Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.724
Filter
Add more filters

Publication year range
1.
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34129837

ABSTRACT

The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.


Subject(s)
Immunity, Mucosal , Mouth Mucosa/cytology , Mouth Mucosa/immunology , Neutrophils/cytology , Adult , Epithelial Cells/cytology , Gene Expression Regulation , Genetic Predisposition to Disease , Gingiva/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Microbiota , Myeloid Cells/cytology , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/pathology , Single-Cell Analysis , Stromal Cells/cytology , T-Lymphocytes/cytology
2.
Cell ; 182(2): 447-462.e14, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32758418

ABSTRACT

The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.


Subject(s)
Colitis/pathology , Enterobacter/physiology , Gastrointestinal Microbiome , Klebsiella/physiology , Mouth/microbiology , Animals , Colitis/microbiology , Colon/microbiology , Colon/pathology , Disease Models, Animal , Enterobacter/isolation & purification , Female , Inflammasomes/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-1beta/metabolism , Klebsiella/isolation & purification , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Periodontitis/microbiology , Periodontitis/pathology , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism
3.
Apoptosis ; 29(5-6): 570-585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38127283

ABSTRACT

Integrin ß6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvß6. Importantly, ITGB6 determines αvß6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.


Subject(s)
Antigens, Neoplasm , Fibrosis , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Fibrosis/genetics , Fibrosis/metabolism , Animals , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Integrins/metabolism , Integrins/genetics , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology
4.
J Transl Med ; 22(1): 407, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689292

ABSTRACT

BACKGROUND AND OBJECTIVE: Progranulin (PGRN), a multifunctional growth factor, plays indispensable roles in the regulation of cancer, inflammation, metabolic diseases, and neurodegenerative diseases. Nevertheless, its immune regulatory role in periodontitis is insufficiently understood. This study attempts to explore the regulatory effects of PGRN on macrophage polarization in periodontitis microenvironment. METHODS: Immunohistochemical (IHC) and multiplex immunohistochemical (mIHC) stainings were performed to evaluate the expression of macrophage-related markers and PGRN in gingival samples from periodontally healthy subjects and periodontitis subjects. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were polarized towards M1 or M2 macrophages by the addition of LPS or IL-4, respectively, and were treated with or without PGRN. Real-time fluorescence quantitative PCR (qRT-PCR), immunofluorescence staining (IF), enzyme-linked immunosorbent assay (ELISA), and flow cytometry were used to determine the expressions of M1 and M2 macrophage-related markers. Co-immunoprecipitation was performed to detect the interaction between PGRN and tumor necrosis factor receptor 2 (TNFR2). Neutralizing antibody was used to block TNFR2 to confirm the role of TNFR2 in PGRN-mediated macrophage polarization. RESULTS: The IHC and mIHC staining of human gingival slices showed a significant accumulation of macrophages in the microenvironment of periodontitis, with increased expressions of both M1 and M2 macrophage markers. Meanwhile, PGRN was widely expressed in the gingival tissue of periodontitis and co-expressed mainly with M2 macrophages. In vitro experiments showed that in RAW264.7 cells and BMDMs, M1 markers (CD86, TNF-α, iNOS, and IL-6) substantially decreased and M2 markers (CD206, IL-10, and Arg-1) significantly increased when PGRN was applied to LPS-stimulated macrophages relatively to LPS stimulation alone. Besides, PGRN synergistically promoted IL-4-induced M2 markers expression, such as CD206, IL-10, and Arg1. In addition, the co-immunoprecipitation result showed the direct interaction of PGRN with TNFR2. mIHC staining further revealed the co-localization of PGRN and TNFR2 on M2 macrophages (CD206+). Blocking TNFR2 inhibited the regulation role of PGRN on macrophage M2 polarization. CONCLUSIONS: In summary, PGRN promotes macrophage M2 polarization through binding to TNFR2 in both pro- and anti-inflammatory periodontal microenvironments.


Subject(s)
Cell Polarity , Macrophages , Periodontitis , Progranulins , Receptors, Tumor Necrosis Factor, Type II , Periodontitis/metabolism , Periodontitis/pathology , Macrophages/metabolism , Humans , Animals , Receptors, Tumor Necrosis Factor, Type II/metabolism , Progranulins/metabolism , Mice , RAW 264.7 Cells , Gingiva/metabolism , Gingiva/pathology , Male , Female , Adult , Macrophage Activation , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL
5.
J Periodontal Res ; 59(2): 299-310, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38014515

ABSTRACT

BACKGROUND: Numerous studies have proposed that periodontitis is a potential risk factor for Alzheimer's disease. However, the association between periodontitis and brain normal cognition in aged and elderly individuals (NCs) is unclear. Such a link could provide clues to Alzheimer's disease development and strategies for early prevention. OBJECTIVE: To explore the associations between periodontal condition and metrics of both brain structure and function among NCs with the help of multimodal magnetic resonance imaging (MRI). METHODS: High-resolution T1-weighted structural data, resting-state functional-MRI data, and measures of periodontal condition were collected from 40 NCs. Cortical volume, thickness, and area as well as regional homogeneity were calculated with the aid of DPABISurf software. Correlation analyses were then conducted between each imaging metric and periodontal index. RESULTS: Consistent negative correlations were observed between severity of periodontitis (mild, moderate, severe) and cortical volume, area, and thickness, not only in brain regions that took charge of primary function but also in brain regions associated with advanced cognition behavior. Among participants with mild attachment loss (AL) and a shallow periodontal pocket depth (PPD), periodontal index was positively correlated with most measures of brain structure and function, while among participants with severe AL and deep PPD, periodontal index was negatively correlated with measures of brain structure and function (all p < .005 for each hemisphere). CONCLUSIONS: Our results demonstrate that periodontitis is associated with widespread changes in brain structure and function among middle-aged and elderly adults without signs of cognitive decline, which might be a potential risk factor for brain damage.


Subject(s)
Alzheimer Disease , Periodontal Diseases , Periodontitis , Aged , Adult , Middle Aged , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Periodontitis/complications , Periodontitis/diagnostic imaging , Periodontitis/pathology , Cognition , Brain/diagnostic imaging , Brain/pathology , Periodontal Diseases/pathology
6.
J Periodontal Res ; 59(3): 512-520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38243688

ABSTRACT

BACKGROUND: Periodontitis is a chronic inflammatory disease defined by the pathologic loss of the periodontal ligament and alveolar bone in relation to aging. Although clinical cohort studies reported that periodontitis is significantly elevated in males compared to females, emerging evidence indicates that females with dementia are at a greater risk for periodontitis and decreased alveolar bone. OBJECTIVE: This study aimed to evaluate whether dementia is a potential sex-dependent risk factor for periodontal bone loss using an experimental model of periodontitis induced in the triple transgenic (3x-Tg) dementia-like mice and clinical samples collected from senior 65 plus age patients with diagnosed dementia. MATERIALS AND METHODS: We induced periodontitis in dementia-like triple-transgenic (3x-Tg) male and female mice and age-matched wild-type (WT) control mice by ligature placement. Then, alveolar bone loss and osteoclast activity were evaluated using micro-CT and in situ imaging assays. In addition, we performed dental examinations on patients with diagnosed dementia. Finally, dementia-associated Aß42 and p-Tau (T181) and osteoclastogenic receptor activator of nuclear factor kappa-Β ligand (RANKL) in gingival crevicular fluid (GCF) collected from mice and clinical samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Alveolar bone loss and in situ osteoclast activity were significantly elevated in periodontal lesions of 3x-Tg females but not males, compared to wild-type control mice. In addition, we also observed that the probing pocket depth (PPD) was also significantly elevated in female patients with dementia. Using ELISA assay, we observed that females had elevated levels of osteoclastogenic RANKL and dementia-associated Aß42 and p-Tau (T181) in the GCF collected from experimental periodontitis lesions and clinical samples. CONCLUSION: Altogether, we demonstrate that females with dementia have an increased risk for periodontal bone loss compared to males.


Subject(s)
Alveolar Bone Loss , Dementia , Disease Models, Animal , Mice, Transgenic , Periodontitis , RANK Ligand , Animals , Female , Alveolar Bone Loss/pathology , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/metabolism , Male , Mice , Dementia/etiology , Humans , Aged , RANK Ligand/analysis , RANK Ligand/metabolism , Sex Factors , Periodontitis/complications , Periodontitis/pathology , X-Ray Microtomography , Osteoclasts/pathology , Amyloid beta-Peptides/metabolism , Gingival Crevicular Fluid/chemistry , Peptide Fragments/analysis , Risk Factors
7.
J Periodontal Res ; 59(3): 565-575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38240289

ABSTRACT

BACKGROUND AND OBJECTIVE: Clinical studies found high levels of hepatocyte growth factor (HGF) expression in patients with periodontitis. Studies suggest that HGF plays an important role in periodontitis, is involved in inflammation, and modulates alveolar bone integrity in periodontitis. This study aims to investigate the effects and mechanisms of HGF in the progression of experimental periodontitis. METHODS: We used silk thread ligation to induce periodontitis in HGF-overexpressing transgenic (HGF-Tg) and wild-type C57BL/6J mice. The effects of HGF overexpression on alveolar bone destruction were assessed by microcomputed tomography imaging at baseline and on days 7, 14, 21, and 28. We analyzed the cytokines (IL-6 and TNF-α) and lymphocytes in periodontitis tissues by enzyme-linked immunosorbent assay and flow cytometry. The effects of HGF on alveolar bone destruction were further tested by quantifying the systemic bone metabolism markers CTXI and PINP and by RNA sequencing for the signaling pathways involved in bone destruction. Western blotting and immunohistochemistry were performed to further elucidate the involved signaling pathways. RESULTS: We found that experimental periodontitis increased HGF production in periodontitis tissues; however, the effects of HGF overexpression were inconsistent with disease progression. In the early stage of periodontitis, periodontal inflammation and alveolar bone destruction were significantly lower in HGF-Tg mice than in wild-type mice. In the late stage, HGF-Tg mice showed higher inflammatory responses and progressively aggravated bone destruction with continued stimulation of inflammation. We identified the IL-17/RANKL/TRAF6 pathway as a signaling pathway involved in the HGF effects on the progression of periodontitis. CONCLUSION: HGF plays divergent effects in the progression of experimental periodontitis and accelerates osteoclastic activity and bone destruction in the late stage of inflammation.


Subject(s)
Alveolar Bone Loss , Hepatocyte Growth Factor , Mice, Inbred C57BL , Mice, Transgenic , Periodontitis , X-Ray Microtomography , Animals , Hepatocyte Growth Factor/metabolism , Periodontitis/metabolism , Periodontitis/pathology , Mice , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Disease Models, Animal , Disease Progression , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Signal Transduction , Male , Enzyme-Linked Immunosorbent Assay
8.
J Immunol ; 208(5): 1146-1154, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35110422

ABSTRACT

Porphyromonas gingivalis is commonly known as one of the major pathogens contributing to periodontitis, and its persistent infection may increase the risk for the disease. The proinflammatory mediators, including IL-6, TNF-α, and cyclooxygenase-2 (COX-2)/PGE2, are closely associated with progression of periodontitis. In this study, we focused on the cysteine protease "gingipains," lysine-specific gingipain, arginine-specific gingipain (Rgp) A, and RgpB, produced by P. gingivalis, and used the wild-type strain and several gene-deletion mutants (rgpA, rgpB, kgp, and fimA) to elucidate the involvement of gingipains in COX-2 expression and PGE2 production. We infected human monocytes, which are THP-1 cells and primary monocytes, with these bacterial strains and found that gingipains were involved in induction of COX-2 expression and PGE2 production. We have shown that the protease activity of gingipains was crucial for these events by using gingipain inhibitors. Furthermore, activation of ERK1/2 and IκB kinase was required for gingipain-induced COX-2 expression/PGE2 production, and these kinases activated two transcription factors, c-Jun/c-Fos (AP-1) and NF-κB p65, respectively. In particular, these data suggest that gingipain-induced c-Fos expression via ERK is essential for AP-1 formation with c-Jun, and activation of AP-1 and NF-κB p65 plays a central role in COX-2 expression/PGE2 production. Thus, we show the (to our knowledge) novel finding that gingipains with the protease activity from P. gingivalis induce COX-2 expression and PGE2 production via activation of MEK/ERK/AP-1 and IκB kinase/NF-κB p65 in human monocytes. Hence it is likely that gingipains closely contribute to the inflammation of periodontal tissues.


Subject(s)
Cyclooxygenase 2/biosynthesis , Dinoprostone/biosynthesis , Gingipain Cysteine Endopeptidases/metabolism , MAP Kinase Signaling System/physiology , Periodontitis/pathology , Porphyromonas gingivalis/metabolism , Bacterial Proteins/genetics , Cell Line , Cysteine Endopeptidases/genetics , Fimbriae Proteins/genetics , Gingipain Cysteine Endopeptidases/genetics , Humans , I-kappa B Kinase/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Monocytes/microbiology , Periodontitis/microbiology , THP-1 Cells , Transcription Factor AP-1/metabolism , Transcription Factor RelA/metabolism
9.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727958

ABSTRACT

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Subject(s)
Dual-Specificity Phosphatases , Inflammation , Lipopolysaccharides , MicroRNAs , Periodontal Ligament , Stem Cells , p38 Mitogen-Activated Protein Kinases , Humans , Cell Survival/genetics , Cell Survival/drug effects , Cells, Cultured , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Signal Transduction/genetics , Stem Cells/metabolism
10.
J Clin Periodontol ; 51(2): 196-208, 2024 02.
Article in English | MEDLINE | ID: mdl-38088448

ABSTRACT

AIM: To reveal the cellular composition and molecular environment of the periodontal and peri-implant inflammatory infiltrates through a single-cell sequencing technique, which may explain the pathological difference between these two diseases. A special focus was placed on the phenotypes and potential roles of neutrophils and fibroblasts in peri-implant/periodontal tissue immunity. MATERIALS AND METHODS: High-throughput single-cell transcriptomic profiling of peri-implant tissues from patients with peri-implantitis as well as periodontal tissues from patients with periodontitis and healthy donors was performed. Immunofluorescence analysis was carried out to further validate the identified cell subtypes and their involvement in peri-implantitis and periodontitis. RESULTS: Based on our single-cell resolution analysis, a quantified proportional increase of neutrophil (Neu) subtypes was shown in peri-implantitis. Among these, a predominance of Neutro_CXCR2 was revealed. We also found the involvement of inflammation-promoting fibroblasts as well as a predominance of CXCL8+ fibroblast-CXCR2+ neutrophil interaction in peri-implantitis. CONCLUSIONS: Our study indicated that the predominance of CXCL8+ fibroblast-CXCR2+ neutrophil interaction might underline the enhanced host response in peri-implantitis compared with periodontitis. This information offers a molecular basis by which fibroblast and neutrophil subtypes might be diagnostically and therapeutically targeted in peri-implantitis.


Subject(s)
Dental Implants , Peri-Implantitis , Periodontitis , Humans , Neutrophils , Inflammation , Periodontitis/pathology , Fibroblasts
11.
Alzheimers Dement ; 20(3): 2191-2208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278517

ABSTRACT

INTRODUCTION: We examined the association of clinical, microbiological, and host response features of periodontitis with MRI markers of atrophy/cerebrovascular disease in the Washington Heights Inwood Columbia Aging Project (WHICAP) Ancillary Study of Oral Health. METHODS: We analyzed 468 participants with clinical periodontal data, microbial plaque and serum samples, and brain MRIs. We tested the association of periodontitis features with MRI features, after adjusting for multiple risk factors for Alzheimer's disease/Alzheimer's disease-related dementia (AD/ADRD). RESULTS: In fully adjusted models, having more teeth was associated with lower odds for infarcts, lower white matter hyperintensity (WMH) volume, higher entorhinal cortex volume, and higher cortical thickness. Higher extent of periodontitis was associated with lower entorhinal cortex volume and lower cortical thickness. Differential associations emerged between colonization by specific bacteria/serum antibacterial IgG responses and MRI outcomes. DISCUSSION: In an elderly cohort, clinical, microbiological, and serological features of periodontitis were associated with MRI findings related to ADRD risk. Further investigation of causal associations is warranted.


Subject(s)
Alzheimer Disease , Cognitive Aging , Periodontitis , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Periodontitis/diagnostic imaging , Periodontitis/pathology
12.
Odontology ; 112(1): 148-157, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37227552

ABSTRACT

Extracellular matrix metalloproteinase inducer (EMMPRIN) plays critical roles in the regulation of inflammation and bone metabolism. The roles of EMMPRIN signaling in osteoclasts are worthy of deep study. The present study aimed to investigate bone resorption in periodontitis through the intervention of EMMPRIN signaling. The distribution of EMMPRIN in human periodontitis was observed. RANKL-induced osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) were treated with EMMPRIN inhibitor in vitro. Rats with ligation-induced periodontitis were treated with EMMPRIN inhibitor and harvested for microcomputed tomography scanning, histologic observation, immunohistochemistry, and double immunofluorescence analysis. Positive expressions of EMMPRIN could be found in the CD68+-infiltrating cells. Downregulated EMMPRIN restrained osteoclast differentiation of BMMs in vitro, which also inhibited MMP-9 expression (*P < 0.05). In vivo, EMMPRIN inhibitor restrained ligation-induced bone resorption by decreasing tartrate-resistant acid phosphatase-positive osteoclasts. Both EMMPRIN-positive and MMP-9-positive osteoclasts were less common in the EMMPRIN inhibitor groups than in the control groups. Intervention of EMMPRIN signaling in osteoclasts could probably provide a potential therapeutic target for attenuating ligation-induced bone resorption.


Subject(s)
Bone Resorption , Periodontitis , Mice , Rats , Humans , Animals , Osteoclasts , Basigin/analysis , Basigin/metabolism , Matrix Metalloproteinase 9/metabolism , X-Ray Microtomography , Bone Resorption/pathology , Periodontitis/pathology , RANK Ligand , Cell Differentiation
13.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891939

ABSTRACT

Periodontitis, a prevalent inflammatory condition, affects the supporting structures of teeth, leading to significant oral health challenges. Traditional treatments have primarily focused on mechanical debridement, antimicrobial therapy, and surgery, which often fail to restore lost periodontal structures. Emerging as a novel approach in regenerative medicine, extracellular vesicle (EV) therapy, including exosomes, leverages nano-sized vesicles known for facilitating intercellular communication and modulating physiological and pathological processes. This study is a proof-of-concept type that evaluates the clinical efficacy of EV therapy as a non-surgical treatment for stage I-III periodontitis, focusing on its anti-inflammatory and regenerative potential. The research involved seven patients undergoing the therapy, and seven healthy individuals. Clinical parameters, including the plaque index, bleeding on probing, probing depth, and attachment level, were assessed alongside cytokine levels in the gingival crevicular fluid. The study found significant improvements in clinical parameters, and a marked reduction in pro-inflammatory cytokines post-treatment, matching the levels of healthy subjects, underscoring the therapy's ability to not only attenuate inflammation and enhance tissue regeneration, but also highlighting its potential in restoring periodontal health. This investigation illuminates the promising role of EV therapy in periodontal treatment, advocating for a shift towards therapies that halt disease progression and promote structural and functional restoration of periodontal tissues.


Subject(s)
Extracellular Vesicles , Gingival Crevicular Fluid , Inflammation , Periodontitis , Regeneration , Humans , Extracellular Vesicles/metabolism , Female , Periodontitis/therapy , Periodontitis/metabolism , Periodontitis/pathology , Male , Adult , Middle Aged , Inflammation/therapy , Inflammation/metabolism , Inflammation/pathology , Gingival Crevicular Fluid/metabolism , Cytokines/metabolism , Treatment Outcome
14.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674094

ABSTRACT

Porphyromonas gingivalis (Pg) and its gingipain proteases contribute to Alzheimer's disease (AD) pathogenesis through yet unclear mechanisms. Cellular secretion of small extracellular vesicles or exosomes (EXO) increases with aging as part of the senescence-associated secretory phenotype (SASP). We have shown that EXO isolated from Pg-infected dendritic cells contain gingipains and other Pg antigens and transmit senescence to bystander gingival cells, inducing alveolar bone loss in mice in vivo. Here, EXO were isolated from the gingiva of mice and humans with/without periodontitis (PD) to determine their ability to penetrate the blood-brain barrier (BBB) in vitro and in vivo. PD was induced by Pg oral gavage for 6 weeks in C57B6 mice. EXO isolated from the gingiva or brain of donor Pg-infected (PD EXO) or control animals (Con EXO) were characterized by NTA, Western blot, and TEM. Gingival PD EXO or Con EXO were labeled and injected into the gingiva of uninfected WT mouse model. EXO biodistribution in brains was tracked by an in vivo imaging system (IVIS) and confocal microscopy. The effect of human PD EXO on BBB integrity and permeability was examined using TEER and FITC dextran assays in a human in vitro 3D model of the BBB. Pg antigens (RGP and Mfa-1) were detected in EXO derived from gingival and brain tissues of donor Pg-infected mice. Orally injected PD EXO from donor mice penetrated the brains of recipient uninfected mice and colocalized with hippocampal microglial cells. IL-1ß and IL-6 were expressed in human PD EXO and not in Con EXO. Human PD EXO promoted BBB permeability and penetrated the BBB in vitro. This is the first demonstration that microbial-induced EXO in the oral cavity can disseminate, cross the BBB, and may contribute to AD pathogenesis.


Subject(s)
Blood-Brain Barrier , Extracellular Vesicles , Gingiva , Periodontitis , Porphyromonas gingivalis , Blood-Brain Barrier/metabolism , Animals , Humans , Mice , Extracellular Vesicles/metabolism , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/pathogenicity , Periodontitis/microbiology , Periodontitis/metabolism , Periodontitis/pathology , Gingiva/metabolism , Gingiva/microbiology , Mice, Inbred C57BL , Male , Exosomes/metabolism , Female , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/metabolism
15.
BMC Oral Health ; 24(1): 571, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755584

ABSTRACT

BACKGROUND: Observational studies have explored the relationships of periodontitis with brain atrophy and cognitive impairment, but these findings are limited by reverse causation, confounders and have reported conflicting results. Our study aimed to investigate the causal associations of periodontitis with brain atrophy and cognitive impairment through a comprehensive bidirectional Mendelian randomization (MR) research. METHODS: We incorporated two distinct genome-wide association study (GWAS) summary datasets as an exploration cohort and a replication cohort for periodontitis. Four and eight metrics were selected for the insightful evaluation of brain atrophy and cognitive impairment, respectively. The former involved cortical thickness and surface area, left and right hippocampal volumes, with the latter covering assessments of cognitive performance, fluid intelligence scores, prospective memory, and reaction time for mild cognitive impairment to Alzheimer's disease (AD), Lewy body dementia, vascular dementia and frontotemporal dementia for severe situations. Furthermore, supplementary analyses were conducted to examine the associations between the longitudinal rates of change in brain atrophy and cognitive function metrics with periodontitis. The main analysis utilized the inverse variance weighting (IVW) method and evaluated the robustness of the results through a series of sensitivity analyses. For multiple tests, associations with p-values < 0.0021 were considered statistically significant, while p-values ≥ 0.0021 and < 0.05 were regarded as suggestive of significance. RESULTS: In the exploration cohort, forward and reverse MR results revealed no causal associations between periodontitis and brain atrophy or cognitive impairment, and only a potential causal association was found between AD and periodontitis (IVW: OR = 0.917, 95% CI from 0.845 to 0.995, P = 0.038). Results from the replication cohort similarly corroborated the absence of a causal relationship. In the supplementary analyses, the longitudinal rates of change in brain atrophy and cognitive function were also not found to have causal relationships with periodontitis. CONCLUSIONS: The MR analyses indicated a lack of substantial evidence for a causal connection between periodontitis and both brain atrophy and cognitive impairment.


Subject(s)
Atrophy , Brain , Cognitive Dysfunction , Genome-Wide Association Study , Mendelian Randomization Analysis , Periodontitis , Humans , Periodontitis/genetics , Periodontitis/complications , Periodontitis/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Brain/pathology , Brain/diagnostic imaging , Male , Female , Aged
16.
BMC Oral Health ; 24(1): 493, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671416

ABSTRACT

BACKGROUND: Various immune mediators have a role in the progression of periodontitis. Placental Growth Factor (PLGF) is important during pregnancy and also is involved in the pathology of several diseases. Hence, this study aimed to evaluate salivary PLGF in health and periodontitis that seemingly has not been reported earlier. METHODS: Fifty participants were grouped as healthy and periodontitis patients. Clinical history, periodontal parameters [Plaque Index (PI), Gingival Index (GI), probing pocket depth (PPD), clinical attachment loss (CAL), bleeding on probing (BoP)] were recorded; saliva was collected and PLGF was estimated using a commercially available ELISA kit. The data were statistically analyzed using Shapiro-Wilk's test, Kruskal-Wallis test, Dunn's post hoc test with Bonferroni correction, and Spearman's rank-order correlation coefficient. The significance level was set at p ≤ 0.05 for all tests. RESULTS: Salivary PLGF levels comparison between the two groups showed no significant difference between both groups. Quantitatively, females had higher salivary PLGF levels than males. No significant association was observed between salivary PLGF levels and the severity of periodontitis. The periodontitis group showed statistically significant correlations between salivary PLGF levels, BoP(p = 0.005) and PPD(p = 0.005), and significant correlations of PLGF with PPD (p = 0.035) for both groups. CONCLUSIONS: PLGF can be detected and measured in the saliva of healthy individuals and periodontitis patients. However, the role of PLGF in periodontal pathology needs to be further confirmed based on their salivary levels.


Subject(s)
Periodontal Index , Periodontitis , Placenta Growth Factor , Saliva , Humans , Placenta Growth Factor/metabolism , Placenta Growth Factor/analysis , Female , Saliva/chemistry , Saliva/metabolism , Male , Adult , Periodontitis/metabolism , Periodontitis/pathology , Case-Control Studies , Middle Aged , Enzyme-Linked Immunosorbent Assay
17.
Infect Immun ; 91(2): e0031922, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36648232

ABSTRACT

Increased prevalence and abundance of Selenomonas sputigena have been associated with periodontitis, a chronic inflammatory disease of tooth-supporting tissues, for more than 50 years. Over the past decade, molecular surveys of periodontal disease using 16S and shotgun metagenomic sequencing approaches have confirmed the disease association of classically recognized periodontal pathogens such as Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia while highlighting previously underappreciated organisms such as Filifactor alocis and S. sputigena. Despite abundant clinical association between S. sputigena and periodontal disease, we have little to no understanding of its pathogenic potential, and virulence mechanisms have not been studied. In this study, we sought to characterize the response of gingival epithelial cells to infection with S. sputigena. Here, we show that S. sputigena attaches to gingival keratinocytes and induces expression and secretion of cytokines and chemokines associated with inflammation and leukocyte recruitment. We demonstrate that S. sputigena induces signaling through Toll-like receptor 2 (TLR2) and TLR4 but evades activation of TLR5. Cytokines released from S. sputigena-infected keratinocytes induced monocyte and neutrophil chemotaxis. These results show that S. sputigena-host interactions have the potential to contribute to bacterially driven inflammation and tissue destruction, the hallmark of periodontitis. Characterization of previously unstudied pathogens may provide novel approaches to develop therapeutics to treat or prevent periodontal disease.


Subject(s)
Periodontal Diseases , Periodontitis , Humans , Inflammation , Periodontitis/pathology , Porphyromonas gingivalis/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism
18.
J Cell Physiol ; 238(11): 2679-2691, 2023 11.
Article in English | MEDLINE | ID: mdl-37842869

ABSTRACT

Periodontitis is proposed as a risk factor for preterm delivery, fetal growth restriction, and preeclampsia with severe consequences for maternal and neonatal health, but the biological mechanisms involved are elusive. Porphyromonas gingivalis gain access to the placental bed and impair trophoblast cell function, as assessed in murine and human pregnancy, suggesting a pathogenic role in adverse pregnancy and neonatal outcomes. P. gingivalis releases outer membrane vesicles (P. gingivalis OMV) during growth that spread to distant tissues and are internalized in host cells as described in metabolic, neurological, and vascular systemic diseases. Here we tested the hypothesis that P. gingivalis OMV internalized in trophoblast cells disrupt their metabolism leading to trophoblast and placenta dysfunction and adverse pregnancy outcomes. An in vitro design with human trophoblast cells incubated with P. gingivalis OMV was used together with ex vivo and in vivo approaches in pregnant mice treated with P. gingivalis OMV. P. gingivalis OMV modulated human trophoblast cell metabolism by reducing glycolytic pathways and decreasing total reactive oxygen species with sustained mitochondrial activity. Metabolic changes induced by P. gingivalis OMV did not compromise cell viability; instead, it turned trophoblast cells into a metabolic resting state where central functions such as migration and invasion were reduced. The effects of P. gingivalis OMV on human trophoblast cells were corroborated ex vivo in mouse whole placenta and in vivo in pregnant mice: P. gingivalis OMV reduced glycolytic pathways in the placenta and led to lower placental and fetal weight gain in vivo with reduced placental expression of the glucose transporter GLUT1. The present results point to OMV as a key component of P. gingivalis involved in adverse pregnancy outcomes, and even more, unveil a metabolic cue in the deleterious effect of P. gingivalis OMV on trophoblast cells and mouse pregnancy, providing new clues to understand pathogenic mechanisms in pregnancy complications and other systemic diseases.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Pregnancy , Female , Mice , Animals , Humans , Porphyromonas gingivalis/metabolism , Trophoblasts/pathology , Pregnancy Outcome , Placenta/pathology , Periodontitis/pathology
19.
J Cell Physiol ; 238(5): 1036-1045, 2023 05.
Article in English | MEDLINE | ID: mdl-36922748

ABSTRACT

Periodontitis is a chronic immune inflammatory disease that can lead to the destruction and loss of the tooth-supporting apparatus. During this process, the balance between bone absorption mediated by osteoclasts and bone formation mediated by osteoblasts is damaged. Consistent with previous studies, we observed that depletion of cylindromatosis (CYLD) resulted in an osteoporotic bone phenotype. However, the effect of CYLD deficiency on periodontitis is undetermined. Here, we investigated whether CYLD affects periodontal tissue homeostasis in experimental periodontitis in Cyld knockout (KO) mice, and we explored the underlying mechanisms. Interestingly, we discovered significant alveolar bone density loss and severely reduced alveolar bone height in Cyld KO mice with experimentally induced periodontitis. We observed increased osteoclast number and activity in both the femurs and alveolar bones, accompanied by the downregulation of osteogenesis genes and upregulation of osteoclastogenesis genes of alveolar bones in ligatured Cyld KO mice. Taken together, our findings demonstrate that the deletion of CYLD in mice plays a vital role in the pathogenesis of periodontal bone loss and suggest that CYLD might exert an ameliorative effect on periodontal inflammatory responses.


Subject(s)
Alveolar Bone Loss , Periodontitis , Mice , Animals , Alveolar Bone Loss/genetics , Osteogenesis , Osteoclasts/pathology , Periodontitis/genetics , Periodontitis/pathology , Bone and Bones/pathology , Deubiquitinating Enzyme CYLD/genetics
20.
Hum Mol Genet ; 30(12): 1154-1159, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33772543

ABSTRACT

Periodontitis is a common inflammatory disease characterized by a complex etiology, which is the result of a combination of genetic and environmental factors. Genetic variants linked to the periodontitis disease were already investigated, however, little was known regarding the severity of this disease. Recently, long runs of homozygosity (ROH) were associated with several multifactorial diseases. Therefore, in our work, we tried to assess the role of ROH and periodontitis status. We found an association between the excess of homozygosity owing to ROH and staging of periodontitis. More in detail, the total amount of homozygosity owing to ROH is positively associated with an increased severity of periodontitis (P = 0.0001). Regression tree analysis showed the impact of ROH burden in discriminating individuals with mild periodontitis stages I and II and periodontitis stages III and IV (P < 0.001). Furthermore, ROH mapping highlights several regions associated with a severe status of periodontitis (odds ratio > 1). Among them, we found a total of 33 genes. Interestingly, some of these genes were previously associated with granulocyte or platelet measures, both linked to the onset and the progression of periodontal disease. Our results suggest the not only single variants association test could help to risk assessment but even individual genomic features; furthermore, our ROH mapping highlighted the possible role of multiple genes in periodontal development.


Subject(s)
Genetic Predisposition to Disease , Homozygote , Inflammation/genetics , Periodontitis/genetics , Adult , Female , Genetic Association Studies , Genome, Human/genetics , Genomics , Genotype , Humans , Inflammation/pathology , Male , Middle Aged , Periodontitis/classification , Periodontitis/pathology , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL