T. gondii infection can induce microglial proliferation in the brains of mice with progressed AD; a sustained supply of homeostatic microglia is a promising prospect for AD treatment.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Microglia , Toxoplasma/metabolism , Toxoplasmosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/parasitology , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Mice , Mice, Transgenic , Microglia/metabolism , Microglia/parasitology , Microglia/pathology , Toxoplasmosis/genetics , Toxoplasmosis/metabolism , Toxoplasmosis/pathology
3.
Glia ; 68(10): 1968-1986, 2020 10.
Article in English | MEDLINE | ID: mdl-32157745

ABSTRACT

Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with behavioral alterations and an increased risk for developing psychiatric illness, including schizophrenia. Current evidence from studies in humans and mouse models suggest that both seizures and schizophrenia result from a loss or dysfunction of inhibitory synapses. In line with this, we recently reported that persistent T. gondii infection alters the distribution of glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes GABA synthesis in inhibitory synapses. These changes could reflect a redistribution of presynaptic machinery in inhibitory neurons or a loss of inhibitory nerve terminals. To directly assess the latter possibility, we employed serial block face scanning electron microscopy (SBFSEM) and quantified inhibitory perisomatic synapses in neocortex and hippocampus following parasitic infection. Not only did persistent infection lead to a significant loss of perisomatic synapses, it induced the ensheathment of neuronal somata by myeloid-derived cells. Immunohistochemical, genetic, and ultrastructural analyses revealed that these myeloid-derived cells included activated microglia. Finally, ultrastructural analysis identified myeloid-derived cells enveloping perisomatic nerve terminals, suggesting they may actively displace or phagocytose synaptic elements. Thus, these results suggest that activated microglia contribute to perisomatic inhibitory synapse loss following parasitic infection and offer a novel mechanism as to how persistent T. gondii infection may contribute to both seizures and psychiatric illness.


Subject(s)
Cell Communication/physiology , Microglia/metabolism , Neural Inhibition/physiology , Neurons/metabolism , Synapses/metabolism , Toxoplasmosis/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/parasitology , Microglia/pathology , Neurons/parasitology , Neurons/pathology , Synapses/parasitology , Synapses/pathology , Toxoplasma , Toxoplasmosis/pathology
4.
BMC Genomics ; 20(1): 705, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31506064

ABSTRACT

BACKGROUND: Infection with Toxoplasma gondii is thought to damage the brain and be a risk factor for neurological and psychotic disorders. The immune response-participating chemokine system has recently been considered vital for brain cell signaling and neural functioning. Here, we investigated the effect of the deficiency of C-C chemokine receptor 5 (CCR5), which is previously reported to be associated with T. gondii infection, on gene expression in the brain during T. gondii infection and the relationship between CCR5 and the inflammatory response against T. gondii infection in the brain. RESULTS: We performed a genome-wide comprehensive analysis of brain cells from wild-type and CCR5-deficient mice. Mouse primary brain cells infected with T. gondii were subjected to RNA sequencing. The expression levels of some genes, especially in astrocytes and microglia, were altered by CCR5-deficiency during T. gondii infection, and the gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed an enhanced immune response in the brain cells. The expression levels of genes which were highly differentially expressed in vitro were also investigated in the mouse brains during the T. gondii infections. Among the genes tested, only Saa3 (serum amyloid A3) showed partly CCR5-dependent upregulation during the acute infection phase. However, analysis of the subacute phase showed that in addition to Saa3, Hmox1 may also contribute to the protection and/or pathology partly via the CCR5 pathway. CONCLUSIONS: Our results indicate that CCR5 is involved in T. gondii infection in the brain where it contributes to inflammatory responses and parasite elimination. We suggest that the inflammatory response by glial cells through CCR5 might be associated with neurological injury during T. gondii infection to some extent.


Subject(s)
Brain/cytology , Brain/parasitology , Gene Expression Profiling , Receptors, CCR5/deficiency , Toxoplasma/physiology , Animals , Astrocytes/metabolism , Astrocytes/parasitology , Brain/metabolism , Gene Knockout Techniques , Mice , Microglia/metabolism , Microglia/parasitology , Receptors, CCR5/genetics
5.
J Neuroinflammation ; 16(1): 159, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31352901

ABSTRACT

BACKGROUND: It has become increasingly evident that the immune and nervous systems are closely intertwined, relying on one another during regular homeostatic conditions. Prolonged states of imbalance between neural and immune homeostasis, such as chronic neuroinflammation, are associated with a higher risk for neural damage. Toxoplasma gondii is a highly successful neurotropic parasite causing persistent subclinical neuroinflammation, which is associated with psychiatric and neurodegenerative disorders. Little is known, however, by what means neuroinflammation and the associated neural impairment can be modulated by peripheral inflammatory processes. METHODS: Expression of immune and synapse-associated genes was assessed via quantitative real-time PCR to investigate how T. gondii infection-induced chronic neuroinflammation and associated neuronal alterations can be reshaped by a subsequent acute intestinal nematode co-infection. Immune cell subsets were characterized via flow cytometry in the brain of infected mice. Sulfadiazine and interferon-γ-neutralizing antibody were applied to subdue neuroinflammation. RESULTS: Neuroinflammation induced by T. gondii infection of mice was associated with increased microglia activation, recruitment of immune cells into the brain exhibiting Th1 effector functions, and enhanced production of Th1 and pro-inflammatory molecules (IFN-γ, iNOS, IL-12, TNF, IL-6, and IL-1ß) following co-infection with Heligmosomoides polygyrus. The accelerated cerebral Th1 immune response resulted in enhanced T. gondii removal but exacerbated the inflammation-related decrease of synapse-associated gene expression. Synaptic proteins EAAT2 and GABAAα1, which are involved in the excitation/inhibition balance in the CNS, were affected in particular. These synaptic alterations were partially recovered by reducing neuroinflammation indirectly via antiparasitic treatment and especially by application of IFN-γ-neutralizing antibody. Impaired iNOS expression following IFN-γ neutralization directly affected EAAT2 and GABAAα1 signaling, thus contributing to the microglial regulation of neurons. Besides, reduced CD36, TREM2, and C1qa gene expression points toward inflammation induced synaptic pruning as a fundamental mechanism. CONCLUSION: Our results suggest that neuroimmune responses following chronic T. gondii infection can be modulated by acute enteric nematode co-infection. While consecutive co-infection promotes parasite elimination in the CNS, it also adversely affects gene expression of synaptic proteins, via an IFN-γ-dependent manner.


Subject(s)
Brain/metabolism , Interferon-gamma/metabolism , Microglia/metabolism , Neurons/metabolism , Strongylida Infections/metabolism , Toxoplasmosis/metabolism , Animals , Brain/parasitology , Coinfection , Macrophage Activation/physiology , Mice , Microglia/parasitology , Nematospiroides dubius , Neurons/parasitology , Synapses/metabolism , Synapses/parasitology , Toxoplasma
6.
Parasitol Res ; 117(8): 2597-2605, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29858945

ABSTRACT

The conversion of tachyzoites into bradyzoites is a way for Toxoplasma gondii to establish a chronic and asymptomatic infection and achieve lifelong persistence in the host. The bradyzoites form tissue cysts in the retina, but not much is known about the horizontal distribution of the cysts or their interactions with glial cells in the retina. A chronic ocular toxoplasmosis model was induced by per oral administration of T. gondii Me49 strain cysts to BALB/c mice. Two months after the infection, retinas were flat-mounted and immunostained to detect cysts, ganglion cells, Müller cells, astrocytes, and microglial cells, followed by observation under fluorescence and confocal microscope. The horizontal distribution showed a rather clustered pattern, but the clusters were not restricted to certain location of the retina. Axial distribution was confined to the inner retina, mostly in ganglion cell layer or the inner plexiform layer. Both ganglion cells, a type of retinal neurons, and Müller cells, predominant retinal glial cells, could harbor cysts. The cysts were spatially separated from astrocytes, the most abundant glial cells in the ganglion cell layer, while close spatial distribution of microglial cells was observed in two thirds of retinal cysts. In this study, we demonstrated that the retinal cysts were not evenly distributed horizontally and were confined to the inner retina axially. Both neurons and one type of glial cells could harbor cysts, and topographic analysis of other glial cells suggests role of microglial cells in chronic ocular toxoplasmosis.


Subject(s)
Toxoplasma/physiology , Toxoplasmosis, Ocular/parasitology , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microglia/parasitology , Neuroglia/parasitology , Neurons/parasitology , Retina/parasitology
7.
Glia ; 65(1): 75-92, 2017 01.
Article in English | MEDLINE | ID: mdl-27696532

ABSTRACT

Astrocytes and microglia are activated during cerebral malaria (CM) and contribute to the production and release of several mediators during neuroinflammatory processes. Whether these changes are the consequence of a direct crosstalk between glial cells and the malarial parasite and how these cells participate in the pathogenesis of CM is not yet clear. We therefore examined the interaction of astrocytes and microglia with Plasmodium berghei ANKA-infected red blood cells using primary cell cultures derived from newborn C57BL/6 mice. We observed a dynamic transfer of vesicles from the parasite to astrocytes within minutes of contact, and the phagocytosis of infected red blood cells by microglia. Differential gene expression studies using the Affymetrix GeneChip® microarray, and quantitative PCR analyses showed the increase in expression of the set of genes belonging to the immune response network in parasite activated astrocytes and microglia. Interestingly, expression of these genes was also significantly upregulated in brains of mice dying from CM compared with uninfected mice or infected mice that did not develop the neuropathology. Accumulation of parasite-derived vesicles within astrocytes, and the phagocytosis of infected red blood cells by microglia induced a subsequent increase in interferon gamma inducible protein 10 (IP10) in both the brain and plasma of infected mice at the onset of CM, confirming a role for this molecule in CM pathogenesis. Altogether, these observations point to a possible role for glial cells in the neuropathological processes leading to CM. GLIA 2016 GLIA 2017;65:75-92.


Subject(s)
Astrocytes/parasitology , Erythrocytes/parasitology , Malaria, Cerebral/parasitology , Microglia/parasitology , Phagocytosis/physiology , Animals , Astrocytes/metabolism , Brain/parasitology , Brain/pathology , Cells, Cultured , Cytokines/metabolism , Female , Malaria, Cerebral/pathology , Mice, Inbred C57BL , Microglia/metabolism
8.
J Immunol ; 195(3): 796-800, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26091720

ABSTRACT

In vitro studies demonstrated that microglia and astrocytes produce IFN-γ in response to various stimulations, including LPS. However, the physiological role of IFN-γ production by brain-resident cells, including glial cells, in resistance against cerebral infections remains unknown. We analyzed the role of IFN-γ production by brain-resident cells in resistance to reactivation of cerebral infection with Toxoplasma gondii using a murine model. Our study using bone marrow chimeric mice revealed that IFN-γ production by brain-resident cells is essential for upregulating IFN-γ-mediated protective innate immune responses to restrict cerebral T. gondii growth. Studies using a transgenic strain that expresses IFN-γ only in CD11b(+) cells suggested that IFN-γ production by microglia, which is the only CD11b(+) cell population among brain-resident cells, is able to suppress the parasite growth. Furthermore, IFN-γ produced by brain-resident cells is pivotal for recruiting T cells into the brain to control the infection. These results indicate that IFN-γ produced by brain-resident cells is crucial for facilitating both the protective innate and T cell-mediated immune responses to control cerebral infection with T. gondii.


Subject(s)
Brain/immunology , Interferon-gamma/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Cerebral/immunology , Animals , Astrocytes/immunology , Astrocytes/parasitology , Brain/cytology , Brain/parasitology , CD11b Antigen/metabolism , Cell Line , Female , Interferon-gamma/biosynthesis , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Microglia/immunology , Microglia/parasitology , T-Lymphocytes/immunology
9.
Brain Behav Immun ; 51: 14-28, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26162711

ABSTRACT

The incidence of autoimmune and inflammatory diseases has risen dramatically in post-industrial societies. "Biome depletion" - loss of commensal microbial and multicellular organisms such as helminths (intestinal worms) that profoundly modulate the immune system - may contribute to these increases. Hyperimmune-associated disorders also affect the brain, especially neurodevelopment, and increasing evidence links early-life infection to cognitive and neurodevelopmental disorders. We have demonstrated previously that rats infected with bacteria as newborns display life-long vulnerabilities to cognitive dysfunction, a vulnerability that is specifically linked to long-term hypersensitivity of microglial cell function, the resident immune cells of the brain. Here, we demonstrate that helminth colonization of pregnant dams attenuated the exaggerated brain cytokine response of their offspring to bacterial infection, and that combined with post-weaning colonization of offspring with helminths (consistent with their mothers treatment) completely prevented enduring microglial sensitization and cognitive dysfunction in adulthood. Importantly, helminths had no overt impact on adaptive immune cell subsets, whereas exaggerated innate inflammatory responses in splenic macrophages were prevented. Finally, helminths altered the effect of neonatal infection on the gut microbiome; neonatal infection with Escherichia coli caused a shift from genera within the Actinobacteria and Tenericutes phyla to genera in the Bacteroidetes phylum in rats not colonized with helminths, but helminths attenuated this effect. In sum, these data point toward an inter-relatedness of various components of the biome, and suggest potential mechanisms by which this helminth might exert therapeutic benefits in the treatment of neuroinflammatory and cognitive disorders.


Subject(s)
Cognition Disorders/immunology , Cognition Disorders/parasitology , Gastrointestinal Microbiome , Hymenolepis diminuta/parasitology , Inflammation/immunology , Inflammation/parasitology , Microglia/immunology , Microglia/parasitology , Animals , Animals, Newborn , Anxiety/parasitology , Corticosterone/blood , Cytokines/metabolism , Female , Hippocampus/immunology , Hippocampus/metabolism , Hippocampus/parasitology , Housing, Animal , Inflammation/chemically induced , Leukocytes/parasitology , Lipopolysaccharides , Male , Memory/physiology , Pregnancy , Rats , Rats, Sprague-Dawley
10.
Parasite Immunol ; 37(3): 150-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25573476

ABSTRACT

Upon infection of humans and animals with Toxoplasma gondii, the parasites persist as intraneuronal cysts that are controlled, but not eliminated by the immune system. In particular, intracerebral T cells are crucial in the control of T. gondii infection and are supported by essential functions from other leukocyte populations. Additionally, brain-resident cells including astrocytes, microglia and neurons contribute to the intracerebral immune response by the production of cytokines, chemokines and expression of immunoregulatory cell surface molecules, such as major histocompatibility (MHC) antigens. However, the in vivo behaviour of these individual cell populations, specifically their interaction during cerebral toxoplasmosis, remains to be elucidated. We discuss here what is known about the function of T cells, recruited myeloid cells and brain-resident cells, with particular emphasis on the potential cross-regulation of these cell populations, in governing cerebral toxoplasmosis.


Subject(s)
Cytokines/biosynthesis , Immune System/immunology , Toxoplasma/physiology , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Cerebral/parasitology , Animals , Astrocytes/immunology , Astrocytes/parasitology , Brain/immunology , Brain/parasitology , Chemokines/biosynthesis , Humans , Immune System/parasitology , Microglia/immunology , Microglia/parasitology , Neurons/immunology , Neurons/parasitology , T-Lymphocytes/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Cerebral/immunology
11.
Parasitol Res ; 114(9): 3247-54, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26002828

ABSTRACT

Angiostrongylus cantonensis (A. cantonensis) is a rodent nematode. Adult worms of A. cantonensis live in the pulmonary arteries of rats; humans are non-permissive hosts like the mice. The larva cannot develop into an adult worm and only causes serious eosinophilic meningitis or meningo-encephalitis if humans or mice eat food containing larva of A. cantonensis in the third stage. The differing consequences largely depend on differing immune responses of hosts to parasite during A. cantonensis invasion and development. To further understand the reasons why mice and rats attain different outcomes in A. cantonensis infection, we used the HE staining to observe the pathological changes of infected mice and rats. In addition, we measured mRNA levels of some cytokines (IL-5, IL-6, IL-13, Eotaxin, IL-4, IL-10, TGF-ß, IFN-γ, IL-17A, TNF-α, IL-1ß, and iNOS) in brain tissues of mice and rats by real-time PCR. The result showed that brain inflammation in mice was more serious than in rats. Meanwhile, mRNA expression levels of IL-6, IL-1ß, TNF-α, and iNOS increased after mice were infected. In contrast, mRNA levels of these cytokines in rats brain tissues decreased at post- infection 21 days. These cytokines mostly were secreted by activated microglia in central nervous system. Microglia of mice and rats were showed by Iba-1 (microglia marker) staining. In micee brains, microglia got together and had more significant activation than in rats brains. The results demonstrate that mice and rats have different CNS inflammation after infection by A. cantonensis, and it is in line with other researchers' reported findings. In conclusion, it is suggested that microglia activation is probably to be one of the most important factors in angiostrongyliasis from our study.


Subject(s)
Angiostrongylus cantonensis , Encephalitis/parasitology , Inflammation/parasitology , Strongylida Infections/parasitology , Adult , Animals , Brain/parasitology , Brain/pathology , Cytokines/metabolism , Encephalitis/pathology , Humans , Inflammation/pathology , Meningitis/pathology , Mice , Microglia/parasitology , Rats , Real-Time Polymerase Chain Reaction , Staining and Labeling , Strongylida Infections/pathology
12.
Parasitol Res ; 113(5): 1883-96, 2014 May.
Article in English | MEDLINE | ID: mdl-24696273

ABSTRACT

The pathogenesis of angiostrongyliasis, resulting from the third-stage and the fourth-stage Angiostrongylus cantonensis larvae invasion of the human central nervous system, remains elusive. MicroRNAs are important regulators of gene expression and involved in many biological processes. The aim of this study was to determine and characterize miRNAs of third (L3) and fourth (L4) larvae of A. cantonensis by Solex deep sequencing. A total of 629 conserved miRNAs (526 and 376 miRNAs in L3 and L4 larvae of A. cantonensis, respectively) and three novel candidate miRNA from L3 and L4 larva of A. cantonensis were identified with bioinformatic analysis. There were 163 miRNAs upregulated and 54 miRNAs downregulated (fold changes ≥5.0) in the L4 of A. cantonensis compared with that of L3 of A. cantonensis. Interestingly, Gene Ontology "biological process" classifications revealed that 26 miRNAs of significantly differential expression are associated with the immune system, which implies that these miRNAs might participate in the pathogenesis of angiostrongyliasis by regulating genes involved in immune response pathways. Furthermore, the differential expression patterns of 26 conserved miRNAs between L3 and L4 of A. cantonensis were verified. The results of real-time PCR and Northern blot showed that the aca-miR-124 and aca-miR-146a-5p have a low level expression in L3 larvae but high level expression in L4 larvae. Transfection of aca-miR-124 mimics alone significantly downregulated the mRNA expression of IL-6 and IL-1ß and TNF-a in the N9 cells, compared to the combination transfection of aca-miR-124 mimics and inhibitor (P < 0.05), suggesting that miR-124 of A. cantonensis have an important role in the suppression of microglia activation. In conclusion, the study presents a general picture of the expression of small RNAs in L3 and L4 of A. cantonensis and highlights conserved miRNAs differentially expressed between L3 and L4 larvae. Our data revealed that miRNAs of parasite may mediate important roles in A. cantonensis immune evasion and aca-miR-146a-5p can serve as a potential biomarker to diagnose angiostrongyliasis.


Subject(s)
Angiostrongylus cantonensis/metabolism , Gene Expression Profiling , MicroRNAs/metabolism , Angiostrongylus cantonensis/genetics , Animals , Computational Biology , Gene Expression , High-Throughput Nucleotide Sequencing , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Larva/genetics , Larva/metabolism , Mice, Inbred BALB C , MicroRNAs/genetics , Microglia/parasitology , Nucleic Acid Conformation , Phylogeny , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Tumor Necrosis Factor-alpha/metabolism
13.
Parasitol Res ; 113(8): 2851-60, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24870248

ABSTRACT

Toxoplasma gondii can establish chronic infection and is characterized by the formation of tissue cysts in the brain. Although T. gondii can infect any kind of nucleated cells, macrophages and related mononuclear phagocytes are its preferred targets in vivo. Microglial cells are the resident macrophages in the central nervous system. It has been reported that CD37, a tetraspanin molecule, is expressed exclusively in the immune system; Dectin-1, an important pattern-recognition receptor, is expressed on the surface of murine primary microglia. The Dectin-1-CD37 association can affect Dectin-1-mediated IL-6 secretion. However, there is no report concerning the relationship among the expressions of Dectin-1, IL-6, and CD37 during T. gondii infection. In the present study, Kunming outbred mice were infected with Prugniaud (Pru), a type II strain of T. gondii by oral gavage, and BV-2 murine microglial cells were cocultured with RH tachyzoites of T. gondii. By H&E and immunohistochemical staining, the results showed that marked inflammation and a significantly increased activation of Iba1-positive microglial cells were observed in the brain tissues of mice infected with T. gondii Pru strain at 5 weeks postinfection (p.i.) in comparison of uninfected controls. Using quantitative real-time PCR detection, Dectin-1 messenger RNA (mRNA) expressions were significantly upregulated in both brains at 3 (P < 0.01), 5 (P < 0.01), 7 (P < 0.01), and 9 (P < 0.05) weeks p.i. and spleens at 3, 5, 7, and 9 weeks p.i. (P < 0.01). IL-6 expressions showed similar dynamic tendency as that of Dectin-1 in both the brains and spleens at the same times in comparison of uninfected controls; CD37 expressions were significantly increased in the brain tissues at all the times (P < 0.01) and no significant differences in the spleens at 3 weeks p.i. but significantly downregulated in the spleens at 5, 7, and 9 weeks p.i. (P < 0.01). In vitro study showed that compared with uninfected controls, the mRNA expressions of Dectin-1 at 2, 4, 8, and 10 h (P < 0.01); IL-6 at 8 and 10 h (P < 0.01); and CD37 at 4 (P < 0.05), 8 (P < 0.01), and 10 h (P < 0.01) were significantly upregulated in BV-2 murine microglial cells stimulated with RH tachyzoites of T. gondii. Our data suggested that the expression of Dectin-1 was positively correlated with that of IL-6 in toxoplasmic encephalitis (TE) mouse model; Dectin-1 interaction with tetraspanin CD37 regulated IL-6 expression in both the brain tissues of TE mouse model and in the T. gongdii-infected BV-2 murine microglial cells.


Subject(s)
Antigens, CD/metabolism , Antigens, Neoplasm/metabolism , Interleukin-6/immunology , Lectins, C-Type/metabolism , Tetraspanins/metabolism , Toxoplasmosis, Cerebral/immunology , Animals , Brain/metabolism , Brain/parasitology , Brain/pathology , Cell Line , Disease Models, Animal , Female , Macrophages/metabolism , Macrophages/parasitology , Mice , Microglia/metabolism , Microglia/parasitology , RNA, Messenger/metabolism , Spleen/metabolism , Toxoplasma , Toxoplasmosis, Animal/immunology
14.
PLoS Pathog ; 7(9): e1002246, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21949652

ABSTRACT

Under normal conditions the immune system has limited access to the brain; however, during toxoplasmic encephalitis (TE), large numbers of T cells and APCs accumulate within this site. A combination of real time imaging, transgenic reporter mice, and recombinant parasites allowed a comprehensive analysis of CD11c+ cells during TE. These studies reveal that the CNS CD11c+ cells consist of a mixture of microglia and dendritic cells (DCs) with distinct behavior associated with their ability to interact with parasites or effector T cells. The CNS DCs upregulated several chemokine receptors during TE, but none of these individual receptors tested was required for migration of DCs into the brain. However, this process was pertussis toxin sensitive and dependent on the integrin LFA-1, suggesting that the synergistic effect of signaling through multiple chemokine receptors, possibly leading to changes in the affinity of LFA-1, is involved in the recruitment/retention of DCs to the CNS and thus provides new insights into how the immune system accesses this unique site.


Subject(s)
Brain/immunology , Dendritic Cells/immunology , Encephalitis/immunology , Toxoplasma/immunology , Toxoplasmosis, Cerebral/immunology , Adoptive Transfer , Animals , Brain/parasitology , CD11c Antigen/analysis , Cell Movement , Dendritic Cells/cytology , Dendritic Cells/physiology , Encephalitis/parasitology , Lymphocyte Function-Associated Antigen-1/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/parasitology , Pertussis Toxin/pharmacology , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , T-Lymphocytes/immunology , Toxoplasmosis, Cerebral/metabolism
15.
Parasitol Res ; 112(1): 207-14, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23073569

ABSTRACT

Angiostrongylus cantonensis is a rodent nematode. Adult worms of A. cantonensis live in the pulmonary arteries of rats. Humans and mice are accidental hosts or named nonpermissive hosts. The larva cannot develop into an adult worm and only causes serious eosinophilic meningitis or meningoencephalitis if humans or mice eat food containing larva of A. cantonensis in the third stage. The differing consequences largely depend on differing immune responses of the host to parasite during A. cantonensis invasion and development. Microglia is considered to be the key immune cell in the central nervous system like macrophage. To further understand the reasons for why mice and rats attain different outcomes in A. cantonensis infection, we set up the method to isolate and culture newborn rats' primary microglia and observe the activation of the microglia cells, comparing with mice microglia cell line N9. We treated cells with soluble antigen of the fourth larva of A. cantonensis (L4 larva) and measured mRNA levels of IL-1ß, IL-5, IL-6, IL-13, eotaxin, iNOS, and TNF-α by real-time PCR. The results showed that N9 expressed high mRNA level of IL-6, IL-1ß, TNF-α, iNOS, IL-5, IL-13, and eotaxin, but primary microglia only had IL-5, IL-13, and eotaxin mRNA level. It implies that microglia from rats and mice had different reaction to soluble antigen of A. cantonensis. Therefore, we supposed that microglia may play an immune modulation role during the brain inflammation induced by A. cantonensis.


Subject(s)
Angiostrongylus cantonensis/immunology , Antigens, Helminth/immunology , Microglia/immunology , Microglia/parasitology , Animals , Antigens, Helminth/isolation & purification , Cells, Cultured , Cytokines/biosynthesis , Gene Expression Profiling , Larva/immunology , Mice , Nitric Oxide Synthase Type II/biosynthesis , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
16.
Infect Immun ; 79(8): 3046-52, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21628522

ABSTRACT

Disseminated toxoplasmosis in the central nervous system (CNS) is often accompanied by a lethal outcome. Studies with murine models of infection have focused on the role of systemic immunity in control of toxoplasmic encephalitis, while knowledge remains limited on the contributions of resident cells with immune functions in the CNS. In this study, the role of glial cells was addressed in the setting of recrudescent Toxoplasma infection in mice. Activated astrocytes and microglia were observed in the close vicinity of foci with replicating parasites in situ in the brain parenchyma. Toxoplasma gondii tachyzoites were allowed to infect primary microglia and astrocytes in vitro. Microglia were permissive to parasite replication, and infected microglia readily transmigrated across transwell membranes and cell monolayers. Thus, infected microglia, but not astrocytes, exhibited a hypermotility phenotype reminiscent of that recently described for infected dendritic cells. In contrast to gamma interferon-activated microglia, Toxoplasma-infected microglia did not upregulate major histocompatibility complex (MHC) class II molecules and the costimulatory molecule CD86. Yet Toxoplasma-infected microglia and astrocytes exhibited increased sensitivity to T cell-mediated killing, leading to rapid parasite transfer to effector T cells in vitro. We hypothesize that glial cells and T cells, besides their role in triggering antiparasite immunity, may also act as "Trojan horses," paradoxically facilitating dissemination of Toxoplasma within the CNS. To our knowledge, this constitutes the first report of migratory activation of a resident CNS cell by an intracellular parasite.


Subject(s)
Cell Movement , Microglia/parasitology , Toxoplasma/pathogenicity , Toxoplasmosis/pathology , Animals , Astrocytes/parasitology , Astrocytes/physiology , Brain/parasitology , Brain/pathology , Cell Migration Assays , Cells, Cultured , Male , Mice , Mice, Inbred BALB C , Microglia/physiology , T-Lymphocytes, Cytotoxic/immunology
17.
Brain Behav Immun ; 25(5): 883-96, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20868739

ABSTRACT

Injury, infection and autoimmune triggers increase CNS expression of the chemokine CCL21. Outside the CNS, CCL21 contributes to chronic inflammatory disease and autoimmunity by three mechanisms: recruitment of lymphocytes into injured or infected tissues, organization of inflammatory infiltrates into lymphoid-like structures and promotion of homeostatic CD4+ T-cell proliferation. To test if CCL21 plays the same role in CNS inflammation, we generated transgenic mice with astrocyte-driven expression of CCL21 (GFAP-CCL21 mice). Astrocyte-produced CCL21 was bioavailable and sufficient to support homeostatic CD4+ T-cell proliferation in cervical lymph nodes even in the absence of endogenous CCL19/CCL21. However, lymphocytes and glial-activation were not detected in the brains of uninfected GFAP-CCL21 mice, although CCL21 levels in GFAP-CCL21 brains were higher than levels expressed in inflamed Toxoplasma-infected non-transgenic brains. Following Toxoplasma infection, T-cell extravasation into submeningeal, perivascular and ventricular sites of infected CNS was not CCL21-dependent, occurring even in CCL19/CCL21-deficient mice. However, migration of extravasated CD4+, but not CD8+ T cells from extra-parenchymal CNS sites into the CNS parenchyma was CCL21-dependent. CD4+ T cells preferentially accumulated at perivascular, submeningeal and ventricular spaces in infected CCL21/CCL19-deficient mice. By contrast, greater numbers of CD4+ T cells infiltrated the parenchyma of infected GFAP-CCL21 mice than in wild-type or CCL19/CCL21-deficient mice. Together these data indicate that CCL21 expression within the CNS has the potential to contribute to T cell-mediated CNS pathology via: (a) homeostatic priming of CD4+ T-lymphocytes outside the CNS and (b) by facilitating CD4+ T-cell migration into parenchymal sites following pathogenic insults to the CNS.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Chemokine CCL21/physiology , Toxoplasma/immunology , Toxoplasmosis, Cerebral/immunology , Animals , Astrocytes/immunology , Astrocytes/parasitology , Blotting, Northern , Brain/immunology , Brain/parasitology , CD4-Positive T-Lymphocytes/physiology , Chemotaxis, Leukocyte/immunology , Chemotaxis, Leukocyte/physiology , In Situ Hybridization , Lymphocyte Activation/immunology , Lymphocyte Activation/physiology , Mice , Mice, Transgenic , Microglia/immunology , Microglia/parasitology , Reverse Transcriptase Polymerase Chain Reaction
18.
Exp Parasitol ; 129(4): 409-13, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21924265

ABSTRACT

The majority of strains of Toxoplasma gondii belong to three distinct clonal lines known as types I, II, and III. The outcome of the immune response to infection is influenced by the parasite strain type. The goal of this study was to examine differences in the kinetics of gene expression in microglial cells infected with types I, II, or III of T. gondii. In addition, a requirement for the integrity of host Toll-like receptor (TLR) signaling in parasite-mediated changes in gene expression was evaluated. Wild type murine microglial cells infected with T. gondii displayed different kinetic patterns of pro-inflammatory cytokine expression that were dependent on the parasite strain type. In general, types II and III elicited higher sustained responses compared to type I which induced fluctuating patterns of cytokine gene expression. Contrary to this, differences in the induction of anti-apoptotic gene expression were minimal among the different type strains throughout infection. Experiments with cells lacking the TLR adaptor molecules MAL and Myd88 showed a dependency on these factors for the pro-inflammatory response but not the anti-apoptotic response. The results show that the outcome of gene expression in T. gondii-infected microglial cells is dependent on the parasite strain type in a time-dependent manner and is selective to particular subsets of genes. The induction of an anti-apoptotic response by T. gondii infection in the absence of TLR signaling reflects a complex level of modulation of host functions by the parasite.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Gene Expression/physiology , Microglia/parasitology , Toxoplasma/classification , Toxoplasma/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis/genetics , Cell Line , Cells, Cultured , Cytokines/biosynthesis , Cytokines/genetics , Genotype , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/physiology , Signal Transduction
19.
Exp Parasitol ; 128(4): 328-35, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21554878

ABSTRACT

Besides their natural bird hosts, Trichobilharzia regenti cercariae are able to penetrate skin of mammals, including humans. Experimental infections of mice showed that schistosomula of this species are able to avoid the immune response in skin of their non-specific mammalian host and escape the skin to migrate to the CNS. Schistosomula do not mature in mammals, but can survive in nervous tissue for several days post infection. Neuroinfections of specific bird hosts as well as accidental mammalian hosts can lead to neuromotor effects, for example, leg paralysis and thus this parasite serves as a model of parasite invasion of the CNS. Here, we show by histological and immunohistochemical investigation of CNS invasion of immunocompetent (BALB/c) and immunodeficient (SCID) mice by T. regenti schistosomula that the presence of parasites in the nervous tissue initiated an influx of immune cells, activation of microglia, astrocytes and development of inflammatory lesions. Schistosomula elimination in the tissue depended on the host immune status. In the absence of CD3+ T-cells in immunodeficient SCID mice, parasite destruction was slower than that in immunocompetent BALB/c mice. Axon injury and subsequent secondary demyelination in the CNS were associated with mechanical damage due to migration of schistosomula through the nervous tissue, and not by host immune processes. Immunoreactivity of the parasite intestinal content for specific antigens of oligodendrocytes/myelin and neurofilaments showed for the first time that schistosomula ingest the nervous tissue components during their migration.


Subject(s)
Central Nervous System Parasitic Infections/immunology , Central Nervous System/parasitology , Schistosomatidae/immunology , Trematode Infections/immunology , Animals , Axons/parasitology , Axons/pathology , Central Nervous System/immunology , Central Nervous System/pathology , Central Nervous System Parasitic Infections/etiology , Ducks , Immunity, Cellular , Immunocompetence , Immunohistochemistry , Inflammation/immunology , Inflammation/parasitology , Macrophages/immunology , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Mice, SCID , Microglia/immunology , Microglia/parasitology , Snails , Trematode Infections/etiology
20.
Biochim Biophys Acta Mol Cell Res ; 1868(2): 118898, 2021 02.
Article in English | MEDLINE | ID: mdl-33157166

ABSTRACT

Intracellular pathogens like Toxoplasma gondii often target proteins and pathways critical for host cell survival and stress response. Molecular chaperones encoded by the evolutionary conserved Heat shock proteins (Hsps) maintain proteostasis and are vital to cell survival following exposure to any form of stress. A key protein of this family is Hsp70, an ATP-driven molecular chaperone, which is stress inducible and often indiscernible in normal cells. Role of this protein with respect to intracellular survival and multiplication of protozoan parasite like T. gondii remains to be examined. We find that T. gondii infection upregulates expression of host Hsp70. Hsp70 selective inhibitor 2-phenylethynesulfonamide (PES) attenuates intracellular T. gondii multiplication. Biotinylated PES confirms selective interaction of this small molecule inhibitor with Hsp70. We show that PES acts by disrupting Hsp70 chaperone function which leads to dysregulation of host autophagy. Silencing of host Hsp70 underscores its importance for intracellular multiplication of T. gondii, however, attenuation achieved using PES is not completely attributable to host Hsp70 indicating the presence of other intracellular targets of PES in infected host cells. We find that PES is also able to target T. gondii Hsp70 homologue which was shown using PES binding assay. Detailed molecular docking analysis substantiates PES targeting of TgHsp70 in addition to host Hsp70. While establishing the importance of protein quality control in infection, this study brings to the fore a unique opportunity of dual targeting of host and parasite Hsp70 demonstrating how structural conservation of these proteins may be exploited for therapeutic design.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Intracellular Space/metabolism , Toxoplasma/physiology , Toxoplasmosis/metabolism , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Endothelial Cells/parasitology , HSP70 Heat-Shock Proteins/genetics , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Mice , Microglia/parasitology , Molecular Docking Simulation , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/parasitology , Sulfonamides/pharmacology , Toxoplasmosis/parasitology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL