Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.604
Filter
Add more filters

Publication year range
1.
Nature ; 622(7981): 156-163, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704728

ABSTRACT

Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders1. However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications2. Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging.


Subject(s)
Artificial Intelligence , Eye Diseases , Retina , Humans , Eye Diseases/complications , Eye Diseases/diagnostic imaging , Heart Failure/complications , Heart Failure/diagnosis , Myocardial Infarction/complications , Myocardial Infarction/diagnosis , Retina/diagnostic imaging , Supervised Machine Learning
2.
Annu Rev Med ; 75: 459-474, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37722708

ABSTRACT

Rapid and accurate triage of patients presenting with chest pain to an emergency department (ED) is critical to prevent ED overcrowding and unnecessary resource use in individuals at low risk of acute myocardial infarction (AMI) and to efficiently and effectively guide patients at high risk to definite therapy. The use of biomarkers for rule-out or rule-in of suspected AMI has evolved substantially over the last several decades. Previously well-established biomarkers have been replaced by cardiac troponin (cTn). High-sensitivity cTn (hs-cTn) assays represent the newest generation of cTn assays and offer tremendous advantages, including improved sensitivity and precision. Still, implementation of these assays in the United States lags behind several other areas of the world. Within this educational review, we discuss the evolution of biomarker testing for detection of myocardial injury, address the specifics of hs-cTn assays and their recommended use within triage algorithms, and highlight potential challenges in their use. Ultimately, we focus on implementation strategies for hs-cTn assays, as they are now clearly ready for prime time.


Subject(s)
Myocardial Infarction , Humans , Myocardial Infarction/diagnosis , Biomarkers , Chest Pain/diagnosis , Algorithms , Troponin
3.
Circulation ; 149(14): 1090-1101, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38344871

ABSTRACT

BACKGROUND: Collaboration for the Diagnosis and Evaluation of Acute Coronary Syndrome (CoDE-ACS) is a validated clinical decision support tool that uses machine learning with or without serial cardiac troponin measurements at a flexible time point to calculate the probability of myocardial infarction (MI). How CoDE-ACS performs at different time points for serial measurement and compares with guideline-recommended diagnostic pathways that rely on fixed thresholds and time points is uncertain. METHODS: Patients with possible MI without ST-segment-elevation were enrolled at 12 sites in 5 countries and underwent serial high-sensitivity cardiac troponin I concentration measurement at 0, 1, and 2 hours. Diagnostic performance of the CoDE-ACS model at each time point was determined for index type 1 MI and the effectiveness of previously validated low- and high-probability scores compared with guideline-recommended European Society of Cardiology (ESC) 0/1-hour, ESC 0/2-hour, and High-STEACS (High-Sensitivity Troponin in the Evaluation of Patients With Suspected Acute Coronary Syndrome) pathways. RESULTS: In total, 4105 patients (mean age, 61 years [interquartile range, 50-74]; 32% women) were included, among whom 575 (14%) had type 1 MI. At presentation, CoDE-ACS identified 56% of patients as low probability, with a negative predictive value and sensitivity of 99.7% (95% CI, 99.5%-99.9%) and 99.0% (98.6%-99.2%), ruling out more patients than the ESC 0-hour and High-STEACS (25% and 35%) pathways. Incorporating a second cardiac troponin measurement, CoDE-ACS identified 65% or 68% of patients as low probability at 1 or 2 hours, for an identical negative predictive value of 99.7% (99.5%-99.9%); 19% or 18% as high probability, with a positive predictive value of 64.9% (63.5%-66.4%) and 68.8% (67.3%-70.1%); and 16% or 14% as intermediate probability. In comparison, after serial measurements, the ESC 0/1-hour, ESC 0/2-hour, and High-STEACS pathways identified 49%, 53%, and 71% of patients as low risk, with a negative predictive value of 100% (99.9%-100%), 100% (99.9%-100%), and 99.7% (99.5%-99.8%); and 20%, 19%, or 29% as high risk, with a positive predictive value of 61.5% (60.0%-63.0%), 65.8% (64.3%-67.2%), and 48.3% (46.8%-49.8%), resulting in 31%, 28%, or 0%, who require further observation in the emergency department, respectively. CONCLUSIONS: CoDE-ACS performs consistently irrespective of the timing of serial cardiac troponin measurement, identifying more patients as low probability with comparable performance to guideline-recommended pathways for MI. Whether care guided by probabilities can improve the early diagnosis of MI requires prospective evaluation. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00470587.


Subject(s)
Acute Coronary Syndrome , Myocardial Infarction , Humans , Female , Middle Aged , Male , Acute Coronary Syndrome/diagnosis , Biomarkers , Myocardial Infarction/diagnosis , Troponin , Machine Learning , Troponin T
4.
Circulation ; 150(15): 1187-1198, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39253802

ABSTRACT

BACKGROUND: Cardiac troponin (cTn) is key in diagnosing myocardial infarction (MI). After MI, the clinically observed half-life of cTn has been reported to be 7 to 20 hours, but this estimate reflects the combined elimination and simultaneous release of cTn from cardiomyocytes. More precise timing of myocardial injuries necessitates separation of these 2 components. We used a novel method for determination of isolated cTn elimination kinetics in humans. METHODS: Patients with MI were included within 24 hours after revascularization and underwent plasmapheresis to obtain plasma with a high cTn concentration. After at least 3 weeks, patients returned for an autologous plasma retransfusion followed by blood sampling for 8 hours. cTn was measured with 5 different high-sensitivity cTn assays. RESULTS: Of 25 included patients, 20 participants (mean age, 64.5 years; SD, 8.2 years; 4 women [20%]) received a retransfusion after a median of 5.8 weeks (interquartile range, 5.0-6.9 weeks) after MI. After retransfusion of a median of 620 mL (range, 180-679 mL) autologous plasma, the concentration of cTn in participants' blood increased 4 to 445 times above the upper reference level of the 5 high-sensitivity cTn assays. The median elimination half-life ranged from 134.1 minutes (95% CI, 117.8-168.0) for the Elecsys high-sensitivity cTnT assay to 239.7 minutes (95% CI, 153.7-295.1) for the Vitros high-sensitivity cTnI assay. The median clearance of cTnI ranged from 40.3 mL/min (95% CI, 32.0-44.9) to 52.7 mL/min (95% CI, 42.2-57.8). The clearance of cTnT was 77.0 mL/min (95% CI, 45.2-95.0). CONCLUSIONS: This novel method showed that the elimination half-life of cTnI and cTnT was 5 to 16 hours shorter than previously reported. This indicates a considerably longer duration of cardiomyocyte cTn release after MI than previously thought. Improved knowledge of timing of myocardial injury may call for changes in the management of MI and other disorders with myocardial injury.


Subject(s)
Myocardial Infarction , Troponin I , Troponin T , Humans , Female , Male , Troponin I/blood , Middle Aged , Troponin T/blood , Half-Life , Aged , Myocardial Infarction/blood , Myocardial Infarction/therapy , Myocardial Infarction/diagnosis , Biomarkers/blood , Plasmapheresis
5.
Circulation ; 149(22): 1708-1716, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38660793

ABSTRACT

BACKGROUND: Evaluation of the residual risk in patient with chronic coronary syndrome is challenging in daily practice. Several types of events (myocardial infarction, ischemic stroke, bleeding, and heart failure [HF]) may occur, and their impact on subsequent mortality is unclear in the era of modern evidence-based pharmacotherapy. METHODS: CORONOR (Suivi d'une cohorte de patients Coronariens stables en région Nord-pas-de-Calais) is a prospective multicenter cohort that enrolled 4184 consecutive unselected outpatients with chronic coronary syndrome. We analyzed the incidence, correlates, and impact of ischemic events (a composite of myocardial infarction and ischemic stroke), major bleeding (Bleeding Academic Research Consortium 3 or higher), and hospitalization for HF on subsequent patient mortality. RESULTS: During follow-up (median, 4.9 years), 677 patients (16.5%) died. The 5-year cumulative incidences (death as competing event) of ischemic events, major bleeding, and HF hospitalization were 6.3% (5.6%-7.1%), 3.1% (2.5%-3.6%), and 8.1% (7.3%-9%), respectively. Ischemic events, major bleeding, and HF hospitalization were each associated with all-cause mortality. Major bleeding and hospitalization for HF were associated with the highest mortality rates in the postevent period (42.4%/y and 34.7%/y, respectively) compared with incident ischemic events (13.1%/y). The age- and sex-adjusted hazard ratios for all-cause mortality were 3.57 (95% CI, 2.77-4.61), 9.88 (95% CI, 7.55-12.93), and 8.60 (95% CI, 7.15-10.35) for ischemic events, major bleeding, and hospitalization for HF, respectively (all P<0.001). CONCLUSIONS: Hospitalization for HF has become both the most frequent and one of the most ominous events among patients with chronic coronary syndrome. Although less frequent, major bleeding is strongly associated with worse patient survival. Secondary prevention should not be limited to preventing ischemic events. Minimizing bleeding and preventing HF may be at least as important.


Subject(s)
Heart Failure , Hemorrhage , Registries , Humans , Male , Female , Heart Failure/epidemiology , Heart Failure/mortality , Aged , Hemorrhage/epidemiology , Hemorrhage/mortality , Incidence , Middle Aged , Prospective Studies , Prognosis , Chronic Disease , Hospitalization , Myocardial Infarction/epidemiology , Myocardial Infarction/mortality , Myocardial Infarction/diagnosis , Risk Factors , Follow-Up Studies
6.
N Engl J Med ; 386(9): 827-836, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35235725

ABSTRACT

BACKGROUND: Consensus recommendations regarding the threshold levels of cardiac troponin elevations for the definition of perioperative myocardial infarction and clinically important periprocedural myocardial injury in patients undergoing cardiac surgery range widely (from >10 times to ≥70 times the upper reference limit for the assay). Limited evidence is available to support these recommendations. METHODS: We undertook an international prospective cohort study involving patients 18 years of age or older who underwent cardiac surgery. High-sensitivity cardiac troponin I measurements (upper reference limit, 26 ng per liter) were obtained 3 to 12 hours after surgery and on days 1, 2, and 3 after surgery. We performed Cox analyses using a regression spline that explored the relationship between peak troponin measurements and 30-day mortality, adjusting for scores on the European System for Cardiac Operative Risk Evaluation II (which estimates the risk of death after cardiac surgery on the basis of 18 variables, including age and sex). RESULTS: Of 13,862 patients included in the study, 296 (2.1%) died within 30 days after surgery. Among patients who underwent isolated coronary-artery bypass grafting or aortic-valve replacement or repair, the threshold troponin level, measured within 1 day after surgery, that was associated with an adjusted hazard ratio of more than 1.00 for death within 30 days was 5670 ng per liter (95% confidence interval [CI], 1045 to 8260), a level 218 times the upper reference limit. Among patients who underwent other cardiac surgery, the corresponding threshold troponin level was 12,981 ng per liter (95% CI, 2673 to 16,591), a level 499 times the upper reference limit. CONCLUSIONS: The levels of high-sensitivity troponin I after cardiac surgery that were associated with an increased risk of death within 30 days were substantially higher than levels currently recommended to define clinically important periprocedural myocardial injury. (Funded by the Canadian Institutes of Health Research and others; VISION Cardiac Surgery ClinicalTrials.gov number, NCT01842568.).


Subject(s)
Cardiac Surgical Procedures/adverse effects , Myocardial Infarction/diagnosis , Postoperative Complications/diagnosis , Troponin I/blood , Aged , Aortic Valve/surgery , Biomarkers/blood , Cardiac Surgical Procedures/mortality , Coronary Artery Bypass/adverse effects , Female , Humans , Male , Middle Aged , Myocardial Infarction/blood , Myocardial Infarction/etiology , Myocardial Infarction/mortality , Postoperative Complications/blood , Postoperative Complications/mortality , Prospective Studies , Reference Values
7.
Arterioscler Thromb Vasc Biol ; 44(2): 452-464, 2024 02.
Article in English | MEDLINE | ID: mdl-38126173

ABSTRACT

BACKGROUND: Aortic valve sclerosis (AVSc) presents similar pathogenetic mechanisms to coronary artery disease and is associated with short- and long-term mortality in patients with coronary artery disease. Evidence of AVSc-specific pathophysiological traits in acute myocardial infarction (AMI) is currently lacking. Thus, we aimed to identify a blood-based transcriptional signature that could differentiate AVSc from no-AVSc patients during AMI. METHODS: Whole-blood transcriptome of AVSc (n=44) and no-AVSc (n=66) patients with AMI was assessed by RNA sequencing on hospital admission. Feature selection, differential expression, and enrichment analyses were performed to identify gene expression patterns discriminating AVSc from no-AVSc and infer functional associations. Multivariable Cox regression analysis was used to estimate the hazard ratios of cardiovascular events in AVSc versus no-AVSc patients. RESULTS: This cross-sectional study identified a panel of 100 informative genes capable of distinguishing AVSc from no-AVSc patients with 94% accuracy. Further analysis revealed significant mean differences in 143 genes, of which 30 genes withstood correction for age and previous AMI or coronary interventions. Functional inference unveiled a significant association between AVSc and key biological processes, including acute inflammatory responses, type I IFN (interferon) response, platelet activation, and hemostasis. Notably, patients with AMI with AVSc exhibited a significantly higher incidence of adverse cardiovascular events during a 10-year follow-up period, with a full adjusted hazard ratio of 2.4 (95% CI, 1.3-4.5). CONCLUSIONS: Our findings shed light on the molecular mechanisms underlying AVSc and provide potential prognostic insights for patients with AMI with AVSc. During AMI, patients with AVSc showed increased type I IFN (interferon) response and earlier adverse cardiovascular outcomes. Novel pharmacological therapies aiming at limiting type I IFN response during or immediately after AMI might improve poor cardiovascular outcomes of patients with AMI with AVSc.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Humans , Coronary Artery Disease/pathology , Aortic Valve/pathology , Transcriptome , Sclerosis/pathology , Cross-Sectional Studies , Myocardial Infarction/diagnosis , Myocardial Infarction/genetics , Myocardial Infarction/epidemiology , Immunity , Interferons
8.
Arterioscler Thromb Vasc Biol ; 44(5): 1144-1155, 2024 05.
Article in English | MEDLINE | ID: mdl-38511326

ABSTRACT

BACKGROUND: Elevated apoB-containing lipoproteins (=remnants+LDLs [low-density lipoproteins]) are a major risk factor for atherosclerotic cardiovascular disease, including peripheral artery disease (PAD) and myocardial infarction. We tested the hypothesis that remnants and LDL both explain part of the increased risk of PAD conferred by elevated apoB-containing lipoproteins. For comparison, we also studied the risk of chronic limb-threatening ischemia and myocardial infarction. METHODS: apoB, remnant cholesterol, and LDL cholesterol were measured in 93 461 individuals without statin use at baseline from the Copenhagen General Population Study (2003-2015). During up to 15 years of follow-up, 1207 had PAD, 552 had chronic limb-threatening ischemia, and 2022 had myocardial infarction in the Danish National Patient Registry. Remnant and LDL cholesterol were calculated from a standard lipid profile. Remnant and LDL particle counts were additionally measured with nuclear magnetic resonance spectroscopy in 25 347 of the individuals. Results were replicated in 302 167 individuals without statin use from the UK Biobank (2004-2010). RESULTS: In the Copenhagen General Population Study, multivariable adjusted hazard ratios for risk of PAD per 1 mmol/L (39 mg/dL) increment in remnant and LDL cholesterol were 1.9 (95% CI, 1.5-2.4) and 1.1 (95% CI, 1.0-1.2), respectively; corresponding results in the UK Biobank were 1.7 (95% CI, 1.4-2.1) and 0.9 (95% CI, 0.9-1.0), respectively. In the association from elevated apoB to increased risk of PAD, remnant and LDL cholesterol explained 73% (32%-100%) and 8% (0%-46%), respectively; corresponding results were 63% (30%-100%) and 0% (0%-33%) for risk of chronic limb-threatening ischemia and 41% (27%-55%) and 54% (38%-70%) for risk of myocardial infarction; results for remnant and LDL particle counts corroborated these findings. CONCLUSIONS: PAD risk conferred by elevated apoB-containing lipoproteins was explained mainly by elevated remnants, while myocardial infarction risk was explained by both elevated remnants and LDL.


Subject(s)
Apolipoprotein B-100 , Biomarkers , Cholesterol, LDL , Cholesterol , Lipoproteins , Peripheral Arterial Disease , Adult , Aged , Female , Humans , Male , Middle Aged , Apolipoprotein B-100/blood , Biomarkers/blood , Cholesterol/blood , Cholesterol, LDL/blood , Denmark/epidemiology , Ischemia/blood , Ischemia/epidemiology , Ischemia/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/blood , Peripheral Arterial Disease/diagnosis , Prospective Studies , Registries , Risk Assessment , Risk Factors , Time Factors , Triglycerides
9.
Ann Intern Med ; 177(4): JC41, 2024 04.
Article in English | MEDLINE | ID: mdl-38560903

ABSTRACT

SOURCE CITATION: Lee KK, Doudesis D, Ferry AV, et al; High-STEACS Investigators. Implementation of a high sensitivity cardiac troponin I assay and risk of myocardial infarction or death at five years: observational analysis of a stepped wedge, cluster randomised controlled trial. BMJ. 2023;383:e075009. 38011922.


Subject(s)
Acute Coronary Syndrome , Myocardial Infarction , Humans , Biomarkers , Myocardial Infarction/diagnosis , Troponin I , Troponin T , Randomized Controlled Trials as Topic
10.
Eur Heart J ; 45(28): 2478-2492, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-38888906

ABSTRACT

Ventricular septal defects are a rare complication after acute myocardial infarction with a mortality close to 100% if left untreated. However, even surgical or interventional closure is associated with a very high mortality and currently no randomized controlled trials are available addressing the optimal treatment strategy of this disease. This state-of-the-art review and clinical consensus statement will outline the diagnosis, hemodynamic consequences and treatment strategies of ventricular septal defects complicating acute myocardial infarction with a focus on current available evidence and a focus on major research questions to fill the gap in evidence.


Subject(s)
Heart Septal Defects, Ventricular , Myocardial Infarction , Humans , Consensus , Heart Septal Defects, Ventricular/surgery , Heart Septal Defects, Ventricular/complications , Heart Septal Defects, Ventricular/therapy , Heart Septal Defects, Ventricular/diagnosis , Myocardial Infarction/complications , Myocardial Infarction/diagnosis , Myocardial Infarction/therapy , Percutaneous Coronary Intervention/methods
11.
Eur Heart J ; 45(28): 2508-2515, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-38842324

ABSTRACT

BACKGROUND AND AIMS: Strategies to assess patients with suspected acute myocardial infarction (AMI) using a point-of-care (POC) high-sensitivity cardiac troponin I (hs-cTnI) assay may expedite emergency care. A 2-h POC hs-cTnI strategy for emergency patients with suspected AMI was derived and validated. METHODS: In two international, multi-centre, prospective, observational studies of adult emergency patients (1486 derivation cohort and 1796 validation cohort) with suspected AMI, hs-cTnI (Siemens Atellica® VTLi) was measured at admission and 2 h later. Adjudicated final diagnoses utilized the hs-cTn assay in clinical use. A risk stratification algorithm was derived and validated. The primary diagnostic outcome was index AMI (Types 1 and 2). The primary safety outcome was 30-day major adverse cardiac events incorporating AMI and cardiac death. RESULTS: Overall, 81 (5.5%) and 88 (4.9%) patients in the derivation and validation cohorts, respectively, had AMI. The 2-h algorithm defined 66.1% as low risk with a sensitivity of 98.8% [95% confidence interval (CI) 89.3%-99.9%] and a negative predictive value of 99.9 (95% CI 99.2%-100%) for index AMI in the derivation cohort. In the validation cohort, 53.3% were low risk with a sensitivity of 98.9% (95% CI 92.4%-99.8%) and a negative predictive value of 99.9% (95% CI 99.3%-100%) for index AMI. The high-risk metrics identified 5.4% of patients with a specificity of 98.5% (95% CI 96.6%-99.4%) and a positive predictive value of 74.5% (95% CI 62.7%-83.6%) for index AMI. CONCLUSIONS: A 2-h algorithm using a POC hs-cTnI concentration enables safe and efficient risk assessment of patients with suspected AMI. The short turnaround time of POC testing may support significant efficiencies in the management of the large proportion of emergency patients with suspected AMI.


Subject(s)
Algorithms , Myocardial Infarction , Troponin I , Humans , Myocardial Infarction/diagnosis , Myocardial Infarction/blood , Male , Female , Prospective Studies , Troponin I/blood , Aged , Middle Aged , Point-of-Care Systems , Biomarkers/blood , Risk Assessment/methods , Sensitivity and Specificity , Point-of-Care Testing
12.
J Cell Mol Med ; 28(8): e18334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661439

ABSTRACT

The genetic information of plasma total-exosomes originating from tissues have already proven useful to assess the severity of coronary artery diseases (CAD). However, plasma total-exosomes include multiple sub-populations secreted by various tissues. Only analysing the genetic information of plasma total-exosomes is perturbed by exosomes derived from other organs except the heart. We aim to detect early-warning biomarkers associated with heart-exosome genetic-signatures for acute myocardial infarction (AMI) by a source-tracking analysis of plasma exosome. The source-tracking of AMI plasma total-exosomes was implemented by deconvolution algorithm. The final early-warning biomarkers associated with heart-exosome genetic-signatures for AMI was identified by integration with single-cell sequencing, weighted gene correction network and machine learning analyses. The correlation between biomarkers and clinical indicators was validated in impatient cohort. A nomogram was generated using early-warning biomarkers for predicting the CAD progression. The molecular subtypes landscape of AMI was detected by consensus clustering. A higher fraction of exosomes derived from spleen and blood cells was revealed in plasma exosomes, while a lower fraction of heart-exosomes was detected. The gene ontology revealed that heart-exosomes genetic-signatures was associated with the heart development, cardiac function and cardiac response to stress. We ultimately identified three genes associated with heart-exosomes defining early-warning biomarkers for AMI. The early-warning biomarkers mediated molecular clusters presented heterogeneous metabolism preference in AMI. Our study introduced three early-warning biomarkers associated with heart-exosome genetic-signatures, which reflected the genetic information of heart-exosomes carrying AMI signals and provided new insights for exosomes research in CAD progression and prevention.


Subject(s)
Biomarkers , Exosomes , Myocardial Infarction , Exosomes/genetics , Exosomes/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Humans , Female , Male , Myocardium/metabolism , Myocardium/pathology , Transcriptome/genetics
13.
Circulation ; 148(1): 7-16, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37078280

ABSTRACT

BACKGROUND: Myocardial injury is an important pediatric diagnosis. Establishing normative data from a representative pediatric sample is vital to provide accurate upper reference limits (URLs) for defining myocardial injury using high-sensitivity cardiac troponin. METHODS: Among participants 1 to 18 years of age in the 1999-2004 National Health and Nutrition Examination Survey, we measured high-sensitivity troponin T using one assay (Roche) and high-sensitivity troponin I using 3 assays (Abbott, Siemens, and Ortho). In a strictly defined healthy subgroup, we estimated 97.5th and 99th percentile URLs for each assay using the recommended nonparametric method. RESULTS: Of 5695 pediatric participants, 4029 met criteria for the healthy subgroup (50% males; mean age 12.6 years). Our 99th percentile URL estimates for all 4 high-sensitivity troponin assays among children and adolescents were lower than the manufacturer-reported URLs (derived from adults). The 99th percentile URLs (95% CI) were 15 ng/L (95% CI, 12-17) for high-sensitivity troponin T, 16 ng/L (95% CI, 12-19) for high-sensitivity troponin I with the Abbott assay, 38 ng/L (95% CI, 25-46) for high-sensitivity troponin I with the Siemens assay, and 7 ng/L (95% CI, 5, 12) for high-sensitivity troponin I with the Ortho assay. The 95% CIs for age-, sex-, and race and ethnicity-specific 99th percentile URLs overlapped. However, the 97.5th percentile URL for each assay was measured with superior statistical precision (ie, tighter 95% CIs) and demonstrated differences by sex. For male compared with female children and adolescents, 97.5th percentile URLs were 11 ng/L (95% CI, 10-12) versus 6 ng/L (95% CI, 6-7) for high-sensitivity troponin T, 9 ng/L (95% CI, 7-10) versus 5 ng/L (95% CI, 4-6) for high-sensitivity troponin I with the Abbott assay, 21 ng/L (95% CI, 18-25) versus 11 ng/L (95% CI, 9-13) for high-sensitivity troponin I with the Siemens assay, and 4 ng/L (95% CI, 3-5) versus 2 ng/L (95% CI, 1-3) for high-sensitivity troponin I with the Ortho assay. In contrast to the 99th percentiles, the point estimates of 97.5th percentile pediatric URLs for high-sensitivity troponin were also much more stable to differences in the analytic approaches taken to estimate URLs. CONCLUSIONS: Because myocardial infarction is rare in children and adolescents, the use of statistically more precise and reliable sex-specific 97.5th percentile high-sensitivity troponin URLs might be considered to define pediatric myocardial injury.


Subject(s)
Heart Injuries , Myocardial Infarction , Adult , Humans , Male , Female , Adolescent , Child , Troponin I , Troponin T , Nutrition Surveys , Reference Values , Myocardial Infarction/diagnosis , Heart Injuries/diagnosis , Biomarkers
14.
Circulation ; 147(21): 1582-1593, 2023 05 23.
Article in English | MEDLINE | ID: mdl-36971007

ABSTRACT

BACKGROUND: The excess risk of cardiovascular disease associated with a wide array of infectious diseases is unknown. We quantified the short- and long-term risk of major cardiovascular events in people with severe infection and estimated the population-attributable fraction. METHODS: We analyzed data from 331 683 UK Biobank participants without cardiovascular disease at baseline (2006-2010) and replicated our main findings in an independent population from 3 prospective cohort studies comprising 271 329 community-dwelling participants from Finland (baseline 1986-2005). Cardiovascular risk factors were measured at baseline. We diagnosed infectious diseases (the exposure) and incident major cardiovascular events after infections, defined as myocardial infarction, cardiac death, or fatal or nonfatal stroke (the outcome) from linkage of participants to hospital and death registers. We computed adjusted hazard ratios (HRs) and 95% CIs for infectious diseases as short- and long-term risk factors for incident major cardiovascular events. We also calculated population-attributable fractions for long-term risk. RESULTS: In the UK Biobank (mean follow-up, 11.6 years), 54 434 participants were hospitalized for an infection, and 11 649 had an incident major cardiovascular event at follow-up. Relative to participants with no record of infectious disease, those who were hospitalized experienced increased risk of major cardiovascular events, largely irrespective of the type of infection. This association was strongest during the first month after infection (HR, 7.87 [95% CI, 6.36-9.73]), but remained elevated during the entire follow-up (HR, 1.47 [95% CI, 1.40-1.54]). The findings were similar in the replication cohort (HR, 7.64 [95% CI, 5.82-10.03] during the first month; HR, 1.41 [95% CI, 1.34-1.48] during mean follow-up of 19.2 years). After controlling for traditional cardiovascular risk factors, the population-attributable fraction for severe infections and major cardiovascular events was 4.4% in the UK Biobank and 6.1% in the replication cohort. CONCLUSIONS: Infections severe enough to require hospital treatment were associated with increased risks for major cardiovascular disease events immediately after hospitalization. A small excess risk was also observed in the long-term, but residual confounding cannot be excluded.


Subject(s)
Cardiovascular Diseases , Communicable Diseases , Myocardial Infarction , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Prospective Studies , Risk Factors , Myocardial Infarction/diagnosis , Communicable Diseases/epidemiology , Communicable Diseases/complications
15.
Crit Rev Clin Lab Sci ; 61(1): 1-22, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37466395

ABSTRACT

Acute myocardial infarction (AMI) is a leading cause of mortality globally, highlighting the need for timely and accurate diagnostic strategies. Cardiac troponin has been the biomarker of choice for detecting myocardial injury. A dynamic change in concentrations supports the diagnosis of AMI in the setting of evidence of acute myocardial ischemia. The new generation of high-sensitivity cardiac troponin (hs-cTn) assays has significantly improved analytical sensitivity but at the expense of decreased clinical specificity. As a result, sophisticated algorithms are required to differentiate AMI from non-AMI patients. Establishing optimal hs-cTn cutoffs for these algorithms to rule out and rule in AMI has been the subject of intensive investigations. These efforts have evolved from examining the utility of the hs-cTn 99th percentile upper reference limit, comparing the percentage versus absolute delta thresholds, and evaluating the performance of an early European Society of Cardiology-recommended 3 h algorithm, to the development of accelerated 1 h and 2 h algorithms that combine the admission hs-cTn concentrations and absolute delta cutoffs to rule out and rule in AMI. Specific cutoffs for individual confounding factors such as sex, age, and renal insufficiency have also been investigated. At the same time, concerns such as whether the small delta thresholds exceed the analytical and biological variations of hs-cTn assays and whether the algorithms developed in European study populations fit all other patient cohorts have been raised. In addition, the accelerated algorithms leave a substantial number of patients in a non-diagnostic observation zone. How to properly diagnose patients falling in this zone and those presenting with elevated baseline hs-cTn concentrations due to the presence of confounding factors or comorbidities remain open questions. Here we discuss the developments described above, focusing on criteria and underlying considerations for establishing optimal cutoffs. In-depth analyses are provided on the influence of biological variation, analytical imprecision, local AMI rate, and the timing of presentation on the performance metrics of the accelerated hs-cTn algorithms. Developing diagnostic strategies for patients who remain in the observation zone and those presenting with confounding factors are also reviewed.


Subject(s)
Myocardial Infarction , Humans , Myocardial Infarction/diagnosis , Biomarkers , Algorithms , Troponin , Risk Assessment
16.
N Engl J Med ; 384(21): 2014-2027, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34042389

ABSTRACT

BACKGROUND: The diagnosis of acute myocarditis typically requires either endomyocardial biopsy (which is invasive) or cardiovascular magnetic resonance imaging (which is not universally available). Additional approaches to diagnosis are desirable. We sought to identify a novel microRNA for the diagnosis of acute myocarditis. METHODS: To identify a microRNA specific for myocarditis, we performed microRNA microarray analyses and quantitative polymerase-chain-reaction (qPCR) assays in sorted CD4+ T cells and type 17 helper T (Th17) cells after inducing experimental autoimmune myocarditis or myocardial infarction in mice. We also performed qPCR in samples from coxsackievirus-induced myocarditis in mice. We then identified the human homologue for this microRNA and compared its expression in plasma obtained from patients with acute myocarditis with the expression in various controls. RESULTS: We confirmed that Th17 cells, which are characterized by the production of interleukin-17, are a characteristic feature of myocardial injury in the acute phase of myocarditis. The microRNA mmu-miR-721 was synthesized by Th17 cells and was present in the plasma of mice with acute autoimmune or viral myocarditis but not in those with acute myocardial infarction. The human homologue, designated hsa-miR-Chr8:96, was identified in four independent cohorts of patients with myocarditis. The area under the receiver-operating-characteristic curve for this novel microRNA for distinguishing patients with acute myocarditis from those with myocardial infarction was 0.927 (95% confidence interval, 0.879 to 0.975). The microRNA retained its diagnostic value in models after adjustment for age, sex, ejection fraction, and serum troponin level. CONCLUSIONS: After identifying a novel microRNA in mice and humans with myocarditis, we found that the human homologue (hsa-miR-Chr8:96) could be used to distinguish patients with myocarditis from those with myocardial infarction. (Funded by the Spanish Ministry of Science and Innovation and others.).


Subject(s)
Circulating MicroRNA/blood , MicroRNAs/blood , Myocardial Infarction/diagnosis , Myocarditis/diagnosis , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Biomarkers/blood , CD4 Antigens , Diagnosis, Differential , Disease Models, Animal , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Myocarditis/genetics , Polymerase Chain Reaction , ROC Curve , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Th17 Cells/metabolism
17.
Anal Chem ; 96(29): 11853-11861, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38989993

ABSTRACT

Cardiac myosin-binding protein C (cMyBP-C) is a novel cardiac marker of acute myocardial infarction (AMI) and acute cardiac injuries (ACI). Construction of point-of-care testing techniques capable of sensing cMyBP-C with high sensitivity and precision is urgently needed. Herein, we synthesized an Au@NGQDs@Au/Ag multi-shell nanoUrchins (MSNUs), and then applied it in a colorimetric/SERS dual-mode immunoassay for detection of cMyBP-C. The MSNUs displayed superior stability, colorimetric brightness, and SERS enhancement ability with an enhanced factor of 5.4 × 109, which were beneficial to improve the detection capability of test strips. The developed MSNU-based test strips can achieve an ultrasensitive immunochromatographic assay of cMyBP-C in both colorimetric and SERS modes with the limits of detection as low as 19.3 and 0.77 pg/mL, respectively. Strikingly, this strip was successfully applied to analyze actual plasma samples with significantly better sensitivity, negative predictive value, and accuracy than commercially available gold test strips. Notably, this method possessed a wide range of application scenarios via combining with a color recognizer application named Color Grab on the smartphone, which can meet various needs of different users. Overall, our MSNU-based test strip as a mobile health monitoring tool shows excellent sensitivity, reproducibility, and rapid detection of the cMyBP-C, which holds great potential for the early clinic diagnosis of AMI and ACI.


Subject(s)
Carrier Proteins , Gold , Humans , Immunoassay/methods , Carrier Proteins/blood , Gold/chemistry , Limit of Detection , Colorimetry/methods , Metal Nanoparticles/chemistry , Myocardial Infarction/diagnosis , Myocardial Infarction/blood , Spectrum Analysis, Raman/methods
18.
Anal Chem ; 96(39): 15728-15734, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39291642

ABSTRACT

MicroRNAs (miRNAs) have emerged as promising biomarkers for acute myocardial infarction (AMI). There is an urgent imperative to develop analytical methodologies capable of intelligently discerning multiple circulating miRNAs. Here, we present a dual miRNA detection platform for AMI using DNA logic gates coupled with an electrochemiluminescence (ECL) response. The platform integrates DNA truncated square pyramids as capture probes on gold-deposited electrodes, enabling precise quantification of miRNA associated with AMI. The cyclic enzymatic signal amplification principle of strand displacement amplification enhances the miRNA detection sensitivity. AND and OR logic gates have been successfully constructed, enabling intelligent identification of miRNAs in AMI. Calibration curves show strong linear correlations between ECL intensity and target miRNA concentration (10 fM to 10 nM), with excellent stability in consecutive measurements. When applied to clinical serum samples, the biosensor exhibits consistent performance, underscoring its reliability for clinical diagnostics. This innovative approach not only demonstrates DNA nanotechnology's potential in biosensing but also offers a promising solution for improving AMI diagnosis and prognosis through precise miRNA biomarker detection.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Luminescent Measurements , MicroRNAs , MicroRNAs/analysis , MicroRNAs/blood , Humans , Biosensing Techniques/methods , DNA/chemistry , Myocardial Infarction/diagnosis , Gold/chemistry , Nucleic Acid Amplification Techniques , Myocardium/metabolism , Myocardium/chemistry
19.
Small ; 20(8): e2304999, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37821412

ABSTRACT

Rapid and precise acute myocardial infarction (AMI) diagnosis is essential for preventing patient death. In addition, the complementary roles of creatine kinase muscle brain (CK-MB) and cardiac troponin I (cTnI) cardiac biomarkers in the early and late stages of AMI demand their simultaneous detection, which is difficult to implement using conventional fluorescence and electrochemical technologies. Here, a nanotechnology-based one-stop immuno-surface-enhanced Raman scattering (SERS) detection platform is reported for multiple cardiac indicators for the rapid screening and progressive tracing of AMI events. Optimal SERS is achieved using optical property-based, excitation wavelength-optimized, and high-yield anisotropic plasmonic gold nanocubes. Optimal immunoassay reaction efficiencies are achieved by increasing immobilized antibodies. Multiple simultaneous detection strategies are implemented by incorporating two different Raman reports with narrow wavenumbers corresponding to two indicators and by establishing a computational SERS mapping process to accurately detect their concentrations, irrespective of multiple enzymes in the human serum. The SERS platform precisely estimated AMI onset and progressive timing in human serum and made rapid AMI identification feasible using a portable Raman spectrometer. This integrated platform is hypothesized to significantly contribute to emergency medicine and forensic science by providing timely treatment and observation.


Subject(s)
Myocardial Infarction , Humans , Creatine Kinase, MB Form , Myocardial Infarction/diagnosis , Troponin I , Biomarkers , Immunoassay
20.
Am Heart J ; 268: 104-113, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042459

ABSTRACT

BACKGROUND: The high-sensitivity cardiac troponin (hs-cTn) I point-of-care (POC) hs-cTnI-PATHFAST assay has recently become clinically available. METHODS: We aimed to externally validate the hs-cTnI-PATHFAST 0/1h-algorithm recently developed for the early diagnosis of non-ST-segment-elevation myocardial infarction (NSTEMI) and derive and validate a 0/2-algorithm in patients presenting to the emergency department with acute chest discomfort included in a multicenter diagnostic study. Two independent cardiologists centrally adjudicated the final diagnoses using all the clinical and study-specific information available including serial measurements of hs-cTnI-Architect. RESULTS: Among 1,532 patients (median age 60 years, 33% [n = 501] women), NSTEMI was the final diagnosis in 13%. External validation of the hs-cTnI-PATHFAST 0/1h-algorithm showed very high negative predictive value (NPV; 100% [95%CI, 99.5%-100%]) and sensitivity 100% (95%CI, 98.2%-100%) for rule-out of NSTEMI. Positive predictive value (PPV) and specificity for rule-in of NSTEMI were high (74.9% [95%CI, 68.3%-80.5%] and 96.4% [95%CI, 95.2%-97.3%], respectively). Among 1,207 patients (median age 61 years, 32% [n = 391] women) available for the derivation (n = 848) and validation (n = 359) of the hs-cTnI-PATHFAST 0/2h-algorithm, a 0h-concentration <3 ng/L or a 0h-concentration <4 ng/L with a 2h-delta <4ng/L ruled-out NSTEMI in 52% of patients with a NPV of 100% (95%CI, 98-100) and sensitivity of 100% (95%CI, 92.9%-100%) in the validation cohort. A 0h-concentration ≥90ng/L or a 2h-delta ≥ 55ng/L ruled-in 38 patients (11%): PPV 81.6% (95%CI, 66.6-90.8), specificity 97.7% (95%CI, 95.4-98.9%). CONCLUSIONS: The POC hs-cTnI-PATHFAST assay allows rapid and effective rule-out and rule-in of NSTEMI using both a 0/1h- and a 0/2h-algorithm with high NPV/sensitivity for rule-out and high PPV/specificity for rule-in. CLINICAL TRIAL REGISTRATION: NCT00470587.


Subject(s)
Myocardial Infarction , Non-ST Elevated Myocardial Infarction , ST Elevation Myocardial Infarction , Humans , Female , Middle Aged , Non-ST Elevated Myocardial Infarction/diagnosis , Point-of-Care Systems , Myocardial Infarction/diagnosis , Prospective Studies , Biomarkers , Troponin I , Algorithms , Troponin T
SELECTION OF CITATIONS
SEARCH DETAIL