Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Transl Med ; 22(1): 449, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741129

ABSTRACT

Inherited deficiency of thymidine phosphorylase (TP), encoded by TYMP, leads to a rare disease with multiple mitochondrial DNA (mtDNA) abnormalities, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the impact of TP deficiency on lysosomes remains unclear, which are important for mitochondrial quality control and nucleic acid metabolism. Muscle biopsy tissue and skin fibroblasts from MNGIE patients, patients with m.3243 A > G mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and healthy controls (HC) were collected to perform mitochondrial and lysosomal functional analyses. In addition to mtDNA abnormalities, compared to controls distinctively reduced expression of LAMP1 and increased mitochondrial content were detected in the muscle tissue of MNGIE patients. Skin fibroblasts from MNGIE patients showed decreased expression of LAMP2, lowered lysosomal acidity, reduced enzyme activity and impaired protein degradation ability. TYMP knockout or TP inhibition in cells can also induce the similar lysosomal dysfunction. Using lysosome immunoprecipitation (Lyso- IP), increased mitochondrial proteins, decreased vesicular proteins and V-ATPase enzymes, and accumulation of various nucleosides were detected in lysosomes with TP deficiency. Treatment of cells with high concentrations of dThd and dUrd also triggers lysosomal dysfunction and disruption of mitochondrial homeostasis. Therefore, the results provided evidence that TP deficiency leads to nucleoside accumulation in lysosomes and lysosomal dysfunction, revealing the widespread disruption of organelles underlying MNGIE.


Subject(s)
DNA, Mitochondrial , Fibroblasts , Lysosomes , Mitochondria , Mitochondrial Encephalomyopathies , Nucleosides , Thymidine Phosphorylase , Humans , Lysosomes/metabolism , Thymidine Phosphorylase/metabolism , Thymidine Phosphorylase/deficiency , Thymidine Phosphorylase/genetics , Mitochondrial Encephalomyopathies/metabolism , Mitochondrial Encephalomyopathies/pathology , Mitochondrial Encephalomyopathies/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Nucleosides/metabolism , Intestinal Pseudo-Obstruction/metabolism , Intestinal Pseudo-Obstruction/pathology , Intestinal Pseudo-Obstruction/enzymology , Intestinal Pseudo-Obstruction/genetics , Ophthalmoplegia/metabolism , Ophthalmoplegia/pathology , Ophthalmoplegia/congenital , Muscular Dystrophy, Oculopharyngeal/metabolism , Muscular Dystrophy, Oculopharyngeal/pathology , Male , Female , Skin/pathology , Skin/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism
2.
Mol Biol Cell ; 35(3): ar32, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38170592

ABSTRACT

Kinesin-mediated transport along microtubules is critical for axon development and health. Mutations in the kinesin Kif21a, or the microtubule subunit ß-tubulin, inhibit axon growth and/or maintenance resulting in the eye-movement disorder congenital fibrosis of the extraocular muscles (CFEOM). While most examined CFEOM-causing ß-tubulin mutations inhibit kinesin-microtubule interactions, Kif21a mutations activate the motor protein. These contrasting observations have led to opposed models of inhibited or hyperactive Kif21a in CFEOM. We show that, contrary to other CFEOM-causing ß-tubulin mutations, R380C enhances kinesin activity. Expression of ß-tubulin-R380C increases kinesin-mediated peroxisome transport in S2 cells. The binding frequency, percent motile engagements, run length and plus-end dwell time of Kif21a are also elevated on ß-tubulin-R380C compared with wildtype microtubules in vitro. This conserved effect persists across tubulins from multiple species and kinesins from different families. The enhanced activity is independent of tail-mediated kinesin autoinhibition and thus utilizes a mechanism distinct from CFEOM-causing Kif21a mutations. Using molecular dynamics, we visualize how ß-tubulin-R380C allosterically alters critical structural elements within the kinesin motor domain, suggesting a basis for the enhanced motility. These findings resolve the disparate models and confirm that inhibited or increased kinesin activity can both contribute to CFEOM. They also demonstrate the microtubule's role in regulating kinesins and highlight the importance of balanced transport for cellular and organismal health.


Subject(s)
Ophthalmoplegia , Tubulin , Humans , Tubulin/metabolism , Kinesins/metabolism , Ophthalmoplegia/genetics , Ophthalmoplegia/metabolism , Mutation/genetics , Microtubules/metabolism , Motor Activity
3.
Rev. méd. IMSS ; 35(1): 73-8, ene.-feb. 1997. ilus
Article in Spanish | LILACS | ID: lil-226777

ABSTRACT

Se estima que la neuropatía diabética se presenta en 8 por ciento de los individuos con diagnóstico reciente de diabetes y hasta en 50 por ciento de aquéllos con más de 20 años de enfermedad. La mononeuropatía de los pares craneanos suele aparecer en pacientes con control metabólico deficiente o como la primera manifestación de la diabetes. La parálisis de los nervios oculomotores tiene una frecuencia de 0.5 a 5 por ciento y afecta principalmente a las personas mayores de 50 años. En general son de aparición súbita, unilaterales y asociadas con dolor ocular, cefalea y diplopía. El motor oculara común y el motor ocular externo son los que se ven afectados con mayor frecuencia. El pronóstico es favorable cuando se establece control metabólico estricto


Subject(s)
Humans , Diabetes Mellitus/complications , Diabetes Mellitus/diagnosis , Diabetes Mellitus/physiopathology , Diabetes Mellitus/metabolism , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/physiopathology , Ophthalmoplegia/diagnosis , Ophthalmoplegia/physiopathology , Ophthalmoplegia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL