Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Neurochem ; 155(3): 285-299, 2020 11.
Article in English | MEDLINE | ID: mdl-32201946

ABSTRACT

Damaged axons in the adult mammalian central nervous system have a restricted regenerative capacity mainly because of Nogo protein, which is a major myelin-associated axonal growth inhibitor with binding to both receptors of Nogo receptor-1 (NgR1) and paired immunoglobulin-like receptor (PIR)-B. Lateral olfactory tract usher substance (LOTUS) exerts complete suppression of NgR1-mediated axonal growth inhibition by antagonizing NgR1. However, the regulation of PIR-B functions in neurons remains unknown. In this study, protein-protein interactions analyses found that LOTUS binds to PIR-B and abolishes Nogo-binding to PIR-B completely. Reverse transcription-polymerase chain reaction and immunocytochemistry revealed that PIR-B is expressed in dorsal root ganglions (DRGs) from wild-type and Ngr1-deficient mice (male and female). In these DRG neurons, Nogo induced growth cone collapse and neurite outgrowth inhibition, but treatment with the soluble form of LOTUS completely suppressed them. Moreover, Nogo-induced growth cone collapse and neurite outgrowth inhibition in Ngr1-deficient DRG neurons were neutralized by PIR-B function-blocking antibodies, indicating that these Nogo-induced phenomena were mediated by PIR-B. Our data show that LOTUS negatively regulates a PIR-B function. LOTUS thus exerts an antagonistic action on both receptors of NgR1 and PIR-B. This may lead to an improvement in the defective regeneration of axons following injury.


Subject(s)
Axons/drug effects , Nerve Tissue Proteins/pharmacology , Nogo Receptor 1/antagonists & inhibitors , Receptors, Immunologic/antagonists & inhibitors , Animals , Animals, Newborn , Axons/metabolism , COS Cells , Cells, Cultured , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nogo Receptor 1/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Receptors, Immunologic/metabolism
2.
J Neuroinflammation ; 15(1): 46, 2018 Feb 17.
Article in English | MEDLINE | ID: mdl-29454354

ABSTRACT

BACKGROUND: Although inflammation in the central nervous system is responsible for multiple neurological diseases, the lack of appropriate biomarkers makes it difficult to evaluate inflammatory activities in these diseases. Therefore, a new biomarker reflecting neuroinflammation is required for accurate diagnosis, appropriate therapy, and comprehension of pathogenesis of these neurological disorders. We previously reported that the cerebrospinal fluid (CSF) concentration of lateral olfactory tract usher substance (LOTUS), which promotes axonal growth as a Nogo receptor 1 antagonist, negatively correlates with disease activity in multiple sclerosis, suggesting that variation in LOTUS reflects the inflammatory activities and is a useful biomarker to evaluate the disease activity. To extend this observation, we analyzed the variation of LOTUS in the CSF of patients with bacterial and viral meningitis, which are the most common neuroinflammatory diseases. METHODS: CSF samples were retrospectively obtained from patients with meningitis (n = 40), who were followed up by CSF study at least twice, and from healthy controls (n = 27). Patients were divided into bacterial (n = 14) and viral meningitis (n = 18) after exclusion of eight patients according to the criteria of this study. LOTUS concentrations, total protein levels, and CSF cell counts in the acute and recovery phases were analyzed chronologically. We also used lipopolysaccharide-injected mice as a model of neuroinflammation to evaluate LOTUS mRNA and protein expression in the brain. RESULTS: Regardless of whether meningitis was viral or bacterial, LOTUS concentrations in the CSF of patients in acute phase were lower than those of healthy controls. As the patients recovered from meningitis, LOTUS levels in the CSF returned to the normal range. Lipopolysaccharide-injected mice also exhibited reduced LOTUS mRNA and protein expression in the brain. CONCLUSIONS: CSF levels of LOTUS correlated inversely with disease activity in both bacterial and viral meningitis, as well as in multiple sclerosis, because neuroinflammation downregulated LOTUS expression. Our data strongly suggest that variation of CSF LOTUS is associated with neuroinflammation and is useful as a biomarker for a broader range of neuroinflammatory diseases.


Subject(s)
Calcium-Binding Proteins/cerebrospinal fluid , Meningitis/cerebrospinal fluid , Meningitis/diagnosis , Nogo Receptor 1/antagonists & inhibitors , Nogo Receptor 1/metabolism , Adult , Aged , Aged, 80 and over , Animals , Biomarkers/cerebrospinal fluid , Female , Follow-Up Studies , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Retrospective Studies , Young Adult
3.
Chin J Traumatol ; 19(1): 16-24, 2016.
Article in English | MEDLINE | ID: mdl-27033267

ABSTRACT

PURPOSE: To investigate the in vitro effect of short interfering RNAs (siRNAs) against Nogo receptor (NgR) on neurite outgrowth under an inhibitory substrate of central nervous system (CNS) myelin. METHODS: Three siRNA sequences against NgR were designed and transfected into cerebellar granule cells (CGCs) to screen for the most effcient sequence of NgR siRNA by using reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence staining. NgR siRNA sequence 1 was found the most efficient which was then transfected into the CGCs grown on CNS myelin substrate to observe its disinhibition for neurite outgrowth. RESULTS: Compared with the scrambled control sequence of siRNA, the NgR siRNA sequence 1 significantly decreased NgR mRNA level at 24 h and 48 h (p <0.05), which was recovered by 96 h after transfection. NgR immunoreactivity was also markedly reduced at 24 and 48 h after the transfection of siRNA sequence 1 compared with that before transfection (p<0.05). The NgR immunoreactivity was recovered after 72 h post-transfection. Moreover, the neurite outgrowth on the myelin substrate was greatly improved within 72 h after the transfection with siRNA sequence 1 compared with the scrambled sequence-transfected group or non-transfected group (p<0.05). CONCLUSION: siRNA-mediated knockdown of NgR expression contributes to neurite outgrowth in vitro.


Subject(s)
Myelin Sheath/physiology , Neuronal Outgrowth/physiology , Nogo Receptor 1/physiology , Animals , Cells, Cultured , Nogo Receptor 1/antagonists & inhibitors , Nogo Receptor 1/genetics , RNA, Small Interfering , Rats , Rats, Sprague-Dawley
4.
Sci Rep ; 11(1): 5085, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658590

ABSTRACT

The Nogo signal is involved in impairment of memory formation. We previously reported the lateral olfactory tract usher substance (LOTUS) as an endogenous antagonist of the Nogo receptor 1 that mediates the inhibition of axon growth and synapse formation. Moreover, we found that LOTUS plays an essential role in neural circuit formation and nerve regeneration. However, the effects of LOTUS on synapse formation and memory function have not been elucidated. Here, we clearly showed the involvement of LOTUS in synapse formation and memory function. The cultured hippocampal neurons derived from lotus gene knockout (LOTUS-KO) mice exhibited a decrease in synaptic density compared with those from wild-type mice. We also found decrease of dendritic spine formation in the adult hippocampus of LOTUS-KO mice. Finally, we demonstrated that LOTUS deficiency impairs memory formation in the social recognition test and the Morris water maze test, indicating that LOTUS is involved in functions of social and spatial learning and memory. These findings suggest that LOTUS affects synapse formation and memory function.


Subject(s)
Calcium-Binding Proteins/metabolism , Nogo Receptor 1/antagonists & inhibitors , Nogo Receptor 1/metabolism , Olfactory Bulb/metabolism , Recognition, Psychology , Signal Transduction/genetics , Synapses/metabolism , Animals , Axons/metabolism , Calcium-Binding Proteins/genetics , Cells, Cultured , Gene Knockout Techniques/methods , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Morris Water Maze Test , Nerve Regeneration/genetics , Neurons/metabolism , Synapses/genetics
5.
Drug Des Devel Ther ; 14: 2775-2787, 2020.
Article in English | MEDLINE | ID: mdl-32764877

ABSTRACT

PURPOSE: The aim of this study was to evaluate the neuroprotective effect of tanshinone IIA (TSA) on focal cerebral ischemia in rats and to investigate whether it was associated with Nogo-A/NgR1/RhoA/Rho-associated protein kinase 2 (ROCKII)/myosin light chain (MLC) signaling. METHODS: In this study, focal cerebral ischemia animal model was used. Neurological deficit scores and infarction volume were investigated to evaluate the neuroprotection of TSA. Hematoxylin-eosin staining, Nissl staining, and immunofluorescence staining were conducted to detect ischemic changes in brain tissue and changes in neurofilament protein 200 (NF200) and growth-associated protein-43 (GAP-43) expression, respectively. Western blotting and qRT-PCR analyses were used to detect the expression levels of NF200, GAP-43 and Nogo-A/NgR1/RhoA/ROCKII/MLC pathway-related signaling molecules. RESULTS: TSA treatment can improve the survival rate of rats, reduce the neurological score and infarct volume, and reduce neuron damage. In addition, TSA also increased axon length and enhanced expression of NF200 and GAP-43. Importantly, TSA significantly attenuated the expression of Nogo-A, NgR1, RhoA, ROCKII, and p-MLC, and thus inhibiting the activation of this signaling pathway. CONCLUSION: TSA promoted axonal regeneration by inhibiting the Nogo-A/NgR1/RhoA/ROCKII/MLC signaling pathway, thereby exerting neuroprotective effects in cerebral ischemia rats, which provided support for the clinical application of TSA in stroke treatment.


Subject(s)
Abietanes/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Axons/drug effects , Brain Ischemia/drug therapy , Abietanes/chemistry , Abietanes/isolation & purification , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Axons/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Disease Models, Animal , Humans , Molecular Structure , Myosin Light Chains/antagonists & inhibitors , Myosin Light Chains/metabolism , Nogo Proteins/antagonists & inhibitors , Nogo Proteins/metabolism , Nogo Receptor 1/antagonists & inhibitors , Nogo Receptor 1/metabolism , Rats , Rats, Sprague-Dawley , Salvia miltiorrhiza/chemistry , Signal Transduction/drug effects , rho GTP-Binding Proteins/antagonists & inhibitors , rho GTP-Binding Proteins/metabolism , rho-Associated Kinases
6.
Neurosci Lett ; 683: 61-68, 2018 09 14.
Article in English | MEDLINE | ID: mdl-29953923

ABSTRACT

There are global efforts in developing therapeutic strategies for central nervous system (CNS) injuries using multimodal approaches. Nogo receptor type 1 (NgR1) has been known as a primary molecule limiting neuronal regeneration in the adult CNS. We identified lateral olfactory tract usher substance (LOTUS) as an endogenous NgR1 antagonist. Membrane-bound LOTUS interacts with NgR1 and inhibits its function by blocking its ligand binding. Five molecules including Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp), B lymphocyte stimulator (BLyS) and chondroitin sulfate proteoglycans (CSPGs) have been identified as NgR1 ligands. These ligands bind to NgR1 and activate NgR1 signaling, leading to axon growth inhibition such as growth cone collapse and neurite outgrowth inhibition. We have recently reported that the soluble form of LOTUS (s-LOTUS) also suppressed NgR1-mediated signaling induced by myelin axonal inhibitors (MAIs) including Nogo, MAG and OMgp by binding with both NgR1 and its co-receptor p75 neurotrophin receptor (p75NTR). Though s-LOTUS has been reported to suppress MAIs, whether s-LOTUS also suppresses NgR1 signaling induced by BLyS and CSPGs remains to be elucidated. Here, we show that s-LOTUS inhibits NgR1-mediated signaling induced by BLyS and CSPGs. Although treatment with s-LOTUS did not suppress BLyS-NgR1 interaction, s-LOTUS inhibited growth cone collapse and neurite outgrowth inhibition induced by BLyS and CSPGs in chick dorsal root ganglion (DRG) neurons. Furthermore, s-LOTUS compensated for the suppressive function of endogenous LOTUS in NgR1-mediated signaling in olfactory bulb neurons of lotus-knockout mice. These findings suggest that s-LOTUS is a potent therapeutic agent for neuronal regeneration in the CNS injuries.


Subject(s)
B-Cell Activating Factor/pharmacology , Calcium-Binding Proteins/pharmacology , Chondroitin Sulfate Proteoglycans/pharmacology , Nogo Receptor 1/antagonists & inhibitors , Signal Transduction/drug effects , Animals , COS Cells , Cells, Cultured , Chickens , Chlorocebus aethiops , HEK293 Cells , Humans , Mice , Nogo Receptor 1/physiology , Signal Transduction/physiology , Solubility
7.
Neuroscience ; 359: 209-223, 2017 09 17.
Article in English | MEDLINE | ID: mdl-28736137

ABSTRACT

Diffuse traumatic brain injury (TBI) initiates secondary pathology, including inflammation and reduced myelination. Considering these injury-related pathologies, the many states of activated microglia as demonstrated by differing morphologies would form, migrate, and function in and through fields of growth-inhibitory myelin byproduct, specifically Nogo. Here we evaluate the relationship between inflammation and reduced myelin antigenicity in the wake of diffuse TBI and present the hypothesis that the Nogo-66 receptor antagonist peptide NEP(1-40) would reverse the injury-induced shift in distribution of microglia morphologies by limiting myelin-based inhibition. Adult male rats were subjected to midline fluid percussion sham or brain injury. At 2h, 6h, 1d, 2d, 7d, and 21d post-injury, immunohistochemical staining was analyzed in sensory cortex (S1BF) for myelin antigens (myelin basic protein; MBP and CNPase), microglia morphology (ionized calcium-binding adapter protein; Iba1), Nogo receptor and Nogo. Pronounced reduction in myelin antigenicity was evident transiently at 1d post-injury, as evidenced by decreased MBP and CNPase staining, as well as loss of white matter organization, compared to sham and later injury time points. Concomitant with reduced myelin antigenicity, injury shifted microglia morphology from the predominantly ramified morphology observed in sham-injured cortex to hyper-ramified, activated, fully activated, or rod. Changes in microglial morphology were evident as early as 2h post-injury, and remained at least until day 21. Additional cohorts of uninjured and brain-injured animals received vehicle or drug (NEP(1-40), i.p., 15min and 19h post-injury) and brains were collected at 2h, 6h, 1d, 2d, or 7d post-injury. NEP(1-40) administration further shifted distributions of microglia away from an injury-induced activated morphology toward greater proportions of rod and macrophage-like morphologies compared to vehicle-treated. By 7d post-injury, no differences in the distributions of microglia were noted between vehicle and NEP(1-40). This study begins to link secondary pathologies of white matter damage and inflammation after diffuse TBI. In the injured brain, secondary pathologies co-occur and likely interact, with consequences for neuronal circuit disruption leading to neurological symptoms.


Subject(s)
Brain Injuries, Diffuse/metabolism , Encephalitis/metabolism , Microglia/metabolism , Nogo Receptor 1/metabolism , Animals , Disease Models, Animal , Encephalitis/complications , Male , Nogo Receptor 1/antagonists & inhibitors , Rats, Sprague-Dawley
8.
Brain Res ; 1668: 56-64, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28535980

ABSTRACT

Cell transplantation using ventral mesencephalic tissue is an experimental approach to treat Parkinson's disease. This approach is limited by poor survival of the transplants and the high number of dopaminergic neurons needed for grafting. Increasing the yield of dopaminergic neurons in donor tissue is of great importance. We have previously shown that antagonization of the Nogo-receptor 1 by NEP1-40 promoted survival of cultured dopaminergic neurons and exposure to neurotrophin-4/5 increased dopaminergic cell densities in organotypic midbrain cultures. We investigated whether a combination of both treatments offers a novel tool to further improve dopaminergic neuron survival. Rat embryonic ventral mesencephalic neurons grown as organotypic free-floating roller tube or primary dissociated cultures were exposed to neurotrophin-4/5 and NEP1-40. The combined and single factor treatment resulted in significantly higher numbers of tyrosine hydroxylase positive neurons compared to controls. Significantly stronger tyrosine hydroxylase signal intensity was detected by Western blotting in the combination-treated cultures compared to controls but not compared to single factor treatments. Neurotrophin-4/5 and the combined treatment showed significantly higher signals for the neuronal marker microtubule-associated protein 2 in Western blots compared to control while no effects were observed for the astroglial marker glial fibrillary acidic protein between groups, suggesting that neurotrophin-4/5 targets mainly neuronal cells. Finally, NEP1-40 and the combined treatment significantly augmented tyrosine hydroxylase positive neurite length. Summarizing, our findings substantiate that antagonization of the Nogo-receptor 1 promotes dopaminergic neurons but does not further increase the yield of dopaminergic neurons and their morphological complexity when combined with neurotrophin-4/5 hinting to the idea that these treatments might exert their effects by activating common downstream pathways.


Subject(s)
Dopaminergic Neurons/metabolism , Nerve Growth Factors/metabolism , Nogo Receptor 1/antagonists & inhibitors , Animals , Cell Survival/drug effects , Cells, Cultured , Dopaminergic Neurons/drug effects , Female , Microtubule-Associated Proteins/metabolism , Neurites/drug effects , Neuroglia/metabolism , Nogo Receptor 1/metabolism , Oxidopamine/pharmacology , Rats, Wistar , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL