Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 436
Filter
Add more filters

Publication year range
1.
Nature ; 629(8010): 154-164, 2024 May.
Article in English | MEDLINE | ID: mdl-38649488

ABSTRACT

Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.


Subject(s)
Aging , Muscle, Skeletal , Single-Cell Analysis , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Aging/genetics , Aging/pathology , Aging/physiology , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/genetics , Disease Susceptibility , Epigenesis, Genetic , Frailty/genetics , Frailty/pathology , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Sarcopenia/genetics , Sarcopenia/pathology , Transcriptome
2.
Proc Natl Acad Sci U S A ; 121(22): e2405123121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781208

ABSTRACT

Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.


Subject(s)
Electron Transport Complex I , Mitochondrial Proteins , Muscle, Skeletal , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Mice, Knockout , Mitochondria, Muscle/metabolism , Humans , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/genetics
3.
Proc Natl Acad Sci U S A ; 121(34): e2319724121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39141348

ABSTRACT

Skeletal muscle atrophy is a morbidity and mortality risk factor that happens with disuse, chronic disease, and aging. The tissue remodeling that happens during recovery from atrophy or injury involves changes in different cell types such as muscle fibers, and satellite and immune cells. Here, we show that the previously uncharacterized gene and protein Zfp697 is a damage-induced regulator of muscle remodeling. Zfp697/ZNF697 expression is transiently elevated during recovery from muscle atrophy or injury in mice and humans. Sustained Zfp697 expression in mouse muscle leads to a gene expression signature of chemokine secretion, immune cell recruitment, and extracellular matrix remodeling. Notably, although Zfp697 is expressed in several cell types in skeletal muscle, myofiber-specific Zfp697 genetic ablation in mice is sufficient to hinder the inflammatory and regenerative response to muscle injury, compromising functional recovery. We show that Zfp697 is an essential mediator of the interferon gamma response in muscle cells and that it functions primarily as an RNA-interacting protein, with a very high number of miRNA targets. This work identifies Zfp697 as an integrator of cell-cell communication necessary for tissue remodeling and regeneration.


Subject(s)
Muscle, Skeletal , RNA-Binding Proteins , Animals , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Mice, Knockout , Muscular Atrophy/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Mice, Inbred C57BL , Interferon-gamma/metabolism
4.
Hum Mol Genet ; 33(10): 905-918, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38449065

ABSTRACT

Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.


Subject(s)
Apoptosis Inducing Factor , Disease Models, Animal , Hearing Loss , Animals , Humans , Male , Mice , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , Gene Knock-In Techniques , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Hearing Loss/genetics , Hearing Loss/pathology , Hearing Loss/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Muscular Atrophy/metabolism , Mutation , Protein Transport , Spiral Ganglion/metabolism , Spiral Ganglion/pathology
5.
EMBO Rep ; 25(4): 1835-1858, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429578

ABSTRACT

Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the underlying mechanisms remain unclear. Using a Drosophila larval model of cancer cachexia, we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse muscle samples, and expression of the beta-oxidation gene CPT1A was negatively associated with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor binding protein (IGFBP) homologue ImpL2. Strikingly, muscle-specific inhibition of Forkhead box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO, mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle wasting in cancer cachexia.


Subject(s)
Colonic Neoplasms , Drosophila Proteins , Insulins , Mice , Animals , Humans , Cachexia/etiology , Cachexia/metabolism , Drosophila/metabolism , Mitochondrial Dynamics , Muscular Atrophy/pathology , Muscle, Skeletal/metabolism , Colonic Neoplasms/metabolism , Insulins/metabolism , Lipids , Insulin-Like Growth Factor Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
6.
Dev Biol ; 511: 1-11, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548146

ABSTRACT

Maintenance of appropriate muscle mass is crucial for physical activity and metabolism. Aging and various pathological conditions can cause sarcopenia, a condition characterized by muscle mass decline. Although sarcopenia has been actively studied, the mechanisms underlying muscle atrophy are not well understood. Thus, we aimed to investigate the role of Phosphatidylserine synthase (Pss) in muscle development and homeostasis in Drosophila. The results showed that muscle-specific Pss knockdown decreased exercise capacity and produced sarcopenic phenotypes. In addition, it increased the apoptosis rate because of the elevated reactive oxygen species production resulting from mitochondrial dysfunction. Moreover, the autophagy rate increased due to increased FoxO activity caused by reduced Akt activity. Collectively, these findings demonstrate that enhanced apoptosis and autophagy rates resulting from muscle-specific Pss knockdown jointly contribute to sarcopenia development, highlighting the key role of the PSS pathway in muscle health.


Subject(s)
Apoptosis , Drosophila Proteins , Drosophila melanogaster , Muscular Atrophy , Reactive Oxygen Species , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Reactive Oxygen Species/metabolism , Autophagy/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Sarcopenia/pathology , Sarcopenia/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Drosophila/metabolism , Gene Knockdown Techniques
7.
Stem Cells ; 42(5): 460-474, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38381592

ABSTRACT

Cell therapy based on mesenchymal stem cells (MSCs) alleviate muscle atrophy caused by diabetes and aging; however, the impact of human umbilical cord mesenchymal stem cells on muscle atrophy following nerve injury and the underlying mechanisms remain unclear. In this study, we evaluated the therapeutic efficacy of human umbilical cord MSCs (hucMSCs) and hucMSC-derived exosomes (hucMSC-EXOs) for muscle atrophy following nerve injury and identified the underlying molecular mechanisms. Sciatic nerve crush injury in rats and the induction of myotubes in L6 cells were used to determine the ameliorating effect of hucMSCs and hucMSC-EXOs on muscle atrophy. Q-PCR and Western blot analyses were used to measure the expression of muscle-specific ubiquitin ligases Fbxo32 (Atrogin1, MAFbx) and Trim63 (MuRF-1). Dual-luciferase reporter gene experiments were conducted to validate the direct binding of miRNAs to their target genes. Local injection of hucMSCs and hucMSC-EXOs mitigated atrophy in the rat gastrocnemius muscle following sciatic nerve crush injury. In vitro, hucMSC-EXOs alleviated atrophy in L6 myotubes. Mechanistic analysis indicated the upregulation of miR-23b-3p levels in L6 myotubes following hucMSC-EXOs treatment. MiR-23b-3p significantly inhibited the expression of its target genes, Fbxo32 and Trim63, and suppressed myotube atrophy. Notably, an miR-23b-3p inhibitor reversed the inhibitory effect of miR-23b-3p on myotube atrophy in vitro. These results suggest that hucMSCs and their exosomes alleviate muscle atrophy following nerve injury. MiR-23b-3p in exosomes secreted by hucMSCs contributes to this mechanism by inhibiting the muscle-specific ubiquitination ligases Fbxo32 and Trim63.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Muscular Atrophy , Peripheral Nerve Injuries , Ubiquitin-Protein Ligases , Exosomes/metabolism , Animals , Muscular Atrophy/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/therapy , Muscular Atrophy/genetics , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mesenchymal Stem Cells/metabolism , Rats , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/therapy , Rats, Sprague-Dawley , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Umbilical Cord/cytology , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Male , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology
8.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38406827

ABSTRACT

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Subject(s)
Cannabidiol , Neoplasms , Humans , Cisplatin/toxicity , Cannabidiol/pharmacology , Cannabidiol/metabolism , Cannabidiol/therapeutic use , Cachexia/metabolism , Catalase/metabolism , Quality of Life , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Muscular Atrophy/drug therapy , Oxidative Stress , Neoplasms/metabolism , RNA, Messenger/metabolism
9.
Am J Physiol Cell Physiol ; 326(3): C768-C783, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38314723

ABSTRACT

Arrestin domain containing 2 and 3 (Arrdc2/3) are genes whose mRNA contents are decreased in young skeletal muscle following mechanical overload. Arrdc3 is linked to the regulation of signaling pathways in nonmuscle cells that could influence skeletal muscle size. Despite a similar amino acid sequence, Arrdc2 function remains undefined. The purpose of this study was to further explore the relationship of Arrdc2/Arrdc3 expression with changes in mechanical load in young and aged muscle and define the effect of Arrdc2/3 expression on C2C12 myotube diameter. In young and aged mice, mechanical load was decreased using hindlimb suspension whereas mechanical load was increased by reloading previously unloaded muscle or inducing high-force contractions. Arrdc2 and Arrdc3 mRNAs were overexpressed in C2C12 myotubes using adenoviruses. Myotube diameter was determined 48-h posttransfection, and RNA sequencing was performed on those samples. Arrdc2 and Arrdc3 mRNA content was higher in the unloaded muscle within 1 day of disuse and remained higher up through 10 days. The induction of Arrdc2 mRNA was more pronounced in aged muscle than young muscle in response to unloading. Reloading previously unloaded muscle of young and aged mice restored Arrdc2 and Arrdc3 levels to ambulatory levels. Increasing mechanical load beyond normal ambulatory levels lowered Arrdc2 mRNA, but not Arrdc3 mRNA, in young and aged muscle. Arrdc2 overexpression only was sufficient to lower myotube diameter in C2C12 cells in part by altering the transcriptome favoring muscle atrophy. These data are consistent with Arrdc2 contributing to disuse atrophy, particularly in aged muscle.NEW & NOTEWORTHY We establish Arrdc2 as a novel mechanosensitive gene highly induced in response to mechanical unloading, particularly in aged muscle. Arrdc2 induction in C2C12 myotubes is sufficient to produce thinner myotubes and a transcriptional landscape consistent with muscle atrophy and disuse.


Subject(s)
Arrestins , Muscle Fibers, Skeletal , Muscular Disorders, Atrophic , Animals , Mice , Aging/genetics , Arrestins/genetics , Arrestins/metabolism , Muscle, Skeletal , Muscular Atrophy/genetics , RNA, Messenger/genetics
10.
Am J Physiol Cell Physiol ; 326(2): C606-C621, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38189130

ABSTRACT

Immune cell-driven pathways are linked to cancer cachexia. Tumor presence is associated with immune cell infiltration whereas cytotoxic chemotherapies reduce immune cell counts. Despite these paradoxical effects, both cancer and chemotherapy can cause cachexia; however, our understanding of immune responses in the cachexia condition with cancer and chemotherapy is largely unknown. We sought to advance our understanding of the immunology underlying cancer and cancer with chemotherapy-induced cachexia. CD2F1 mice were given 106 C26 cells, followed by five doses of 5-fluorouracil (5FU; 30 mg/kg LM, ip) or PBS. Indices of cachexia and tumor (TUM), skeletal muscle (SKM), and adipose tissue (AT) immune cell populations were examined using high-parameter flow cytometry. Although 5FU was able to stunt tumor growth, % body weight loss and muscle mass were not different between C26 and C26 + 5FU. C26 increased CD11b+Ly6g+ and CD11b+Ly6cInt inflammatory myeloid cells in SKM and AT; however, both populations were reduced with C26 + 5FU. tSNE analysis revealed 24 SKM macrophage subsets wherein 8 were changed with C26 or C26 + 5FU. C26 + 5FU increased SKM CD11b-CD11c+ dendritic cells, CD11b-NK1.1+ NK-cells, and CD11b-B220+ B-cells, and reduced Ly6cHiCX3CR1+CD206+CD163IntCD11c-MHCII- infiltrated macrophages and other CD11b+Ly6cHi myeloid cells compared with C26. Both C26 and C26 + 5FU had elevated CD11b+F480+CD206+MHCII- or more specifically Ly6cLoCX3CR1+CD206+CD163IntCD11c-MHCII- profibrotic macrophages. 5FU suppressed tumor growth and decreased SKM and AT inflammatory immune cells without protecting against cachexia suggesting that these cells are not required for wasting. However, profibrotic cells and muscle inflammatory/atrophic signaling appear consistent with cancer- and cancer with chemotherapy-induced wasting and remain potential therapeutic targets.NEW & NOTEWORTHY Despite being an immune-driven condition, our understanding of skeletal muscle and adipose tissue immune cells with cachexia is limited. Here, we identified immune cell populations in tumors, skeletal muscle, and adipose tissue in C26 tumor-bearing mice with/without 5-fluorouracil (5FU). C26 and C26 + 5FU had increased skeletal muscle profibrotic macrophages, but 5FU reduced inflammatory myeloid cells without sparing mass. Tumor presence and chemotherapy have contrasting effects on certain immune cells, which appeared not necessary for wasting.


Subject(s)
Antineoplastic Agents , Fluorouracil , Mice , Animals , Fluorouracil/adverse effects , Cachexia/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/pathology , Antineoplastic Agents/pharmacology
11.
J Proteome Res ; 23(1): 215-225, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38117800

ABSTRACT

Hibernation in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) takes place over 4-6 months and is characterized by multiday bouts of hypothermic torpor (5-7 °C core body temperature) that are regularly interrupted every 1-2 weeks by brief (12-24 h) normothermic active periods called interbout arousals. Our goal was to gain insight into the molecular mechanisms that underlie the hibernator's ability to preserve heart function and avoid the deleterious effects of skeletal muscle disuse atrophy over prolonged periods of inactivity, starvation, and near-freezing body temperatures. To achieve this goal, we performed organelle enrichment of heart and skeletal muscle at five seasonal time points followed by LC-MS-based label-free quantitative proteomics. In both organs, we saw an increase in the levels of many proteins as ground squirrels transition from an active state to a prehibernation state in the fall. Interestingly, seasonal abundance patterns identified DHRS7C, SRL, TRIM72, RTN2, and MPZ as potential protein candidates for mitigating disuse atrophy in skeletal muscle, and ex vivo contractile mechanics analysis revealed no deleterious effects in the ground squirrel's muscles despite prolonged sedentary activity. Overall, an increased understanding of protein abundance in hibernators may enable novel therapeutic strategies to treat muscle disuse atrophy and heart disease in humans.


Subject(s)
Muscular Disorders, Atrophic , Proteomics , Animals , Humans , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Muscular Disorders, Atrophic/metabolism , Mammals
12.
J Cell Mol Med ; 28(3): e18096, 2024 02.
Article in English | MEDLINE | ID: mdl-38149787

ABSTRACT

This study aims to explore the role of FoxO1 and its acetylation in the alleviation of hypoxia-induced muscle atrophy by resistance training. Forty male Sprague-Dawley rats were randomly divided into four groups: normoxic control group (C), normoxic resistance training group (R), hypoxic control group (H) and hypoxic resistance training group (HR). Rats in R and HR groups were trained on an incremental weight-bearing ladder every other day, while those in H and HR groups were kept in an environment containing 12.4% O2 . After 4 weeks, muscles were collected for analysis. Differentiated L6 myoblasts were analysed in vitro after hypoxia exposure and plasmids transfection (alteration in FoxO1 acetylation). The lean body mass loss, wet weight and fibre cross-sectional area of extensor digitorum longus of rats were decreased after 4 weeks hypoxia, and the adverse reactions above was reversed by resistance training. At the same time, the increase in hypoxia-induced autophagy was suppressed, which was accompanied by a decrease in the expression of nuclear FoxO1 and cytoplasmic Ac-FoxO1 by resistance training. The L6 myotube diameter increased and the expression of autophagic proteins were inhibited under hypoxia via intervening by FoxO1 deacetylation. Overall, resistance training alleviates hypoxia-induced muscle atrophy by inhibiting nuclear FoxO1 and cytoplasmic Ac-FoxO1-mediated autophagy.


Subject(s)
Resistance Training , Animals , Male , Rats , Acetylation , Hypoxia/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Rats, Sprague-Dawley
13.
J Physiol ; 602(12): 2839-2854, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38748517

ABSTRACT

Loss of muscle mass and function induced by sepsis contributes to physical inactivity and disability in intensive care unit patients. Limiting skeletal muscle deconditioning may thus be helpful in reducing the long-term effect of muscle wasting in patients. We tested the hypothesis that invalidation of the myostatin gene, which encodes a powerful negative regulator of skeletal muscle mass, could prevent or attenuate skeletal muscle wasting and improve survival of septic mice. Sepsis was induced by caecal ligature and puncture (CLP) in 13-week-old C57BL/6J wild-type and myostatin knock-out male mice. Survival rates were similar in wild-type and myostatin knock-out mice seven days after CLP. Loss in muscle mass was also similar in wild-type and myostatin knock-out mice 4 and 7 days after CLP. The loss in muscle mass was molecularly supported by an increase in the transcript level of E3-ubiquitin ligases and autophagy-lysosome markers. This transcriptional response was blunted in myostatin knock-out mice. No change was observed in the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway. Muscle strength was similarly decreased in wild-type and myostatin knock-out mice 4 and 7 days after CLP. This was associated with a modified expression of genes involved in ion homeostasis and excitation-contraction coupling, suggesting that a long-term functional recovery following experimental sepsis may be impaired by a dysregulated expression of molecular determinants of ion homeostasis and excitation-contraction coupling. In conclusion, myostatin gene invalidation does not provide any benefit in preventing skeletal muscle mass loss and strength in response to experimental sepsis. KEY POINTS: Survival rates are similar in wild-type and myostatin knock-out mice seven days after the induction of sepsis. Loss in muscle mass and muscle strength are similar in wild-type and myostatin knock-out mice 4 and 7 days after the induction of an experimental sepsis. Despite evidence of a transcriptional regulation, the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway remained unchanged. RT-qPCR analysis of autophagy-lysosome pathway markers indicates that activity of the pathway may be altered by experimental sepsis in wild-type and myostatin knock-out mice. Experimental sepsis induces greater variations in the mRNA levels of wild-type mice than those of myostatin knock-out mice, without providing any significant catabolic resistance or functional benefits.


Subject(s)
Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal , Myostatin , Sepsis , Animals , Myostatin/genetics , Myostatin/metabolism , Sepsis/genetics , Sepsis/metabolism , Muscle, Skeletal/metabolism , Male , Mice , Autophagy , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscle Strength , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics
14.
Am J Physiol Endocrinol Metab ; 326(3): E207-E214, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38170165

ABSTRACT

Mitochondrial open reading frame of the 12S ribosomal RNA type-c (MOTS-c), a mitochondrial microprotein, has been described as a novel regulator of glucose and lipid metabolism. In addition to its role as a metabolic regulator, MOTS-c prevents skeletal muscle atrophy in high fat-fed mice. Here, we examined the preventive effect of MOTS-c on skeletal muscle mass, using an immobilization-induced muscle atrophy model, and explored its underlying mechanisms. Male C57BL/6J mice (10 wk old) were randomly assigned to one of the three experimental groups: nonimmobilization control group (sterilized water injection), immobilization control group (sterilized water injection), and immobilization and MOTS-c-treated group (15 mg/kg/day MOTS-c injection). We used casting tape for the immobilization experiment. After 8 days of the experimental period, skeletal muscle samples were collected and used for Western blotting, RNA sequencing, and lipid and collagen assays. Immobilization reduced ∼15% of muscle mass, whereas MOTS-c treatment attenuated muscle loss, with only a 5% reduction. MOTS-c treatment also normalized phospho-AKT, phospho-FOXO1, and phospho-FOXO3a expression levels and reduced circulating inflammatory cytokines, such as interleukin-1b (IL-1ß), interleukin-6 (IL-6), chemokine C-X-C motif ligand 1 (CXCL1), and monocyte chemoattractant protein 1 (MCP-1), in immobilized mice. Unbiased RNA sequencing and its downstream analyses demonstrated that MOTS-c modified adipogenesis-modulating gene expression within the peroxisome proliferator-activated receptor (PPAR) pathway. Supporting this observation, muscle fatty acid levels were lower in the MOTS-c-treated group than in the casted control mice. These results suggest that MOTS-c treatment inhibits skeletal muscle lipid infiltration by regulating adipogenesis-related genes and prevents immobilization-induced muscle atrophy.NEW & NOTEWORTHY MOTS-c, a mitochondrial microprotein, attenuates immobilization-induced skeletal muscle atrophy. MOTS-c treatment improves systemic inflammation and skeletal muscle AKT/FOXOs signaling pathways. Furthermore, unbiased RNA sequencing and subsequent assays revealed that MOTS-c prevents lipid infiltration in skeletal muscle. Since lipid accumulation is one of the common pathologies among other skeletal muscle atrophies induced by aging, obesity, cancer cachexia, and denervation, MOTS-c treatment could be effective in other muscle atrophy models as well.


Subject(s)
Micropeptides , Proto-Oncogene Proteins c-akt , Male , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscle, Skeletal/metabolism , Transcription Factors/metabolism , Water , Lipids
15.
J Neurophysiol ; 131(2): 187-197, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38117916

ABSTRACT

Spinal cord injury (SCI) disrupts neuronal function below the lesion epicenter, causing disuse muscle atrophy. We investigated motor unit (MU) activity and synaptic inputs to motoneurons in the caudal region of the injured spinal cord. Participants with C4-C7 cervical injuries were studied. The extensor digitorum communis (EDC) muscle, which is mainly innervated by C8, was assessed for disuse muscle atrophy. Using advanced electromyography and signal-processing techniques, we examined the concurrent activation of a substantial population of MUs during force-tracking tasks. We found that in participants with SCI (n = 9), both MU discharge rates and the amplitudes of MU action potentials were significantly lower than in controls (n = 9). After SCI, MUs were recruited in a limited force range as the strength of muscle contractions increased, implying a disruption in the orderly MU recruitment pattern. Coherence analysis revealed reduced synaptic inputs to motoneurons in the delta band (0.5-5 Hz) for participants with SCI, suggesting diminished common synaptic inputs to the EDC muscle. In addition, participants with SCI exhibited greater muscle force variability. Using principal component analysis on low-frequency MU discharge rates, we found that the first common component (FCC) captured the most discharge variability in participants with SCI. The coefficients of variation (CV) of the FCC correlated with force signal CVs, suggesting force variability mainly results from common synaptic inputs to the EDC muscle after SCI. These results advance our understanding of the neurophysiology of disuse muscle atrophy in human SCI, paving the way for therapeutic interventions to restore muscle function.NEW & NOTEWORTHY This study analyzed motor unit (MU) function below the lesion epicenter in patients with spinal cord injury (SCI). We found reduced MU discharge rates and action potential amplitudes in participants with SCI compared with controls. The strength of common synaptic inputs to motoneurons was reduced in patients with SCI, with increased force variability primarily due to low-frequency oscillations of common inputs. This study enhances understanding of neurophysiological and behavioral changes in disuse muscle atrophy post-SCI.


Subject(s)
Spinal Cord Injuries , Spinal Cord , Humans , Electric Stimulation , Motor Neurons/physiology , Muscle, Skeletal/innervation , Electromyography/methods , Muscle Contraction/physiology , Muscular Atrophy/pathology
16.
Neurobiol Dis ; 199: 106576, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38914173

ABSTRACT

Variability in disease onset and progression is a hallmark of amyotrophic lateral sclerosis (ALS), both in sporadic and genetic forms. Recently, we found that SOD1-G93A transgenic mice expressing the same amount of mutant SOD1 but with different genetic backgrounds, C57BL/6JOlaHsd and 129S2/SvHsd, show slow and rapid muscle wasting and disease progression, respectively. Here, we investigated the different molecular mechanisms underlying muscle atrophy. Although both strains showed similar denervation-induced degradation of muscle proteins, only the rapidly progressing mice exhibited early and sustained STAT3 activation that preceded atrophy in gastrocnemius muscle. We therefore investigated the therapeutic potential of sunitinib, a tyrosine kinase inhibitor known to inhibit STAT3 and prevent cancer-induced muscle wasting. Although sunitinib treatment reduced STAT3 activation in the gastrocnemius muscle and lumbar spinal cord, it did not preserve spinal motor neurons, improve neuromuscular impairment, muscle atrophy and disease progression in the rapidly progressing SOD1-G93A mice. Thus, the effect of sunitinib is not equally positive in different diseases associated with muscle wasting. Moreover, given the complex role of STAT3 in the peripheral and central compartments of the neuromuscular system, the present study suggests that its broad inhibition may lead to opposing effects, ultimately preventing a potential positive therapeutic action in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , Indoles , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal , Pyrroles , STAT3 Transcription Factor , Spinal Cord , Sunitinib , Animals , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/pathology , Sunitinib/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Indoles/pharmacology , Mice , Spinal Cord/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology , Pyrroles/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Motor Neurons/drug effects , Motor Neurons/metabolism , Motor Neurons/pathology , Disease Progression
17.
Eur J Neurosci ; 59(2): 192-207, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38145884

ABSTRACT

Skeletal muscle is striated muscle that moves autonomously and is innervated by peripheral nerves. Peripheral nerve injury is very common in clinical treatment. However, the commonly used treatment methods often focus on the regeneration of the injured nerve but overlook the pathological changes in the injured skeletal muscle. Acupuncture, as the main treatment for denervated skeletal muscle atrophy, is used extensively in clinical practice. In the present study, a mouse model of lower limb sciatic nerve detachment was constructed and treated with electroacupuncture Stomach 36 to observe the atrophy of lower limb skeletal muscle and changes in skeletal muscle fibre types before and after electroacupuncture Stomach 36 treatment. Mice with skeletal muscle denervation showed a decrease in the proportion of IIa muscle fibres and an increase in the proportion of IIb muscle fibres, after electroacupuncture Stomach 36. The changes were reversed by specific activators of p38 MAPK, which increased IIa myofibre ratio. The results suggest that electroacupuncture Stomach 36 can reverse the change of muscle fibre type from IIb to IIa after denervation of skeletal muscle by inhibiting p38 MAPK. The results provide an important theoretical basis for the treatment of clinical peripheral nerve injury diseases with electroacupuncture, in addition to novel insights that could facilitate the study of pathological changes of denervated skeletal muscle.


Subject(s)
Electroacupuncture , Peripheral Nerve Injuries , Rats , Mice , Animals , Rats, Sprague-Dawley , Peripheral Nerve Injuries/therapy , Muscle Fibers, Skeletal , Muscle, Skeletal , Sciatic Nerve/injuries , Muscular Atrophy/therapy , p38 Mitogen-Activated Protein Kinases
18.
Apoptosis ; 29(5-6): 849-864, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38117373

ABSTRACT

Sarcopenia manifests as muscle atrophy and loss that is complicated with malignancy. This study explored the mechanism of extracellular vesicles (EVs) in multiple myeloma (MM) with sarcopenia. SP2/0 conditioned medium (CM) was collected to isolate SP2/0-EVs. C2C12 cells were incubated with SP2/0 CM or SP2/0-EVs. ROS, TNF-α, IL-6, MuRF1 and MyHC levels were detected by DCF-DA fluorescent probe, ELISA, and Western blot. GW4869 was used to inhibit EV secretion in SP2/0 to confirm its effect on muscle atrophy. Serum was collected from MM patients with or without sarcopenia to detect RAGE mRNA expression. SP2/0 cells were transfected with RAGE siRNA and C2C12 cells were treated with the isolated si-RAGE-EVs or/and TLR4 agonist. SP2/0 tumor-bearing mouse model was established. Healthy mice and SP2/0-tumor bearing mice were treated with SP2/0-EVs or si-RAGE-EVs. SP2/0 CM or SP2/0-EVs stimulated ROS, inflammatory responses, and myotube atrophy in C2C12 cells. GW4869 blocked EV secretion and the effects of SP2/0 CM. RAGE mRNA expression in serum EVs was increased in MM&Sarcopenia patients and RAGE knockdown in SP2/0-EVs partially nullified SP2/0-EVs' effects. SP2/0-EVs activated the TLR4/NF-κB p65 pathway by translocating RAGE. SP2/0-EVs-derived RAGE elevated ROS production, inflammation, and myotube atrophy in C2C12 cells and caused muscle loss in SP2/0 tumor-bearing mice by activating the TLR4/NF-κB p65 pathway. SP2/0-EVs partially recapitulated muscle loss in healthy mice. SP2/0-EVs-derived RAGE increased ROS production, inflammation, and myotube atrophy in MM through TLR4/NF-κB p65 pathway activation.


Subject(s)
Extracellular Vesicles , Inflammation , Multiple Myeloma , Muscular Atrophy , Receptor for Advanced Glycation End Products , Signal Transduction , Toll-Like Receptor 4 , Transcription Factor RelA , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Humans , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/genetics , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/genetics , Cell Line, Tumor , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Male , Female
19.
Biochem Biophys Res Commun ; 696: 149542, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38244315

ABSTRACT

PDZ domain-containing RING finger family protein 3 (PDZRN3) is expressed in various tissues, including the skeletal muscle. Although PDZRN3 plays a crucial role in the terminal differentiation of myoblasts and synaptic growth/maturation in myogenesis, the role of this molecule in postnatal muscles is completely unknown despite its lifelong expression in myofibers. In this study, we aimed to elucidate the function of PDZRN3 in mature myofibers using myofiber-specific conditional knockout mice. After tamoxifen injection, PDZRN3 deficiency was confirmed in both fast and slow myofibers of Myf6-CreERT2; Pdzrn3flox/flox (Pdzrn3mcKO) mice. Transcriptome analysis of the skeletal muscles of Pdzrn3mcKO mice identified differentially expressed genes, including muscle atrophy-related genes such as Smox, Amd1/2, and Mt1/2, suggesting that PDZRN3 is involved in the homeostatic maintenance of postnatal muscles. PDZRN3 deficiency caused muscle atrophy, predominantly in fast-twitch (type II) myofibers, and reduced muscle strength. While myofiber-specific PDZRN3 deficiency did not influence endplate morphology or expression of neuromuscular synaptic formation-related genes in postnatal muscles, indicating that the relationship between PDZRN3 and neuromuscular junctions might be limited during muscle development. Considering that the expression of Pdzrn3 in skeletal muscles was significantly lower in aged mice than in mature adult mice, we speculated that the PDZRN3-mediated muscle maintenance system might be associated with the pathophysiology of age-related muscle decline, such as sarcopenia.


Subject(s)
Muscle, Skeletal , Sarcopenia , Mice , Animals , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Neuromuscular Junction/pathology , Sarcopenia/pathology , Myoblasts/metabolism , Mice, Knockout , Ubiquitin-Protein Ligases/metabolism
20.
Microcirculation ; 31(6): e12870, 2024 08.
Article in English | MEDLINE | ID: mdl-38805591

ABSTRACT

OBJECTIVE: This study aimed to clarify the effect of Type I diabetes (DIA) on transcapillary PO2 gradients, which are oxygen-driving factors between the blood and the interstitium, in the contracting muscle of rats. METHODS: Wistar male rats were divided into the diabetic (streptozocin i.p.) and sham groups. Microvascular and interstitial PO2 were measured in the extensor digitorum longus muscle during electrical stimulation-induced muscle contraction, using the phosphorescence quenching method. Transcapillary PO2 gradient, ΔPO2, was calculated as microvascular minus interstitial PO2. RESULTS: Resting microvascular PO2 was higher in the diabetic group than in the sham group (6.3 ± 1.7 vs. 4.7 ± 0.9 mmHg, p < 0.05) and remained for 180 s. Interstitial PO2 from rest to muscle contraction did not differ between the groups. The ΔPO2 was higher in the diabetic group than in the sham group at rest and during muscle contraction (4.03 ± 1.42 vs. 2.46 ± 0.90 mmHg at rest; 3.67 ± 1.51 vs. 2.22 ± 0.65 mmHg during muscle contraction, p < 0.05). Marked muscle atrophy was observed in the diabetic group. CONCLUSION: DIA increased microvascular and transcapillary PO2 gradients in the skeletal muscle. The enhanced PO2 gradients were maintained from rest to muscle contraction in diabetic muscle.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Muscle Contraction , Muscle, Skeletal , Oxygen , Rats, Wistar , Animals , Male , Rats , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscle, Skeletal/blood supply , Oxygen/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 1/metabolism , Capillaries/metabolism , Capillaries/physiopathology , Capillaries/pathology , Microcirculation , Muscular Atrophy/metabolism , Muscular Atrophy/physiopathology , Muscular Atrophy/pathology
SELECTION OF CITATIONS
SEARCH DETAIL