Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Carcinogenesis ; 45(6): 436-449, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38470060

ABSTRACT

Oral squamous cell carcinoma (OSCC) is worldwide health problem associated with high morbidity and mortality. From both the patient and socioeconomic perspectives, prevention of progression of premalignant oral intraepithelial neoplasia (OIN) to OSCC is clearly the preferable outcome. Optimal OSCC chemopreventives possess a variety of attributes including high tolerability, bioavailability, efficacy and preservation of an intact surface epithelium. Terminal differentiation, which directs oral keratinocytes leave the proliferative pool to form protective cornified envelopes, preserves the protective epithelial barrier while concurrently eliminating growth-aberrant keratinocytes. This study employed human premalignant oral keratinocytes and an OSCC cell line to evaluate the differentiation-inducing capacity of the synthetic retinoid, fenretinide (4HPR). Full-thickness oral mucosal explants were evaluated for proof of concept differentiation studies. Results of this study characterize the ability of 4HPR to fulfill all requisite components for keratinocyte differentiation, i.e. nuclear import via binding to cellular RA binding protein-II (molecular modeling), binding to and subsequent activation of retinoic acid nuclear receptors (receptor activation assays), increased expression and translation of genes associated with keratinocyte differentiation [Reverse transcription polymerase chain reaction (RT-PCR), immunoblotting] upregulation of a transglutaminase enzyme essential for cornified envelope formation (transglutaminase 3, functional assay) and augmentation of terminal differentiation in human oral epithelial explants (image-analyses quantified corneocyte desquamation). These data build upon the chemoprevention repertoire of 4HPR that includes function as a small molecule kinase inhibitor and inhibition of essential mechanisms necessary for basement membrane invasion. An upcoming clinical trial, which will assess whether a 4HPR-releasing mucoadhesive patch induces histologic, clinical and molecular regression in OIN lesions, will provide essential clinical insights.


Subject(s)
Carcinoma, Squamous Cell , Cell Differentiation , Fenretinide , Keratinocytes , Mouth Neoplasms , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Cell Differentiation/drug effects , Mouth Neoplasms/pathology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/prevention & control , Fenretinide/pharmacology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/prevention & control , Carcinoma, Squamous Cell/metabolism , Chemoprevention/methods , Receptors, Retinoic Acid/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Mouth Mucosa/pathology , Mouth Mucosa/drug effects , Mouth Mucosa/metabolism
2.
Cell Biol Int ; 48(3): 358-368, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100213

ABSTRACT

Targeting of disease-associated microglia represents a promising therapeutic approach that can be used for the prevention or slowing down neurodegeneration. In this regard, the use of extracellular vesicles (EVs) represents a promising therapeutic approach. However, the molecular mechanisms by which EVs regulate microglial responses remain poorly understood. In the present study, we used EVs derived from human oral mucosa stem cells (OMSCs) to investigate the effects on the lipid raft formation and the phagocytic response of human microglial cells. Lipid raft labeling with fluorescent cholera toxin subunit B conjugates revealed that both EVs and lipopolysaccharide (LPS) by more than two times increased lipid raft formation in human microglia. By contrast, combined treatment with LPS and EVs significantly decreased lipid raft formation indicating possible interference of EVs with the process of LPS-induced lipid raft formation. Specific inhibition of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody as well as inhibition of purinergic P2X4 receptor (P2X4R) with selective antagonist 5-BDBD inhibited EVs- and LPS-induced lipid raft formation. Selective blockage of αvß3/αvß5 integrins with cilengitide suppressed EV- and LPS-induced lipid raft formation in microglia. Furthermore, inhibition of TLR4 and P2X4R prevented EV-induced phagocytic activity of human microglial cells. We demonstrate that EVs induce lipid raft formation in human microglia through interaction with TLR4, P2X4R, and αVß3/αVß5 signaling pathways. Our results provide new insights about the molecular mechanisms regulating EV/microglia interactions and could be used for the development of new therapeutic strategies against neurological disorders.


Subject(s)
Extracellular Vesicles , Microglia , Humans , Microglia/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Receptors, Purinergic P2X4/metabolism , Mouth Mucosa/metabolism , Signal Transduction , Extracellular Vesicles/metabolism , Stem Cells/metabolism , Membrane Microdomains/metabolism
3.
Mol Biol Rep ; 51(1): 303, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356030

ABSTRACT

BACKGROUND: This study aimed to assess silymarin's anticancer and antifibrotic potential through in silico analysis and investigate its impact on in vitro arecoline-induced fibrosis in primary human buccal fibroblasts (HBF). METHODS & RESULTS: The study utilized iGEMDOCK for molecular docking, evaluating nine bioflavonoids, and identified silymarin and baicalein as the top two compounds with the highest target affinity, followed by subsequent validation through a 100ns Molecular Dynamic Simulation demonstrating silymarin's stable behavior with Transforming Growth Factor Beta. HBF cell lines were developed from tissue samples obtained from patients undergoing third molar extraction. Arecoline, a known etiological factor in oral submucous fibrosis (OSMF), was employed to induce fibrogenesis in these HBFs. The inhibitory concentration (IC50) of arecoline was determined using the MTT assay, revealing dose-dependent cytotoxicity of HBFs to arecoline, with notable cytotoxicity observed at concentrations exceeding 50µM. Subsequently, the cytotoxicity of silymarin was assessed at 24 and 72 h, spanning concentrations from 5µM to 200µM, and an IC50 value of 143µM was determined. Real-time polymerase chain reaction (qPCR) was used to analyze the significant downregulation of key markers including collagen, epithelial-mesenchymal transition (EMT), stem cell, hypoxia, angiogenesis and stress markers in silymarin-treated arecoline-induced primary buccal fibroblast cells. CONCLUSION: Silymarin effectively inhibited fibroblast proliferation and downregulated genes associated with cancer progression and EMT pathway, both of which are implicated in malignant transformation. To our knowledge, this study represents the first exploration of silymarin's potential as a novel therapeutic agent in an in vitro model of OSMF.


Subject(s)
Arecoline , Oral Submucous Fibrosis , Humans , Arecoline/adverse effects , Arecoline/metabolism , Mouth Mucosa/metabolism , Molecular Docking Simulation , Oral Submucous Fibrosis/chemically induced , Oral Submucous Fibrosis/drug therapy , Oral Submucous Fibrosis/metabolism , Fibroblasts/metabolism , Fibrosis
4.
J Oral Pathol Med ; 53(7): 468-479, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38802299

ABSTRACT

BACKGROUND: circRNAs have been shown to participate in diverse diseases; however, their role in oral submucous fibrosis (OSF), a potentially malignant disorder, remains obscure. Our preliminary experiments detected the expression of circRNA mitochondrial translation optimization 1 homologue (circMTO1) in OSF tissues (n = 20) and normal mucosa tissues (n = 20) collected from Hunan Xiangya Stomatological Hospital, and a significant decrease of circMTO1 expression was showed in OSF tissues. Therefore, we further explored circMTO1 expression in OSF. METHODS: Target molecule expression was detected using RT-qPCR and western blotting. The migration and invasion of buccal mucosal fibroblasts (BMFs) were assessed using wound healing and Transwell assays. The interaction between miR-30c-5p, circMTO1, and SOCS3 was evaluated using dual luciferase, RNA immunoprecipitation (RIP), and RNA pull-down assays. The colocalisation of circMTO1 and miR-30c-5p was observed using fluorescence in situ hybridisation (FISH). RESULTS: circMTO1 and SOCS3 expression decreased, whereas miR-30c-5p expression increased in patients with OSF and arecoline-stimulated BMFs. Overexpression of circMTO1 effectively restrained the fibroblast-myofibroblast transition (FMT), as evidenced by the increase in expression of Coll I, α-SMA, Vimentin, and the weakened migration and invasion functions in BMFs. Mechanistic studies have shown that circMTO1 suppresses FMT by enhancing SOCS3 expression by sponging miR-30c-5p and subsequently inactivating the FAK/PI3K/AKT pathway. FMT induced by SOCS3 silencing was reversed by the FAK inhibitor TAE226 or the PI3K inhibitor LY294002. CONCLUSION: circMTO1/miR-30c-5p/SOCS3 axis regulates FMT in arecoline-treated BMFs via the FAK/PI3K/AKT pathway. Expanding the sample size and in vivo validation could further elucidate their potential as therapeutic targets for OSF.


Subject(s)
Fibroblasts , MicroRNAs , Oral Submucous Fibrosis , RNA, Circular , Suppressor of Cytokine Signaling 3 Protein , Humans , MicroRNAs/metabolism , Oral Submucous Fibrosis/pathology , Oral Submucous Fibrosis/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Fibroblasts/metabolism , RNA, Circular/genetics , Myofibroblasts , Male , Cell Movement , Mouth Mucosa/metabolism , Mouth Mucosa/cytology , Mouth Mucosa/pathology , Signal Transduction , Female , Cells, Cultured
5.
J Oral Pathol Med ; 53(7): 480-490, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38866540

ABSTRACT

BACKGROUND: Oral lichen planus (OLP) is a common T cell-mediated oral mucosal immune inflammatory disease. Intraepithelial lymphocytes (IELs) are a unique subset of T cells that play an important role in regulating immune response. This study aims to investigate the phenotype and the differentiation mechanism of IELs in OLP. METHODS: The expression of CD4, CD8α, CD8ß, T-helper-inducing POZ/Krueppel-like factor (ThPOK), and RUNX family transcription factor 3 (Runx3) in the epithelium and peripheral blood mononuclear cells (PBMCs) of OLP was determined by immunofluorescence and immunohistochemistry. Then, the correlations among them were analyzed. Naïve CD4+ T cells were sorted from blood of OLP patients and stimulated with retinoic acid (RA) and transforming growth factor-ß1 (TGF-ß1). Then the expression of CD4, CD8α, CD8ß, ThPOK, and Runx3 was investigated by immunocytochemistry. RESULTS: CD8α expression and CD8αα+ cells were upregulated in the epithelium of OLP, whereas they were downregulated in PBMCs of OLP. CD8ß was not expressed in the epithelium of OLP. CD4, CD8α, and Runx3 expression and CD4+CD8α+ cells were increased, whereas ThPOK expression was decreased in the epithelium of OLP. CD8α expression was positively correlated with Runx3 expression, whereas ThPOK expression was negatively correlated with Runx3 expression. After RA and TGF-ß1 stimulation, CD8α and Runx3 expression was upregulated, and ThPOK expression was downregulated in naïve CD4+ T cells. CONCLUSION: CD4+CD8αα+ IELs may be the dominant phenotype of IELs in OLP, and the differentiation of CD4+CD8αα+ IELs in OLP is negatively regulated by ThPOK and positively regulated by Runx3.


Subject(s)
CD8 Antigens , Core Binding Factor Alpha 3 Subunit , Intraepithelial Lymphocytes , Lichen Planus, Oral , Phenotype , Humans , Core Binding Factor Alpha 3 Subunit/metabolism , Lichen Planus, Oral/metabolism , Lichen Planus, Oral/immunology , Lichen Planus, Oral/pathology , Female , Middle Aged , Male , Adult , Intraepithelial Lymphocytes/immunology , CD4 Antigens , Transcription Factors , Aged , CD4-Positive T-Lymphocytes , Mouth Mucosa/metabolism , Mouth Mucosa/immunology , Mouth Mucosa/pathology , Cell Differentiation , DNA-Binding Proteins
6.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 145-149, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814222

ABSTRACT

The purpose of this study was to investigate the expression of CD109 and its clinicopathological significance in oral squamous cell carcinoma. Data from TIMER2.0 and UALCAN were analyzed to assess CD109 mRNA levels in OSCC. The immunohistochemical method was used to investigate the expressions of CD109 in 20 normal oral mucosa and 75 OSCC and analyzed the relationship between the expression of CD109 and the clinical variables. The mRNA levels of CD109 in OSCC tissues were significantly higher than in adjacent normal tissues (p<0.05). Immunohistochemical analysis revealed that CD109 protein expression was increased in OSCC tissues compared to normal tissues, and this difference was statistically significant (P<0.05). The positive rate of CD109 expression was 94% (16/117) in the group with lymph node metastasis, while it was 55% (32/58) in the group without metastasis (P<0.05). Similarly, the positive rate of CD109 expression was 91% (22/23) in the low differentiation group and 59% (26/52) in the high differentiation group (P<0.05). CD109 expression is markedly higher in OSCC, contributes to the pathological grading of OSCC and predicts lymph node metastasis.


Subject(s)
Antigens, CD , Carcinoma, Squamous Cell , GPI-Linked Proteins , Lymphatic Metastasis , Mouth Neoplasms , Neoplasm Proteins , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/biosynthesis , Immunohistochemistry , Gene Expression Regulation, Neoplastic , Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adult , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Clinical Relevance
7.
J Cutan Pathol ; 51(9): 666-671, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38812252

ABSTRACT

Paget disease is an intraepithelial neoplastic proliferation, commonly occurring in the breast and apocrine-rich areas, often associated with an underlying internal malignancy. Extramammary Paget disease (EMPD) of the oral cavity is exceedingly rare, with only eight reported cases, four of which were associated with an underlying internal malignancy. Here, we report a case of oral EMPD involving the buccal mucosa and gingiva of an 81-year-old male with no known underlying internal malignancy. The Paget cells were positive for CK7, CK20, CAM5.2, and androgen receptor, but negative for SOX10 and p63. The immunophenotype, association with internal malignancies, and treatment approaches for oral EMPD are reviewed.


Subject(s)
Mouth Mucosa , Paget Disease, Extramammary , Humans , Male , Paget Disease, Extramammary/pathology , Paget Disease, Extramammary/metabolism , Aged, 80 and over , Mouth Mucosa/pathology , Mouth Mucosa/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism
8.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791397

ABSTRACT

Oromucosal drug delivery, both local and transmucosal (buccal), is an effective alternative to traditional oral and parenteral dosage forms because it increases drug bioavailability and reduces systemic drug toxicity. The oral mucosa has a good blood supply, which ensures that drug molecules enter the systemic circulation directly, avoiding drug metabolism during the first passage through the liver. At the same time, the mucosa has a number of barriers, including mucus, epithelium, enzymes, and immunocompetent cells, that are designed to prevent the entry of foreign substances into the body, which also complicates the absorption of drugs. The development of oromucosal drug delivery systems based on mucoadhesive biopolymers and their derivatives (especially thiolated and catecholated derivatives) is a promising strategy for the pharmaceutical development of safe and effective dosage forms. Solid, semi-solid and liquid pharmaceutical formulations based on biopolymers have several advantageous properties, such as prolonged residence time on the mucosa due to high mucoadhesion, unidirectional and modified drug release capabilities, and enhanced drug permeability. Biopolymers are non-toxic, biocompatible, biodegradable and may possess intrinsic bioactivity. A rational approach to the design of oromucosal delivery systems requires an understanding of both the anatomy/physiology of the oral mucosa and the physicochemical and biopharmaceutical properties of the drug molecule/biopolymer, as presented in this review. This review summarizes the advances in the pharmaceutical development of mucoadhesive oromucosal dosage forms (e.g., patches, buccal tablets, and hydrogel systems), including nanotechnology-based biopolymer nanoparticle delivery systems (e.g., solid lipid particles, liposomes, biopolymer polyelectrolyte particles, hybrid nanoparticles, etc.).


Subject(s)
Drug Delivery Systems , Mouth Mucosa , Humans , Biopolymers/chemistry , Drug Delivery Systems/methods , Mouth Mucosa/metabolism , Animals
9.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791451

ABSTRACT

Fluconazole (FZ) is a potential antifungal compound for treating superficial and systemic candidiasis. However, the use of conventional oral drug products has some limitations. The development of buccal film may be a potential alternative to oral formulations for FZ delivery. The present study involved the development of novel FZ-loaded solid lipid nanoparticles (FZ-SLNs) in pectin solutions and the investigation of their particle characteristics. The particle sizes of the obtained FZ-SLNs were in the nanoscale range. To produce pectin films with FZ-SLNs, four formulations were selected based on the small particle size of FZ-SLNs and their suitable polydispersity index. The mean particle sizes of all chosen FZ-SLNs formulations did not exceed 131.7 nm, and the mean polydispersity index of each formulation was less than 0.5. The properties of films containing FZ-SLNs were then assessed. The preparation of all FZ-SLN-loaded pectin films provided the mucoadhesive matrices. The evaluation of mechanical properties unveiled the influence of particle size variation in FZ-SLNs on the integrity of the film. The Fourier-transform infrared spectra indicated that hydrogen bonds could potentially form between the pectin-based matrix and the constituents of FZ-SLNs. The differential scanning calorimetry thermogram of each pectin film with FZ-SLNs revealed that the formulation was thermally stable and behaved in a solid state at 37 °C. According to a drug release study, a sustained drug release pattern with a burst in the initial stage for all films may be advantageous for reducing the lag period of drug release. All prepared films with FZ-SLNs provided a sustained release of FZ over 6 h. The films containing FZ-SLNs with a small particle size provided good permeability across the porcine mucosa. All film samples demonstrated antifungal properties. These results suggest the potential utility of pectin films incorporating FZ-SLNs for buccal administration.


Subject(s)
Antifungal Agents , Fluconazole , Nanoparticles , Particle Size , Pectins , Pectins/chemistry , Nanoparticles/chemistry , Fluconazole/administration & dosage , Fluconazole/chemistry , Fluconazole/pharmacokinetics , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Administration, Buccal , Lipids/chemistry , Drug Carriers/chemistry , Drug Liberation , Spectroscopy, Fourier Transform Infrared , Drug Delivery Systems/methods , Mouth Mucosa/metabolism , Mouth Mucosa/drug effects , Calorimetry, Differential Scanning , Animals , Liposomes
10.
AAPS PharmSciTech ; 25(7): 190, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164432

ABSTRACT

In this research, 3D-printed antifungal buccal films (BFs) were manufactured as a potential alternative to commercially available antifungal oral gels addressing key considerations such as ease of manufacturing, convenience of administration, enhanced drug efficacy and suitability of paediatric patients. The fabrication process involved the use of a semi-solid extrusion method to create BFs from zein-Poly-Vinyl-Pyrrolidone (zein-PVP) polymer blend, which served as a carrier for drug (miconazole) and taste enhancers. After manufacturing, it was determined that the disintegration time for all films was less than 10 min. However, these films are designed to adhere to buccal tissue, ensuring sustained drug release. Approximately 80% of the miconazole was released gradually over 2 h from the zein/PVP matrix of the 3D printed films. Moreover, a detailed physicochemical characterization including spectroscopic and thermal methods was conducted to assess solid state and thermal stability of film constituents. Mucoadhesive properties and mechanical evaluation were also studied, while permeability studies revealed the extent to which film-loaded miconazole permeates through buccal tissue compared to commercially available oral gel formulation. Histological evaluation of the treated tissues was followed. Furthermore, in vitro antifungal activity was assessed for the developed films and the commercial oral gel. Finally, films underwent a two-month drug stability test to ascertain the suitability of the BFs for clinical application. The results demonstrate that 3D-printed films are a promising alternative for local administration of miconazole in the oral cavity.


Subject(s)
Antifungal Agents , Candidiasis, Oral , Drug Liberation , Miconazole , Printing, Three-Dimensional , Miconazole/administration & dosage , Miconazole/chemistry , Miconazole/pharmacokinetics , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Administration, Buccal , Candidiasis, Oral/drug therapy , Humans , Zein/chemistry , Mouth Mucosa/metabolism , Mouth Mucosa/microbiology , Povidone/chemistry , Permeability , Drug Delivery Systems/methods , Animals , Chemistry, Pharmaceutical/methods , Child
11.
J Pak Med Assoc ; 74(5): 852-856, 2024 May.
Article in English | MEDLINE | ID: mdl-38783429

ABSTRACT

Objective: To determine the expression of podoplanin, and to correlate it with histopathological grades in oral epithelial dysplasia and oral squamous cell carcinoma cases. METHODS: The retrospective, analytical, cross-sectional study was conducted at the City Laboratory, Peshawar, Pakistan, and comprised specimen block data of histologically diagnosed cases of oral benign lesions, dysplastic lesions and oral squamous cell carcinoma from January 2017 to August 2021. Two sections (4um) were cut from each specimen block for Haematoxylin and Eosin staining and immunohistochemistry. The slides were re-evaluated by two pathologists for confirmation of the diagnosis, and podoplanin marker was applied to cases selected using immunohistochemistry. Data was analysed using SPSS 22. RESULTS: Of the 80 cases identified, 68(85%) were analysed. There were 20(29.4%) benign cases; 11(55%) females and 9(45%) males with mean age 39.90±16.23 years, 20(29.4%) oral dysplastic cases; 14(70%) males and 6(30%) females with mean age 57.75±12.02 years, and 28(41.2%) oral squamous cell carcinoma cases; 17(61%) males and 11(39%) females with mean age 50.55±14.80 years. Podoplanin expression in oral epithelial dysplasia cases was significant (p=0.028), while it was not significant in the other 2 groups (p>0.05). CONCLUSIONS: Podoplanin when used along with histopathological evaluation could aid as an adjuvant technique in the diagnosis and grading of oral epithelial dysplasia.


Subject(s)
Membrane Glycoproteins , Mouth Neoplasms , Humans , Female , Male , Membrane Glycoproteins/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Middle Aged , Adult , Cross-Sectional Studies , Retrospective Studies , Aged , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Precancerous Conditions/pathology , Precancerous Conditions/metabolism , Pakistan/epidemiology , Young Adult , Mouth Mucosa/pathology , Mouth Mucosa/metabolism , Neoplasm Grading , Biomarkers, Tumor/metabolism , Immunohistochemistry
12.
J Control Release ; 366: 864-878, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38272399

ABSTRACT

Enabling non-invasive delivery of proteins across the mucosal barriers promises improved patient compliance and therapeutic efficacies. Cell-penetrating peptides (CPPs) are emerging as a promising and versatile tool to enhance protein and peptide permeation across various mucosal barriers. This review examines the structural and physicochemical attributes of the nasal, buccal, sublingual, and oral mucosa that hamper macromolecular delivery. Recent development of CPPs for overcoming those mucosal barriers for protein delivery is summarized and analyzed. Perspectives regarding current challenges and future research directions towards improving non-invasive transmucosal delivery of macromolecules for ultimate clinical translation are discussed.


Subject(s)
Cell-Penetrating Peptides , Humans , Cell-Penetrating Peptides/chemistry , Drug Delivery Systems , Proteins/metabolism , Administration, Mucosal , Mouth Mucosa/metabolism
13.
J Agric Food Chem ; 72(11): 5887-5897, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38441878

ABSTRACT

Glutathione transferases are xenobiotic-metabolizing enzymes with both glutathione-conjugation and ligandin roles. GSTs are present in chemosensory tissues and fluids of the nasal/oral cavities where they protect tissues from exogenous compounds, including food molecules. In the present study, we explored the presence of the omega-class glutathione transferase (GSTO1) in the rat oral cavity. Using immunohistochemistry, GSTO1 expression was found in taste bud cells of the tongue epithelium and buccal cells of the oral epithelium. Buccal and lingual extracts exhibited thiol-transferase activity (4.9 ± 0.1 and 1.8 ± 0.1 µM/s/mg, respectively). A slight reduction from 4.9 ± 0.1 to 4.2 ± 0.1 µM/s/mg (p < 0.05; Student's t test) was observed in the buccal extract with 100 µM GSTO1-IN-1, a specific inhibitor of GSTO1. RnGSTO1 exhibited the usual activities of omega GSTs, i.e., thiol-transferase (catalytic efficiency of 8.9 × 104 M-1·s-1), and phenacyl-glutathione reductase (catalytic efficiency of 8.9 × 105 M-1·s-1) activities, similar to human GSTO1. RnGSTO1 interacts with food phytochemicals, including bitter compounds such as luteolin (Ki = 3.3 ± 1.9 µM). Crystal structure analysis suggests that luteolin most probably binds to RnGSTO1 ligandin site. Our results suggest that GSTO1 could interact with food phytochemicals in the oral cavity.


Subject(s)
Glutathione Transferase , Luteolin , Rats , Animals , Humans , Glutathione Transferase/metabolism , Mouth Mucosa/metabolism , Sulfhydryl Compounds , Glutathione/metabolism
14.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(3): 319-328, 2024 Jun 01.
Article in English, Zh | MEDLINE | ID: mdl-39049651

ABSTRACT

OBJECTIVES: This study aims to assess the role of DNA methylation changes in tongue cancer through a comprehensive analysis of global DNA methylation alterations during experimental lingual carcinogenesis. METHODS: C57BL/6J mice were subjected to 16-week oral administration of 4-nitroquinoline-1-oxide (4NQO, 50 mg/L). Lingual mucosa samples, being representative of normal tissue (week 0) and early (week 12) and advanced (week 28) tumorigenesis, were harvested for microarray and methylated DNA immunoprecipitation sequencing (MeDIP-Seq). The mRNA and promoter methylation of transforming growth factor-beta-signaling protein 1 (SMAD1) were evaluated with real-time quantitative reverse transcription polymerase chain reaction and Massarray in human lingual mucosa and tongue cancer cell lines. RESULTS: The cytosine guanine island (CGI) methylation level observed at 28 weeks surpassed that of both 12 weeks and 0 weeks. The promoter methylation level at 12 weeks exceeded that at 0 weeks. Notably, 208 differentially expressed genes were negatively correlated to differential methylation in promoters among 0, 12, and 28 weeks. The mRNA of SMAD1 was upregulated, concurrent with a decrease in promoter methylation levels in cell lines compared to normal mucosa. CONCLUSIONS: DNA methylation changed during lingual carcinogenesis. Overexpression of SMAD1 was correlated to promoter hypomethylation in tongue cancer cell lines.


Subject(s)
Carcinogenesis , DNA Methylation , Mice, Inbred C57BL , Promoter Regions, Genetic , Tongue Neoplasms , Animals , Tongue Neoplasms/metabolism , Tongue Neoplasms/genetics , Mice , 4-Nitroquinoline-1-oxide , Humans , Cell Line, Tumor , Mouth Mucosa/metabolism
15.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786031

ABSTRACT

The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.


Subject(s)
Bone Morphogenetic Protein 2 , Mouth Mucosa , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Mouth Mucosa/metabolism , Animals , Mice , Keratins/metabolism , Keratins/genetics , Cell Proliferation , Gene Expression Regulation , Humans , Gene Ontology
16.
J Oral Biosci ; 66(3): 511-518, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38909983

ABSTRACT

BACKGROUND: Tissue engineering has significantly progressed in developing full-thickness oral mucosa constructs designed to replicate the natural oral mucosa. These constructs serve as valuable in vitro models for biocompatibility testing and oral disease modeling and hold clinical potential for replacing damaged or lost oral soft tissue. However, one of the major challenges in tissue engineering of the oral mucosa is the identification of an appropriate scaffold with optimal porosity, interconnected porous networks, biodegradability, and biocompatibility. These characteristics facilitate cell migration, nutrient delivery, and vascularization. Various biomaterials have been investigated for constructing tissue-engineered oral mucosa models; collagen has demonstrated superior outcomes compared with other materials. HIGHLIGHT: This review discusses the different types of tissue-engineered oral mucosa developed using various materials and includes articles published between January 2000 and December 2022 in PubMed and Google Scholar. The review focuses on the superiority of collagen-based scaffolds for tissue engineering of oral mucosa, explores in vitro applications, and discusses potential clinical applications. CONCLUSION: Among the various scaffold materials used for engineering the connective tissue of the oral mucosa, collagen-based scaffolds possess excellent biological properties, offering high-quality oral mucosa constructs and high resemblance to the native human oral mucosa in terms of histology and expression of various differentiation markers.


Subject(s)
Biocompatible Materials , Collagen , Mouth Mucosa , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Mouth Mucosa/metabolism , Mouth Mucosa/cytology , Humans , Tissue Scaffolds/chemistry , Collagen/chemistry , Collagen/metabolism , Biocompatible Materials/chemistry , Porosity
17.
Stem Cell Res Ther ; 15(1): 113, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38650025

ABSTRACT

BACKGROUND: Oral submucous fibrosis (OSF) is a precancerous lesion characterized by fibrous tissue deposition, the incidence of which correlates positively with the frequency of betel nut chewing. Prolonged betel nut chewing can damage the integrity of the oral mucosal epithelium, leading to chronic inflammation and local immunological derangement. However, currently, the underlying cellular events driving fibrogenesis and dysfunction are incompletely understood, such that OSF has few treatment options with limited therapeutic effectiveness. Dental pulp stem cells (DPSCs) have been recognized for their anti-inflammatory and anti-fibrosis capabilities, making them promising candidates to treat a range of immune, inflammatory, and fibrotic diseases. However, the application of DPSCs in OSF is inconclusive. Therefore, this study aimed to explore the pathogenic mechanism of OSF and, based on this, to explore new treatment options. METHODS: A human cell atlas of oral mucosal tissues was compiled using single-cell RNA sequencing to delve into the underlying mechanisms. Epithelial cells were reclustered to observe the heterogeneity of OSF epithelial cells and their communication with immune cells. The results were validated in vitro, in clinicopathological sections, and in animal models. In vivo, the therapeutic effect and mechanism of DPSCs were characterized by histological staining, immunohistochemical staining, scanning electron microscopy, and atomic force microscopy. RESULTS: A unique epithelial cell population, Epi1.2, with proinflammatory and profibrotic functions, was predominantly found in OSF. Epi1.2 cells also induced the fibrotic process in fibroblasts by interacting with T cells through receptor-ligand crosstalk between macrophage migration inhibitory factor (MIF)-CD74 and C-X-C motif chemokine receptor 4 (CXCR4). Furthermore, we developed OSF animal models and simulated the clinical local injection process in the rat buccal mucosa using DPSCs to assess their therapeutic impact and mechanism. In the OSF rat model, DPSCs demonstrated superior therapeutic effects compared with the positive control (glucocorticoids), including reducing collagen deposition and promoting blood vessel regeneration. DPSCs mediated immune homeostasis primarily by regulating the numbers of KRT19 + MIF + epithelial cells and via epithelial-stromal crosstalk. CONCLUSIONS: Given the current ambiguity surrounding the cause of OSF and the limited treatment options available, our study reveals that epithelial cells and their crosstalk with T cells play an important role in the mechanism of OSF and suggests the therapeutic promise of DPSCs.


Subject(s)
Epithelial Cells , Oral Submucous Fibrosis , Humans , Oral Submucous Fibrosis/pathology , Oral Submucous Fibrosis/metabolism , Animals , Epithelial Cells/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Rats , Stem Cells/metabolism , Stem Cells/cytology , Male , Mouth Mucosa/pathology , Mouth Mucosa/metabolism , Cell Communication
18.
Sci Rep ; 14(1): 10524, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719976

ABSTRACT

Extracellular matrix diseases like fibrosis are elusive to diagnose early on, to avoid complete loss of organ function or even cancer progression, making early diagnosis crucial. Imaging the matrix densities of proteins like collagen in fixed tissue sections with suitable stains and labels is a standard for diagnosis and staging. However, fine changes in matrix density are difficult to realize by conventional histological staining and microscopy as the matrix fibrils are finer than the resolving capacity of these microscopes. The dyes further blur the outline of the matrix and add a background that bottlenecks high-precision early diagnosis of matrix diseases. Here we demonstrate the multiple signal classification method-MUSICAL-otherwise a computational super-resolution microscopy technique to precisely estimate matrix density in fixed tissue sections using fibril autofluorescence with image stacks acquired on a conventional epifluorescence microscope. We validated the diagnostic and staging performance of the method in extracted collagen fibrils, mouse skin during repair, and pre-cancers in human oral mucosa. The method enables early high-precision label-free diagnosis of matrix-associated fibrotic diseases without needing additional infrastructure or rigorous clinical training.


Subject(s)
Microscopy, Fluorescence , Animals , Mice , Humans , Microscopy, Fluorescence/methods , Extracellular Matrix Proteins/metabolism , Optical Imaging/methods , Extracellular Matrix/metabolism , Collagen/metabolism , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Skin/metabolism , Skin/pathology
19.
Tissue Cell ; 88: 102336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461704

ABSTRACT

We report use of human buccal epithelial cells as an easy model system for isolation and molecular analysis of genomic DNA, RNA, and protein to study any gene of interest by Polymerase Chain Reaction (PCR), RNA expression by Reverse Transcription-PCR (RT-PCR), protein-profiling, and expression by western blot as well as DNA-methylation by Msp I/Hpa II-restriction digestion. We used simple methods to isolate genomic DNA, RNA and protein from human buccal cells collected by oral swab and cultured them in-vitro. The microscopic observation of haematoxylin and eosin (EA-50) stained cells, genomic PCR of house-keeping genes (GAPDH and ß-actin), RT-PCR of GAPDH and ß-actin mRNAs and whole cell protein-profiling by Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) were carried out. Expression of ß-actin protein in supernatant and pellet fractions of the cells was determined by western blot analysis. MTT-assay was carried out to assess the cell viability and cell growth. Green Fluorescence Protein (GFP)-DNA was expressed in these cells by transient transfection. DNA-methylation in the genome was analyzed by Msp I/ Hpa II restriction digestion and agarose gel electrophoresis. Thus these methods can be used for molecular analysis of DNA, RNA and protein from the human buccal epithelial cells for studying and monitoring health, disease, population genetics/genomics and epidemiology under different conditions.


Subject(s)
DNA Methylation , DNA , Epithelial Cells , Mouth Mucosa , RNA , Humans , Epithelial Cells/metabolism , Epithelial Cells/cytology , Mouth Mucosa/cytology , Mouth Mucosa/metabolism , DNA/metabolism , RNA/metabolism , Actins/metabolism , Proteins/metabolism , Proteins/genetics
20.
Cells ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891124

ABSTRACT

Canine oral melanoma is the most prevalent malignant tumor in dogs and has a poor prognosis due to its high aggressiveness and high metastasis and recurrence rates. More research is needed into its treatment and to understand its pathogenic factors. In this study, we isolated a canine oral mucosal melanoma (COMM) cell line designated as COMM6605, which has now been stably passaged for more than 100 generations, with a successful monoclonal assay and a cell multiplication time of 22.2 h. G-banded karyotype analysis of the COMM6605 cell line revealed an abnormal chromosome count ranging from 45 to 74, with the identification of a double-armed chromosome as the characteristic marker chromosome of this cell line. The oral intralingual and dorsal subcutaneous implantation models of BALB/c-nu mice were successfully established; Melan-A (MLANA), S100 beta protein (S100ß), PNL2, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2) were stably expressed positively in the canine oral tumor sections, tumor cell lines, and tumor sections of tumor-bearing mice. Sublines COMM6605-Luc-EGFP and COMM6605-Cherry were established through lentiviral transfection, with COMM6605-Luc-EGFP co-expressing firefly luciferase (Luc) and enhanced green fluorescent protein (EGFP) and COMM6605-Cherry expressing the Cherry fluorescent protein gene. The COMM6605-Luc-EGFP fluorescent cell subline was injected via the tail vein and caused lung and lymph node metastasis, as detected by mouse live imaging, which can be used as an animal model to simulate the latter steps of hematogenous spread during tumor metastasis. The canine oral melanoma cell line COMM6605 and two sublines isolated and characterized in this study can offer a valuable model for studying mucosal melanoma.


Subject(s)
Melanoma , Mouth Mucosa , Mouth Neoplasms , Animals , Dogs , Melanoma/pathology , Melanoma/genetics , Melanoma/veterinary , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/veterinary , Cell Line, Tumor , Mouth Mucosa/pathology , Mouth Mucosa/metabolism , Mice , Mice, Inbred BALB C , Disease Models, Animal , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL