Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.448
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 91: 505-540, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35303787

ABSTRACT

Mitogen-activated protein kinase (MAPK)-activated protein kinases (MAPKAPKs) are defined by their exclusive activation by MAPKs. They can be activated by classical and atypical MAPKs that have been stimulated by mitogens and various stresses. Genetic deletions of MAPKAPKs and availability of highly specific small-molecule inhibitors have continuously increased our functional understanding of these kinases. MAPKAPKs cooperate in the regulation of gene expression at the level of transcription; RNA processing, export, and stability; and protein synthesis. The diversity of stimuli for MAPK activation, the crosstalk between the different MAPKs and MAPKAPKs, and the specific substrate pattern of MAPKAPKs orchestrate immediate-early and inflammatory responses in space and time and ensure proper control of cell growth, differentiation, and cell behavior. Hence, MAPKAPKs are promising targets for cancer therapy and treatments for conditions of acute and chronic inflammation, such as cytokine storms and rheumatoid arthritis.


Subject(s)
Mitogen-Activated Protein Kinase Kinases , Mitogen-Activated Protein Kinases , Humans , Inflammation/genetics , Mitogen-Activated Protein Kinase Kinases/chemistry , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation
2.
Plant Cell ; 36(10): 4576-4593, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39102898

ABSTRACT

An Arabidopsis (Arabidopsis thaliana) mitogen-activated protein kinase (MAPK) cascade composed of YODA (YDA)-MKK4/MKK5-MPK3/MPK6 plays an essential role downstream of the ERECTA (ER)/ER-LIKE (ERL) receptor complex in regulating stomatal development in the leaf epidermis. STOMAGEN (STO), a peptide ligand produced in mesophyll cells, competes with EPIDERMAL PATTERNING FACTOR2 (EPF2) for binding ER/ERL receptors to promote stomatal formation. In this study, we found that activation of MPK3/MPK6 suppresses STO expression. Using MUTE and STO promoters that confer epidermis- and mesophyll-specific expression, respectively, we generated lines with cell-specific activation and suppression of MPK3/MPK6. The activation or suppression of MPK3/MPK6 in either epidermis or mesophyll cells is sufficient to alter stomatal differentiation. Epistatic analyses demonstrated that STO overexpression can rescue the suppression of stomatal formation conferred by the mesophyll-specific expression of the constitutively active MKK4DD or MKK5DD, but not by the epidermis-specific expression of these constitutively active MKKs. These data suggest that STO is downstream of MPK3/MPK6 in mesophyll cells, but upstream of MPK3/MPK6 in epidermal cells in stomatal development signaling. This function of the MPK3/MPK6 cascade allows it to coordinate plant epidermis development based on its activity in mesophyll cells during leaf development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinase Kinases , Mitogen-Activated Protein Kinases , Plant Stomata , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Stomata/genetics , Plant Stomata/growth & development , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Plant Epidermis/genetics , Plant Epidermis/cytology , Plant Epidermis/metabolism , Plants, Genetically Modified , Mesophyll Cells/metabolism , Promoter Regions, Genetic/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , DNA-Binding Proteins , Transcription Factors , Protein Serine-Threonine Kinases , MAP Kinase Kinase Kinases
3.
N Engl J Med ; 389(2): 118-126, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37437144

ABSTRACT

BACKGROUND: Craniopharyngiomas, primary brain tumors of the pituitary-hypothalamic axis, can cause clinically significant sequelae. Treatment with the use of surgery, radiation, or both is often associated with substantial morbidity related to vision loss, neuroendocrine dysfunction, and memory loss. Genotyping has shown that more than 90% of papillary craniopharyngiomas carry BRAF V600E mutations, but data are lacking with regard to the safety and efficacy of BRAF-MEK inhibition in patients with papillary craniopharyngiomas who have not undergone previous radiation therapy. METHODS: Eligible patients who had papillary craniopharyngiomas that tested positive for BRAF mutations, had not undergone radiation therapy previously, and had measurable disease received the BRAF-MEK inhibitor combination vemurafenib-cobimetinib in 28-day cycles. The primary end point of this single-group, phase 2 study was objective response at 4 months as determined with the use of centrally determined volumetric data. RESULTS: Of the 16 patients in the study, 15 (94%; 95% confidence interval [CI], 70 to 100) had a durable objective partial response or better to therapy. The median reduction in the volume of the tumor was 91% (range, 68 to 99). The median follow-up was 22 months (95% CI, 19 to 30) and the median number of treatment cycles was 8. Progression-free survival was 87% (95% CI, 57 to 98) at 12 months and 58% (95% CI, 10 to 89) at 24 months. Three patients had disease progression during follow-up after therapy had been discontinued; none have died. The sole patient who did not have a response stopped treatment after 8 days owing to toxic effects. Grade 3 adverse events that were at least possibly related to treatment occurred in 12 patients, including rash in 6 patients. In 2 patients, grade 4 adverse events (hyperglycemia in 1 patient and increased creatine kinase levels in 1 patient) were reported; 3 patients discontinued treatment owing to adverse events. CONCLUSIONS: In this small, single-group study involving patients with papillary craniopharyngiomas, 15 of 16 patients had a partial response or better to the BRAF-MEK inhibitor combination vemurafenib-cobimetinib. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT03224767.).


Subject(s)
Antineoplastic Agents , Craniopharyngioma , Pituitary Neoplasms , Humans , Craniopharyngioma/drug therapy , Craniopharyngioma/genetics , Disease Progression , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/genetics , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Vemurafenib/adverse effects , Vemurafenib/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Remission Induction
4.
Development ; 150(3)2023 02 15.
Article in English | MEDLINE | ID: mdl-36734326

ABSTRACT

During embryonic development, the forebrain roof plate undergoes invagination, leading to separation of the cerebral hemispheres. Any defects in this process, in humans, lead to middle interhemispheric holoprosencephaly (MIH-HPE). In this study, we have identified a previously unreported downstream mediator of retinoic acid (RA) signaling, CNKSR2, which is expressed in the forebrain roof plate in the chick embryo. Knockdown of CNKSR2 affects invagination, cell proliferation and patterning of the roof plate, similar to the phenotypes observed upon inhibition of RA signaling. We further demonstrate that CNKSR2 functions by modulating the Ras/Raf/MEK signaling. This appears to be crucial for patterning of the forebrain roof plate and its subsequent invagination, leading to the formation of the cerebral hemispheres. Thus, a set of novel molecular players have been identified that regulate the morphogenesis of the avian forebrain.


Subject(s)
Adaptor Proteins, Signal Transducing , Holoprosencephaly , Prosencephalon , Tretinoin , Animals , Chick Embryo , Adaptor Proteins, Signal Transducing/metabolism , Holoprosencephaly/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Prosencephalon/embryology , Tretinoin/metabolism
5.
Plant Physiol ; 195(2): 1382-1400, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38345866

ABSTRACT

Brassinosteroids (BRs) are phytohormones that regulate stomatal development. In this study, we report that BR represses stomatal development in etiolated Arabidopsis (Arabidopsis thaliana) cotyledons via transcription factors BRASSINAZOLE RESISTANT 1 (BZR1) and bri1-EMS SUPPRESSOR1 (BES1), which directly target MITOGEN-ACTIVATED PROTEIN KINASE KINASE 9 (MKK9) and FAMA, 2 important genes for stomatal development. BZR1/BES1 bind MKK9 and FAMA promoters in vitro and in vivo, and mutation of the BZR1/BES1 binding motif in MKK9/FAMA promoters abolishes their transcription regulation by BZR1/BES1 in plants. Expression of a constitutively active MKK9 (MKK9DD) suppressed overproduction of stomata induced by BR deficiency, while expression of a constitutively inactive MKK9 (MKK9KR) induced high-density stomata in bzr1-1D. In addition, bzr-h, a sextuple mutant of the BZR1 family of proteins, produced overabundant stomata, and the dominant bzr1-1D and bes1-D mutants effectively suppressed the stomata-overproducing phenotype of brassinosteroid insensitive 1-116 (bri1-116) and brassinosteroid insensitive 2-1 (bin2-1). In conclusion, our results revealed important roles of BZR1/BES1 in stomatal development, and their transcriptional regulation of MKK9 and FAMA expression may contribute to BR-regulated stomatal development in etiolated Arabidopsis cotyledons.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassinosteroids , Cotyledon , DNA-Binding Proteins , Gene Expression Regulation, Plant , Nuclear Proteins , Plant Stomata , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Brassinosteroids/metabolism , Plant Stomata/growth & development , Plant Stomata/genetics , Plant Stomata/drug effects , Cotyledon/genetics , Cotyledon/growth & development , Cotyledon/metabolism , Cotyledon/drug effects , Gene Expression Regulation, Plant/drug effects , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Mutation/genetics , Promoter Regions, Genetic/genetics , Etiolation , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics
6.
Plant Cell ; 34(8): 3066-3087, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35543483

ABSTRACT

Camalexin, an indolic antimicrobial metabolite, is the major phytoalexin in Arabidopsis thaliana, and plays a crucial role in pathogen resistance. Our previous studies revealed that the Arabidopsis mitogen-activated protein kinases MPK3 and MPK6 positively regulate pathogen-induced camalexin biosynthesis via phosphoactivating the transcription factor WRKY33. Here, we report that the ethylene and jasmonate (JA) pathways act synergistically with the MPK3/MPK6-WRKY33 module at multiple levels to induce camalexin biosynthesis in Arabidopsis upon pathogen infection. The ETHYLENE RESPONSE FACTOR1 (ERF1) transcription factor integrates the ethylene and JA pathways to induce camalexin biosynthesis via directly upregulating camalexin biosynthetic genes. ERF1 also interacts with and depends on WRKY33 to upregulate camalexin biosynthetic genes, indicating that ERF1 and WRKY33 form transcriptional complexes to cooperatively activate camalexin biosynthetic genes, thereby mediating the synergy of ethylene/JA and MPK3/MPK6 signaling pathways to induce camalexin biosynthesis. Moreover, as an integrator of the ethylene and JA pathways, ERF1 also acts as a substrate of MPK3/MPK6, which phosphorylate ERF1 to increase its transactivation activity and therefore further cooperate with the ethylene/JA pathways to induce camalexin biosynthesis. Taken together, our data reveal the multilayered synergistic regulation of camalexin biosynthesis by ethylene, JA, and MPK3/MPK6 signaling pathways via ERF1 and WRKY33 transcription factors in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes , Ethylenes/metabolism , Gene Expression Regulation, Plant , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Oxylipins , Sesquiterpenes , Transcription Factors/genetics , Transcription Factors/metabolism , Phytoalexins
7.
Plant Cell ; 34(2): 889-909, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34850198

ABSTRACT

Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphatidic Acids/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Hypoxia , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinases/genetics , Mutation , Phenotype , Phospholipase D/genetics , Phospholipase D/metabolism , Plants, Genetically Modified , Protein Stability , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Proc Natl Acad Sci U S A ; 119(49): e2208900119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36454758

ABSTRACT

Combining multiple therapeutic strategies in NRAS/BRAF mutant melanoma-namely MEK/BRAF kinase inhibitors, immune checkpoint inhibitors (ICIs), and targeted immunotherapies-may offer an improved survival benefit by overcoming limitations associated with any individual therapy. Still, optimal combination, order, and timing of administration remains under investigation. Here, we measure how MEK inhibition (MEKi) alters anti-tumor immunity by utilizing quantitative immunopeptidomics to profile changes in the peptide major histocompatibility molecules (pMHC) repertoire. These data reveal a collection of tumor antigens whose presentation levels are selectively augmented following therapy, including several epitopes present at over 1,000 copies per cell. We leveraged the tunable abundance of MEKi-modulated antigens by targeting four epitopes with pMHC-specific T cell engagers and antibody drug conjugates, enhancing cell killing in tumor cells following MEK inhibition. These results highlight drug treatment as a means to enhance immunotherapy efficacy by targeting specific upregulated pMHCs and provide a methodological framework for identifying, quantifying, and therapeutically targeting additional epitopes of interest.


Subject(s)
Melanoma , Mitogen-Activated Protein Kinase Kinases , Humans , Mitogen-Activated Protein Kinase Kinases/genetics , Antigens, Neoplasm/genetics , Melanoma/drug therapy , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Epitopes
9.
Cancer ; 130(2): 232-243, 2024 01.
Article in English | MEDLINE | ID: mdl-37776537

ABSTRACT

BACKGROUND: Resistance to BRAF and MEK inhibitors in BRAF V600-mutant melanoma is common. Multiple resistance mechanisms involve heat-shock protein 90 (HSP90) clients, and a phase 1 study of vemurafenib with the HSP90 inhibitor XL888 in patients with advanced melanoma showed activity equivalent to that of BRAF and MEK inhibitors. METHODS: Vemurafenib (960 mg orally twice daily) and cobimetinib (60 mg orally once daily for 21 of 28 days) with escalating dose cohorts of XL888 (30, 45, 60, or 90 mg orally twice weekly) was investigated in a phase 1 trial of advanced melanoma, with a modified Ji dose-escalation design. RESULTS: Twenty-five patients were enrolled. After two dose-limiting toxicities (DLTs) (rash and acute kidney injury) in the first cohort, lower doses of vemurafenib (720 mg) and cobimetinib (40 mg) were investigated with the same XL888 doses. Three DLTs (rash) were observed in 12 patients in the XL888 60-mg cohort, and this was determined as the maximum tolerated dose. Objective responses were observed in 19 patients (76%), and the median progression-free survival was 7.6 months, with a 5-year progression-free survival rate of 20%. The median overall survival was 41.7 months, with a 5-year overall survival rate of 37%. Single-cell RNA sequencing was performed on baseline and on-treatment biopsies; treatment was associated with increased immune cell influx (CD4-positive and CD8-positive T cells) and decreased melanoma cells. CONCLUSIONS: Combined vemurafenib and cobimetinib plus XL888 had significant toxicity, requiring frequent dose reductions, which may have contributed to the relatively low progression-free survival despite a high tumor response rate. Given overlapping toxicities, caution must be used when combining HSP90 inhibitors with BRAF and MEK inhibitors.


Subject(s)
Exanthema , Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Vemurafenib , Proto-Oncogene Proteins B-raf , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Protein Kinase Inhibitors/adverse effects , Exanthema/chemically induced , Exanthema/drug therapy , Heat-Shock Proteins/genetics , Heat-Shock Proteins/therapeutic use , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/pathology
10.
EMBO J ; 39(5): e103444, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32011004

ABSTRACT

The MAP kinase (MAPK) Hog1 is the central regulator of osmoadaptation in yeast. When cells are exposed to high osmolarity, the functionally redundant Sho1 and Sln1 osmosensors, respectively, activate the Ste11-Pbs2-Hog1 MAPK cascade and the Ssk2/Ssk22-Pbs2-Hog1 MAPK cascade. In a canonical MAPK cascade, a MAPK kinase kinase (MAP3K) activates a MAPK kinase (MAP2K) by phosphorylating two conserved Ser/Thr residues in the activation loop. Here, we report that the MAP3K Ste11 phosphorylates only one activating phosphorylation site (Thr-518) in Pbs2, whereas the MAP3Ks Ssk2/Ssk22 can phosphorylate both Ser-514 and Thr-518 under optimal osmostress conditions. Mono-phosphorylated Pbs2 cannot phosphorylate Hog1 unless the reaction between Pbs2 and Hog1 is enhanced by osmostress. The lack of the osmotic enhancement of the Pbs2-Hog1 reaction suppresses Hog1 activation by basal MAP3K activities and prevents pheromone-to-Hog1 crosstalk in the absence of osmostress. We also report that the rapid-and-transient Hog1 activation kinetics at mildly high osmolarities and the slow and prolonged activation kinetics at severely high osmolarities are both caused by a common feedback mechanism.


Subject(s)
MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinases/metabolism , Pheromones/metabolism , Saccharomyces cerevisiae/enzymology , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , MAP Kinase Kinase Kinases , Membrane Proteins , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Osmolar Concentration , Phosphorylation , Protein Kinases , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological
11.
Mol Med ; 30(1): 47, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594640

ABSTRACT

BACKGROUND: RASopathies are genetic syndromes affecting development and having variable cancer predisposition. These disorders are clinically related and are caused by germline mutations affecting key players and regulators of the RAS-MAPK signaling pathway generally leading to an upregulated ERK activity. Gain-of-function (GOF) mutations in PTPN11, encoding SHP2, a cytosolic protein tyrosine phosphatase positively controlling RAS function, underlie approximately 50% of Noonan syndromes (NS), the most common RASopathy. A different class of these activating mutations occurs as somatic events in childhood leukemias. METHOD: Here, we evaluated the application of a FRET-based zebrafish ERK reporter, Teen, and used quantitative FRET protocols to monitor non-physiological RASopathy-associated changes in ERK activation. In a multi-level experimental workflow, we tested the suitability of the Teen reporter to detect pan-embryo ERK activity correlates of morphometric alterations driven by the NS-causing Shp2D61G allele. RESULTS: Spectral unmixing- and acceptor photobleaching (AB)-FRET analyses captured pathological ERK activity preceding the manifestation of quantifiable body axes defects, a morphological pillar used to test the strength of SHP2 GoF mutations. Last, the work shows that by multi-modal FRET analysis, we can quantitatively trace back the modulation of ERK phosphorylation obtained by low-dose MEK inhibitor treatment to early development, before the onset of morphological defects. CONCLUSION: This work proves the usefulness of FRET imaging protocols on both live and fixed Teen ERK reporter fish to readily monitor and quantify pharmacologically- and genetically-induced ERK activity modulations in early embryos, representing a useful tool in pre-clinical applications targeting RAS-MAPK signaling.


Subject(s)
Noonan Syndrome , Zebrafish , Animals , Humans , Adolescent , Zebrafish/genetics , Zebrafish/metabolism , Fluorescence Resonance Energy Transfer , Noonan Syndrome/genetics , Mutation , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism
12.
J Gene Med ; 26(1): e3649, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282155

ABSTRACT

BACKGROUND: Ovarian cancer is one of the most common cancers in women. Profiles changes of microRNAs (miRNAs) are closely linked to malignant tumors. In the present study, we investigated expression of miR-451a in high-grade serous ovarian cancer (HGSOC). We also investigated the potential pathological roles and the likely mechanism of miR-451a in the development of HGSOC using animal models and cell lines. METHODS: Using bioinformatics techniques and a real-time PCR, we analyzed differently expressed miRNAs in HGSOC compared to normal tissue. MTT (i.e. 3-[4, 5-dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), EDU (i.e. 5-ethynyl-2'-deoxyuridine) and transwell assays were performed to investigate the effect of miR-451a on the proliferation and migration of HGSOC SKOV-3 cells. A dual luciferase reporter assay was performed to verify the targeting relationship of miR-451 and RAB5A (one of the Rab GTPase proteins that regulates endocytosis and vesicle transport). Also, we analyzed levels of the RAB5A mRNA and protein by real-time PCR, western blotting and immunohistochemistry assays in HGSOC cells and tissues. Finally, we performed in vivo experiments using HGSOC mice. RESULTS: miR-451a was substantially upregulated in HGSOC and associated with favorable clinical characteristics. miR-451a knockdown significantly increased growth and metastasis of HGSOC cell line SKOV-3 through Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. In addition, RAB5A, an early endosome marker, was shown to be a direct target of miR-451a. Moreover, RAB5A is correlated with unfavorable clinical features and shows independent prognostic significance in HGSOC. CONCLUSIONS: We found that the miR-451a/RAB5A axis is associated with tumorigenesis and progression through the Ras/Raf/MEK/ERK pathway, providing prognostic indicators and therapeutic targets for patients with HGSOC.


Subject(s)
MicroRNAs , Ovarian Neoplasms , rab5 GTP-Binding Proteins , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System/genetics , MicroRNAs/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Ovarian Neoplasms/genetics , rab5 GTP-Binding Proteins/genetics
13.
Calcif Tissue Int ; 114(4): 444-449, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38252285

ABSTRACT

Ameloblastoma is a rare odontogenic tumor which may be complicated by hypercalcemia in advanced disease. Tumoral parathyroid hormone-related peptide (PTHrP) production and local osteolysis from paracrine factors have been proposed as mechanisms. Mitogen-activated protein kinase (MAPK) inhibitors have been successfully used in ameloblastomas with BRAF V600E mutation to reduce symptoms and decrease tumor burden. Serum calcium has been observed to normalize following treatment with MAPK inhibitors; however, the response of PTHrP and markers of bone turnover has not been reported. We describe a case of a 55-year-old female with PTHrP-mediated hypercalcemia secondary to BRAF V600E-positive ameloblastoma with pulmonary metastases. Following treatment with dabrafenib and trametinib, the patient experienced the regression of pulmonary lesions and normalization of serum calcium, PTHrP, and markers of bone turnover. Tissue samples of ameloblastoma carrying BRAF V600E mutation are more likely to express PTHrP than tissue samples carrying wild-type BRAF. In our case, resolution of PTHrP-mediated hypercalcemia following initiation of BRAF/MEK inhibition provides additional evidence that the MAPK pathway contributes to PTHrP synthesis. It also raises the question of whether MAPK inhibitors would be effective in treating PTHrP-mediated hypercalcemia associated with other malignancies harboring BRAF V600E mutation.


Subject(s)
Ameloblastoma , Hypercalcemia , Female , Humans , Middle Aged , Parathyroid Hormone-Related Protein , Hypercalcemia/drug therapy , Ameloblastoma/drug therapy , Ameloblastoma/genetics , Ameloblastoma/pathology , Proto-Oncogene Proteins B-raf/genetics , Calcium , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation
14.
Cell Commun Signal ; 22(1): 386, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090602

ABSTRACT

BACKGROUND: T-LAK cell-oriented protein kinase (TOPK) strongly promotes the malignant proliferation of cancer cells and is recognized as a promising biomarker of tumor progression. Psoriasis is a common inflammatory skin disease featured by excessive proliferation of keratinocytes. Although we have previously reported that topically inhibiting TOPK suppressed psoriatic manifestations in psoriasis-like model mice, the exact role of TOPK in psoriatic inflammation and the underlying mechanism remains elusive. METHODS: GEO datasets were analyzed to investigate the association of TOPK with psoriasis. Skin immunohistochemical (IHC) staining was performed to clarify the major cells expressing TOPK. TOPK conditional knockout (cko) mice were used to investigate the role of TOPK-specific deletion in IMQ-induced psoriasis-like dermatitis in mice. Flow cytometry was used to analyze the alteration of psoriasis-related immune cells in the lesional skin. Next, the M5-induced psoriasis cell model was used to identify the potential mechanism by RNA-seq, RT-RCR, and western blotting. Finally, the neutrophil-neutralizing antibody was used to confirm the relationship between TOPK and neutrophils in psoriasis-like dermatitis in mice. RESULTS: We found that TOPK levels were strongly associated with the progression of psoriasis. TOPK was predominantly increased in the epidermal keratinocytes of psoriatic lesions, and conditional knockout of TOPK in keratinocytes suppressed neutrophils infiltration and attenuated psoriatic inflammation. Neutrophils deletion by neutralizing antibody greatly diminished the suppressive effect of TOPK cko in psoriasis-like dermatitis in mice. In addition, topical application of TOPK inhibitor OTS514 effectively attenuated already-established psoriasis-like dermatitis in mice. Mechanismly, RNA-seq revealed that TOPK regulated the expression of some genes in the IL-17 signaling pathway, such as neutrophils chemokines CXCL1, CXCL2, and CXCL8. TOPK modulated the expression of neutrophils chemokines via activating transcription factors STAT3 and NF-κB p65 in keratinocytes, thereby promoting neutrophils infiltration and psoriasis progression. CONCLUSIONS: This study identified a crucial role of TOPK in psoriasis by regulating neutrophils infiltration, providing new insights into the pathogenesis of psoriasis.


Subject(s)
Keratinocytes , Mitogen-Activated Protein Kinase Kinases , Neutrophil Infiltration , Psoriasis , Animals , Humans , Mice , Disease Models, Animal , Disease Progression , Imiquimod , Keratinocytes/pathology , Keratinocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Neutrophils/pathology , Psoriasis/pathology , Psoriasis/genetics , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Up-Regulation , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism
15.
J Natl Compr Canc Netw ; 22(3)2024 03 13.
Article in English | MEDLINE | ID: mdl-38479107

ABSTRACT

Mutations in BRAF are present in 4% of non-small cell lung cancer (NSCLC), of which half are well-characterized activating variants affecting codon 600 (classified as class I). These mutations, most commonly BRAF V600E, have been associated with response to BRAF/MEK-directed small molecule kinase inhibitors. NSCLC with kinase-activating BRAF mutations occurring at other codons (class II variants) represent a substantial portion of BRAF-mutated NSCLC, but use of targeted therapy in these tumors is still under investigation. Class II mutations have been described in other tumor types and have been associated with response to BRAF/MEK-targeted agents, although optimal treatment strategies for these patients are lacking. This report presents a case of a woman with metastatic NSCLC harboring a class II BRAF p.N486_P490del variant who had a sustained clinical response to combination therapy with dabrafenib and trametinib. This first report of the use of BRAF/MEK-targeted therapy for this variant in NSCLC supports consideration of such treatment for tumors with class II BRAF variants.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Imidazoles , Lung Neoplasms , Pyridones , Pyrimidinones , Female , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins B-raf/genetics , Oximes/therapeutic use , MAP Kinase Kinase Kinases , Mutation , Mitogen-Activated Protein Kinase Kinases/genetics
16.
Mol Biol Rep ; 51(1): 602, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698158

ABSTRACT

BACKGROUND: Low-temperature severely limits the growth and development of Camellia oleifera (C. oleifera). The mitogen-activated protein kinase (MAPK) cascade plays a key role in the response to cold stress. METHODS AND RESULTS: Our study aims to identify MAPK cascade genes in C. oleifera and reveal their roles in response to cold stress. In our study, we systematically identified and analyzed the MAPK cascade gene families of C. oleifera, including their physical and chemical properties, conserved motifs, and multiple sequence alignments. In addition, we characterized the interacting networks of MAPKK kinase (MAPKKK)-MAPK kinase (MAPKK)-MAPK in C. oleifera. The molecular mechanism of cold stress resistance of MAPK cascade genes in wild C. oleifera was analyzed by differential gene expression and real-time quantitative reverse transcription-PCR (qRT-PCR). CONCLUSION: In this study, 21 MAPKs, 4 MAPKKs and 55 MAPKKKs genes were identified in the leaf transcriptome of C. oleifera. According to the phylogenetic results, MAPKs were divided into 4 groups (A, B, C and D), MAPKKs were divided into 3 groups (A, B and D), and MAPKKKs were divided into 2 groups (MEKK and Raf). Motif analysis showed that the motifs in each subfamily were conserved, and most of the motifs in the same subfamily were basically the same. The protein interaction network based on Arabidopsis thaliana (A. thaliana) homologs revealed that MAPK, MAPKK, and MAPKKK genes were widely involved in C. oleifera growth and development and in responses to biotic and abiotic stresses. Gene expression analysis revealed that the CoMAPKKK5/CoMAPKKK43/CoMAPKKK49-CoMAPKK4-CoMAPK8 module may play a key role in the cold stress resistance of wild C. oleifera at a high-elevation site in Lu Mountain (LSG). This study can facilitate the mining and utilization of genetic resources of C. oleifera with low-temperature tolerance.


Subject(s)
Camellia , Cold-Shock Response , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Cold-Shock Response/genetics , Camellia/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/genetics , Cold Temperature , Transcriptome/genetics , Multigene Family , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Gene Expression Profiling/methods , Plant Leaves/genetics
17.
Curr Treat Options Oncol ; 25(2): 261-273, 2024 02.
Article in English | MEDLINE | ID: mdl-38300480

ABSTRACT

OPINION STATEMENT: The integration of targeted therapy into the multimodal management of craniopharyngiomas represents a significant advancement in the field of neuro-oncology. Historically, the management of these tumors has been challenging due to their proximity to vital brain structures, necessitating a delicate balance between tumor control and the preservation of neurological function. Traditional treatment modalities, such as surgical resection and radiation, while effective, carry their own set of risks, including potential damage to surrounding healthy tissues and the potential for long-term side effects. Recent insights into the molecular biology of craniopharyngiomas, particularly the discovery of the BRAF V600E mutation in nearly all papillary craniopharyngiomas, have paved the way for a targeted systemic treatment approach. However, advances have been limited for adamantinomatous craniopharyngiomas. The success of BRAF/MEK inhibitors in clinical trials underscores the potential of these targeted therapies not only to control tumor growth but also to reduce the need for more invasive treatments, potentially minimizing treatment-related complications. However, the introduction of these novel therapies also brings forth new challenges, such as determining the optimal timing, sequencing, and duration of targeted treatments. Furthermore, there are open questions regarding which specific BRAF/MEK inhibitors to use, the potential need for combination therapy, and the strategies for managing intolerable adverse events. Finally, ensuring equitable access to these therapies, especially in healthcare systems with limited resources, is crucial to prevent widening healthcare disparities. In conclusion, targeted therapy with BRAF/MEK inhibitors holds great promise for improving outcomes and quality of life for patients with BRAF-mutated craniopharyngiomas. However, additional research is needed to address the questions that remain about its optimal use and integration into comprehensive treatment plans.


Subject(s)
Craniopharyngioma , Pituitary Neoplasms , Humans , Craniopharyngioma/diagnosis , Craniopharyngioma/genetics , Craniopharyngioma/therapy , Proto-Oncogene Proteins B-raf/genetics , Quality of Life , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/therapy , Pituitary Neoplasms/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation
18.
Mol Ther ; 31(4): 986-1001, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36739480

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm of childhood. The molecular hallmark of JMML is hyperactivation of the Ras/MAPK pathway with the most common cause being mutations in the gene PTPN11, encoding the protein tyrosine phosphatase SHP2. Current strategies for treating JMML include using the hypomethylating agent, 5-azacitidine (5-Aza) or MEK inhibitors trametinib and PD0325901 (PD-901), but none of these are curative as monotherapy. Utilizing an Shp2E76K/+ murine model of JMML, we show that the combination of 5-Aza and PD-901 modulates several hematologic abnormalities often seen in JMML patients, in part by reducing the burden of leukemic hematopoietic stem and progenitor cells (HSC/Ps). The reduced JMML features in drug-treated mice were associated with a decrease in p-MEK and p-ERK levels in Shp2E76K/+ mice treated with the combination of 5-Aza and PD-901. RNA-sequencing analysis revealed a reduction in several RAS and MAPK signaling-related genes. Additionally, a decrease in the expression of genes associated with inflammation and myeloid leukemia was also observed in Shp2E76K/+ mice treated with the combination of the two drugs. Finally, we report two patients with JMML and PTPN11 mutations treated with 5-Aza, trametinib, and chemotherapy who experienced a clinical response because of the combination treatment.


Subject(s)
Leukemia, Myelomonocytic, Juvenile , Animals , Mice , Azacitidine/pharmacology , Leukemia, Myelomonocytic, Juvenile/drug therapy , Leukemia, Myelomonocytic, Juvenile/genetics , Leukemia, Myelomonocytic, Juvenile/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/therapeutic use , Mutation , Protein Kinase Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Humans
19.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649235

ABSTRACT

The versatility of mitogen-activated protein kinases (MAPKs) in translating exogenous and endogenous stimuli into appropriate cellular responses depends on its substrate specificity. In animals, several mechanisms have been proposed about how MAPKs maintain specificity to regulate distinct functional pathways. However, little is known of mechanisms that enable substrate selectivity in plant MAPKs. Small ubiquitin-like modifier (SUMO), a posttranslational modification system, plays an important role in plant development and defense by rapid reprogramming of cellular events. In this study we identified a functional SUMO interaction motif (SIM) in Arabidopsis MPK3 and MPK6 that reveals a mechanism for selective interaction of MPK3/6 with SUMO-conjugated WRKY33, during defense. We show that WRKY33 is rapidly SUMOylated in response to Botrytis cinerea infection and flg22 elicitor treatment. SUMOylation mediates WRKY33 phosphorylation by MPKs and consequent transcription factor activity. Disruption of either WRKY33 SUMO or MPK3/6 SIM sites attenuates their interaction and inactivates WRKY33-mediated defense. However, MPK3/6 SIM mutants show normal interaction with a non-SUMOylated form of another transcription factor, SPEECHLESS, unraveling a role for SUMOylation in differential substrate selectivity by MPKs. We reveal that the SUMO proteases, SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2 control WRKY33 SUMOylation and demonstrate a role for these SUMO proteases in defense. Our data reveal a mechanism by which MPK3/6 prioritize molecular pathways by differentially selecting substrates using the SUMO-SIM module during defense responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Botrytis/immunology , Mitogen-Activated Protein Kinase Kinases , Mitogen-Activated Protein Kinases , Plant Diseases , Ubiquitins , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/immunology , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/immunology , Plant Diseases/genetics , Plant Diseases/immunology , Ubiquitins/genetics , Ubiquitins/immunology
20.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431669

ABSTRACT

Inflammatory pathologies caused by phagocytes lead to numerous debilitating conditions, including chronic pain and blindness due to age-related macular degeneration. Many members of the sialic acid-binding immunoglobulin-like lectin (Siglec) family are immunoinhibitory receptors whose agonism is an attractive approach for antiinflammatory therapy. Here, we show that synthetic lipid-conjugated glycopolypeptides can insert into cell membranes and engage Siglec receptors in cis, leading to inhibitory signaling. Specifically, we construct a cis-binding agonist of Siglec-9 and show that it modulates mitogen-activated protein kinase (MAPK) signaling in reporter cell lines, immortalized macrophage and microglial cell lines, and primary human macrophages. Thus, these cis-binding agonists of Siglecs present a method for therapeutic suppression of immune cell reactivity.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antigens, CD/chemistry , Glycopeptides/genetics , Inflammation/drug therapy , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Anti-Inflammatory Agents/metabolism , Antigens, CD/genetics , Glycopeptides/chemistry , Humans , Macrophages/drug effects , Microglia/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Phagocytes/drug effects , Sialic Acid Binding Immunoglobulin-like Lectins/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL