Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Virol ; 97(2): e0171222, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36651745

ABSTRACT

The pathogenic mechanisms of peste des petits ruminants virus (PPRV) infection remain poorly understood, leaving peste des petits ruminants (PPR) control and eradication especially difficult. Here, we determined that PPRV nucleocapsid (N) protein triggers formation of stress granules (SGs) to benefit viral replication. A mass spectrometry-based profiling of the interactome of PPRV N protein revealed that PPRV N protein interacted with protein kinase R (PKR)-activating protein (PACT), and this interaction was confirmed in the context of PPRV infection. PACT was essential for PPRV replication. Besides, the ectopic expression of N activated the PKR/eIF2α (α subunit of eukaryotic initiation factor 2) pathway through induction of PKR phosphorylation, but it did not induce PKR phosphorylation in PACT-deficient (PACT-/-) cells. PPRV N interacted with PACT, impairing the interaction between PACT and a PKR inhibitor, transactivation response RNA-binding protein (TRBP), which subsequently enhanced the interaction between PACT and PKR and thus promoted the activation of PKR and eIF2α phosphorylation, resulting in formation of stress granules (SGs). Consistently, PPRV infection induced SG formation through activation of the PKR/eIF2α pathway, and knockdown of N impaired PPRV-induced SG formation. PPRV-induced SG formation significantly decreased in PACT-/- cells as well. The role of SG formation in PPRV replication was subsequently investigated, which showed that SG formation plays a positive role in PPRV replication. By using an RNA fluorescence in situ hybridization assay, we found that PPRV-induced SGs hid cellular mRNA rather than viral mRNA. Altogether, our data provide the first evidence that PPRV N protein plays a role in modulating the PKR/eIF2α/SG axis and promotes virus replication through targeting PACT. IMPORTANCE Stress granule (SG) formation is a conserved cellular strategy to reduce stress-related damage regulating cell survival. A mass spectrometry-based profiling of the interactome of PPRV N protein revealed that PPRV N interacted with PACT to regulate the assembly of SGs. N protein inhibited the interaction between PACT and a PKR inhibitor, TRBP, through binding to the M1 domain of PACT, which enhanced the interaction between PACT and PKR and thus promoted PKR activation and subsequent eIF2α phosphorylation as well as SG formation. The regulatory function of N protein was strikingly abrogated in PACT-/- cells. SGs induced by PPRV infection through the PKR/eIF2α pathway are PACT dependent. The loss-of-function assay indicated that PPRV-induced SGs were critical for PPRV replication. We concluded that the PPRV N protein manipulates the host PKR/eIF2α/SG axis to favor virus replication.


Subject(s)
Nucleocapsid Proteins , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , RNA-Binding Proteins , Stress Granules , Virus Replication , Animals , Humans , In Situ Hybridization, Fluorescence , Nucleocapsid Proteins/metabolism , Peste-des-Petits-Ruminants/physiopathology , Peste-des-petits-ruminants virus/physiology , Protein Kinases/metabolism , RNA-Binding Proteins/metabolism , Stress Granules/metabolism , Virus Replication/genetics
2.
Trop Anim Health Prod ; 56(8): 290, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331161

ABSTRACT

Peste des petits ruminants (PPR) is an economically important highly serious transboundary disease that mainly occurs in small ruminants such as sheep and goats. The aim of this study was to identify the probability of risk and and space-time clusters of Peste des Petits Ruminants (PPR) in Türkiye. The occurrence of PPR in Türkiye from 2017 to 2019 was investigated in this study using spatial analysis based on geographic information system (GIS). Between these dates, it was determined that 337 outbreaks and 18,467 cases. The highest number of outbreaks were detected in the Central Anatolia region. It was determined that PPR is seen more intensely in sheep compared to goats in Türkiye. In this study, 34 environmental variables (19 bioclimatic, 12 precipitation, altitude and small livestock density variables) were used to explore the environmental influences on PPR outbreak by maximum entropy modeling (Maxent). The clusters of PPR in Türkiye were identified using the retrospective space-time scan data that were computed using the space-time permutation model. A PPR prediction model was created using data on PPR outbreaks combination with environmental variables. Nineteen significant (p < 0.001) space-time clusters were determined. It was discovered that the variables altitude, sheep density, precipitation in june, and average temperature in the warmest season made important contributions to the model and the PPR outbreak may be strongly related with these variables. In this study, PPR in Türkiye has been characterized significantly spatio-temporal and enviromental factors. In this context, the disease pattern and obtained these findings will contribute to policymakers in the prevention and control of the disease.


Subject(s)
Disease Outbreaks , Goat Diseases , Goats , Peste-des-Petits-Ruminants , Sheep Diseases , Animals , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/virology , Goat Diseases/epidemiology , Goat Diseases/virology , Sheep Diseases/epidemiology , Sheep Diseases/virology , Sheep , Disease Outbreaks/veterinary , Turkey/epidemiology , Space-Time Clustering , Spatio-Temporal Analysis , Retrospective Studies , Peste-des-petits-ruminants virus/physiology , Geographic Information Systems , Entropy , Cluster Analysis
3.
J Immunol ; 206(3): 566-579, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33380495

ABSTRACT

Peste des petits ruminants virus (PPRV) is a Morbillivirus that causes highly contagious and severe disease in various ruminants. PPRV infection leads to a severe inhibition of host antiviral immune response. Our previous study demonstrated that PPRV V protein blocks IFN response by targeting STAT proteins. In the current study, we identified the phosphoprotein (P) as a novel antagonistic factor of PPRV to counteract host antiviral innate immune response. PPRV P protein significantly suppressed RIG-I-like receptor pathway signaling and impaired IFN-ß and ISGs expression by targeting IFN regulatory factor (IRF)3 in both human embryonic kidney 293T cells and primary goat fibroblasts. The 1-102 region of P protein was critical for the antagonistic function of P protein. P protein interacted with IRF association domain (IAD) of IRF3 to block the interaction between TBK1 and IRF3. The interaction between TBK1 and the IAD of IRF3 is responsible for triggering the phosphorylation of IRF3. P protein competed with TBK1 to bind to the IAD of IRF3 that contributed to the decreased phosphorylation of IRF3, which, in turn, interfered with the dimerization of IRF3 and blocked IRF3 nuclear transportation. Besides, we also found that P protein interacted with IRF5 and IRF8. However, the involved mechanism remains unknown. Taken together, our results reveal a novel mechanism by which PPRV P protein antagonizes host antiviral innate immune response by interacting with the transcription factor IRF3, thereby inhibiting the type I IFN production and promoting viral replication.


Subject(s)
DEAD Box Protein 58/metabolism , Fibroblasts/physiology , Interferon Regulatory Factor-3/metabolism , Peste-des-Petits-Ruminants/immunology , Peste-des-petits-ruminants virus/physiology , Phosphoproteins/metabolism , Viral Proteins/metabolism , Animals , Cells, Cultured , Goats , Humans , Immune Evasion , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Signal Transduction , Virus Replication
4.
Vet Res ; 53(1): 89, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307867

ABSTRACT

Peste des petits ruminants (PPR) is an acute and highly contagious disease and has long been a significant threat to small ruminant productivity worldwide. However, the molecular mechanism underlying host-PPRV interactions remains unclear and the long noncoding RNAs (lncRNAs) regulation of PPR virus (PPRV) infection has rarely been reported so far. Here, we first demonstrated that PPRV infection can induce an obvious innate immune response in caprine endometrial epithelial cells (EECs) at 48 h post-infection (hpi) with an MOI of 3. Subsequently, we determined that PPRV infection is associated with 191 significantly differentially expressed (SDE) lncRNAs, namely, 137 upregulated and 54 downregulated lncRNAs, in caprine EECs compared with mock control cells at 48 hpi by using deep sequencing technology. Importantly, bioinformatics preliminarily analyses revealed that these DE lncRNAs were closely related to the immune response. Furthermore, we identified a system of lncRNAs related to the immune response and focused on the role of lncRNA 10636385 (IRF1-AS) in regulating the innate immune response. Interestingly, we found that IRF1-AS was a potent positive regulator of IFN-ß and ISG production, which can significantly inhibit PPRV replication in host cells. In addition, our data revealed that IRF1-AS was positively correlated with its potential target gene, IRF1, which enhanced the activation of IRF3 and the expression of ISGs and interacted with IRF3. This study suggests that IRF1-AS could be a new host factor target for developing antiviral therapies against PPRV infection.


Subject(s)
Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , RNA, Long Noncoding , Animals , Peste-des-Petits-Ruminants/genetics , RNA, Long Noncoding/genetics , Goats/genetics , Peste-des-petits-ruminants virus/physiology , Interferon-beta
5.
J Virol ; 93(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31167907

ABSTRACT

Peste des petits ruminants virus (PPRV) is the etiological agent of peste des petits ruminants, causing acute immunosuppression in its natural hosts. However, the molecular mechanisms by which PPRV antagonizes the host immune responses have not been fully characterized. In particular, how PPRV suppresses the activation of the host RIG-I-like receptor (RLR) pathway has yet to be clarified. In this study, we demonstrated that PPRV infection significantly suppresses RLR pathway activation and type I interferon (IFN) production and identified PPRV N protein as an extremely important antagonistic viral factor that suppresses beta interferon (IFN-ß) and IFN-stimulated gene (ISG) expression. A detailed analysis showed that PPRV N protein inhibited type I IFN production by targeting interferon regulatory factor 3 (IRF3), a key molecule in the RLR pathway required for type I IFN induction. PPRV N protein interacted with IRF3 (but not with other components of the RLR pathway, including MDA5, RIG-I, VISA, TBK1, and MITA) and abrogated the phosphorylation of IRF3. As expected, PPRV N protein also considerably impaired the nuclear translocation of IRF3. The TBK1-IRF3 interaction was involved significantly in IRF3 phosphorylation, and we showed that PPRV N protein inhibits the association between TBK1 and IRF3, which in turn inhibits IRF3 phosphorylation. The amino acid region 106 to 210 of PPRV N protein was determined to be essential for suppressing the nuclear translocation of IRF3 and IFN-ß production, and the 140 to 400 region of IRF3 was identified as the crucial region for the N-IRF3 interaction. Together, our findings demonstrate a new mechanism evolved by PPRV to inhibit type I IFN production and provide structural insights into the immunosuppression caused by PPRV.IMPORTANCE Peste des petits ruminants is a highly contagious animal disease affecting small ruminants, which threatens both small livestock and endangered susceptible wildlife populations in many countries. The causative agent, peste des petits ruminants virus (PPRV), often causes acute immunosuppression in its natural hosts during infection. Here, for the first time, we demonstrate that N protein, the most abundant protein of PPRV, plays an extremely important role in suppression of interferon regulatory factor 3 (IRF3) function and type I interferon (IFN) production by interfering with the formation of the TBK1-IRF3 complex. This study explored a novel antagonistic mechanism of PPRV.


Subject(s)
Host-Pathogen Interactions , Interferon Regulatory Factor-3/metabolism , Interferon-beta/biosynthesis , Nucleocapsid Proteins/metabolism , Peste-des-Petits-Ruminants/metabolism , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/physiology , Animals , Immunomodulation , Interferon-beta/genetics , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Protein Transport , Transcriptional Activation
6.
Microb Pathog ; 140: 103949, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31875517

ABSTRACT

Peste des petits ruminant (PPR), a highly contagious viral disease of small ruminants, is characterized by erosive stomatitis and pneumo-enteritis. However, its neurovirulence potential as observed with other morbilliviruses has not been fully investigated. The present study describes the neuropathological alterations induced by PPR virus through apoptotic pathway. A total number of 12 carcasses of local breed goat kids of either sex were received for postmortem examination. The clinical history was described as symptoms of mucopurulent nasal discharge, high to low grade fever, erosive stomatitis, dyspnoea and profuse watery diarrhoea followed by mortality of 35 goat kids within a week. The pathoanatomical lesions and immunohistochemical demonstration of PPRV antigen in lungs, intestine, spleen and lymph nodes confirmed PPR disease in goats. Grossly, five brain specimens showed moderate to severe leptomeningeal congestion during necropsy. Microscopically, brain sections showed leptomeningitis and nonsuppurative encephalitis characterized by vascular congestion, haemorrhages in the parenchyma, perivascular cuffing with mild to moderate mononuclear cells (mainly lymphocytes and few macrophages), focal to diffuse microgliosis, neuronal degeneration, satellitosis and neuronophagia. Immunolabelling of viral antigen was observed in the cytoplasm of neurons and glial cells. The RT-PCR amplification of N gene fragment also confirmed the presence of PPRV in the brain. The strong immunoreactivity of Caspase-3, Caspase-8 and comparatively lower expression of caspase-9 along with the absence of any reactivity for Apaf-1 antigen in the brain sections indicated the role of caspase dependent extrinsic pathway in inducing neuropathological changes. The presence of apoptotic neurons in the brain by TUNEL assay further confirmed the apoptosis and strong immunoreactivity of iNOS in neurons which suggested the generation of oxidative stress, that might have induced the apoptosis. The overall findings confirm the neurovirulence potential of PPR virus, via the extrinsic pathway of apoptosis, in natural cases of PPR disease in goat kids.


Subject(s)
Caspases/metabolism , Goat Diseases/enzymology , Peste-des-Petits-Ruminants/enzymology , Animals , Apoptosis , Brain/enzymology , Brain/pathology , Brain/virology , Caspases/genetics , Female , Goat Diseases/pathology , Goat Diseases/physiopathology , Goat Diseases/virology , Goats , Lung/enzymology , Lung/pathology , Lung/virology , Male , Neuropathology , Peste-des-Petits-Ruminants/pathology , Peste-des-Petits-Ruminants/physiopathology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/physiology , Spleen/enzymology , Spleen/pathology , Spleen/virology
7.
Virus Genes ; 55(1): 68-75, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30511208

ABSTRACT

Peste-des-petits-ruminants is a highly contagious and fatal disease of goats and sheep caused by non-segmented, negative strand RNA virus belonging to the Morbillivirus genus-Peste-des-petits-ruminants virus (PPRV) which is evolutionarily closely related to Rinderpest virus (RPV). The large protein 'L' of the members of this genus is a multifunctional catalytic protein, which transcribes and replicates the viral genomic RNA as well as possesses mRNA capping, methylation and polyadenylation activities; however, the detailed mechanism of mRNA capping by PPRV L protein has not been studied. We have found earlier that the L protein of RPV has RNA triphosphatase (RTPase), guanylyltransferase (GTase) and methyltransferase activities, and unlike vesicular stomatitis virus (VSV), follows the conventional pathway of mRNA capping. In the present work, using a 5'-end labelled viral RNA as substrate, we demonstrate that PPRV L protein has RTPase activity when present in the ribonucleoprotein complex of purified virus as well as recombinant L-P complex expressed in insect cells. Further, a minimal domain in the C-terminal region (aa1640-1840) of the L protein has been expressed in E. coli and shown to exhibit RTPase activity. The RTPase activity of PPRV L protein is metal-dependent and functions with a divalent cation, either magnesium or manganese. In addition, RTPase associated nucleotide triphosphatase activity (NTPase) of PPRV L protein is also demonstrated. This work provides the first detailed study of RTPase activity and identifies the RTPase domain of PPRV L protein.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/physiology , RNA Caps/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viral Proteins/metabolism , Animals , Baculoviridae/genetics , Chlorocebus aethiops , Cloning, Molecular , Enzyme Activation , Gene Expression , Genetic Vectors/genetics , Vero Cells
8.
Trop Anim Health Prod ; 51(7): 1807-1815, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31228086

ABSTRACT

Mortality of domestic small ruminants caused by contagious caprine pleuropneumonia (CCPP) and Peste des petits ruminants (PPR) is frequently reported in Tanzania. A cross-sectional survey was conducted between June, 2016 and July, 2017 to identify risk factors for small ruminants exposure to Mycoplasma capricolum subsp. capripneumoniae (M. capripneumoniae), the causative agent of CCPP, and small ruminant morbillivirus (SRMV), the causative agent of PPR. Antibody detection was done using competitive enzyme-linked immunosorbent assays (cELISA); similarly, a semi-structured questionnaire was administered in flocks where serum samples were collected. Individual seropositivity for M. capripneumoniae was 6.5% (n = 676) and 4.2% (n = 285) in goats and sheep respectively, whereas SRMV was 28.6% in goats (n = 676) and 31.9% in sheep (n = 285). Multivariable analysis indicated that mixing of flocks was a risk factor for exposure to M. capripneumoniae (χ2 = 3.9, df = 1, p = 0.05) and SRMV (χ2 = 6.3, df = 1, p = 0.01) in goats. Age was a protective factor for SRMV seropositivity in both goats (χ2 = 7.4, df = 1, p = 0.006) and sheep (χ2 = 10.2, df = 1, p = 0.006). SRMV seropositivity in goats was also influenced by grazing in contact with wild animals (χ2 = 5.9, df = 1, p = 0.02) and taking animals to the animal markets (χ2 = 8.2, df = 1, p = 0.004). M. capripneumoniae and SRMV are influenced by several risk factors and their control needs concerted efforts between stakeholders, which may include community involvement in mandatory vaccination and animals' movement control.


Subject(s)
Goat Diseases/epidemiology , Mycoplasma capricolum/physiology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-petits-ruminants virus/physiology , Pleuropneumonia, Contagious/epidemiology , Sheep Diseases/epidemiology , Animals , Goats , Risk Factors , Sheep , Tanzania/epidemiology
9.
Virol J ; 15(1): 21, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29357882

ABSTRACT

BACKGROUND: The specific and dynamic interaction between the hemagglutinin (H) and fusion (F) proteins of morbilliviruses is a prerequisite for the conformational rearrangements and membrane fusion during infection process. The two heptad repeat regions (HRA and HRB) of F protein are both important for the triggering of F protein. METHODS: In this study, the direct interactions of Peste des petits ruminants virus (PPRV) H with F, HRA and HRB were quantitatively evaluated using biosensor surface plasmon resonance (SPR). RESULTS: The binding affinities of immobilized pCMV-HA-H (HA-H) interacted with proteins pCMV-HA-F (HA-F) and pCMV-HA-HRB (HA-HRB) (KD = 1.91 × 10- 8 M and 2.60 × 10- 7 M, respectively) reacted an order of magnitude more strongly than that of pCMV-HA-HRA (HA-HRA) and pCMV-HA-Tp IGFR-LD (HA) (KD = 1.08 × 10- 4 M and 1.43 × 10- 4 M, respectively). CONCLUSIONS: The differences of the binding affinities suggested that HRB is involved in functionally important intermolecular interaction in the fusion process.


Subject(s)
Hemagglutinins, Viral/metabolism , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/physiology , Viral Fusion Proteins/metabolism , Animals , CHO Cells , Cricetulus , Flow Cytometry , Gene Expression , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/genetics , Kinetics , Protein Binding , Recombinant Proteins , Surface Plasmon Resonance , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics
10.
Vet Res ; 49(1): 8, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29368634

ABSTRACT

Peste des petits ruminants virus (PPRV), the etiological agent of peste des petits ruminants (PPR), causes an acute or subacute disease in small ruminants. Although abortion is observed in an unusually large proportion of pregnant goats during outbreaks of PPR, the pathogenic mechanism underlying remains unclear. Here, the gene expression profile of caprine endometrial epithelial cells (EECs) infected with PPRV Nigeria 75/1 was determined by DNA microarray to investigate the cellular response immediately after viral entry. The microarray analysis revealed that a total of 146 genes were significantly dysregulated by PPRV internalization within 1 h post-infection (hpi). Of these, 85 genes were upregulated and 61 genes were downregulated. Most of these genes, including NFKB1A, JUNB, and IL1A, have not previously been reported in association with PPRV infection in goats. Following viral replication (24 hpi), the expression of 307 genes were significantly upregulated and that of 261 genes were downregulated. The data for the genes differentially expressed in EECs were subjected to a time sequence profile analysis, gene network analysis and pathway analysis. The gene network analysis showed that 13 genes (EIF2AK3, IL10, TLR4, ZO3, NFKBIB, RAC1, HSP90AA1, SMAD7, ARG2, JUNB, ZFP36, APP, and IL1A) were located in the core of the network. We clearly demonstrate that PPRV infection upregulates the expression of nectin-4 after 1 hpi, which peaked at 24 hpi in EECs. In conclusion, this study demonstrates the early cellular gene expression in the caprine endometrial epithelial cells after the binding and entry of PPRV.


Subject(s)
Endometrium/virology , Goats/genetics , Peste-des-petits-ruminants virus/physiology , Transcriptome , Virion/physiology , Virus Attachment , Animals , Endometrium/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Goats/virology , In Vitro Techniques
11.
Vet Res ; 49(1): 62, 2018 07 16.
Article in English | MEDLINE | ID: mdl-30012212

ABSTRACT

Peste des petits ruminants virus (PPRV) belongs to the genus Morbillivirus that causes an acute and highly contagious disease in goats and sheep. Virus infection can trigger the change in the cellular microRNA (miRNA) expression profile, which play important post-transcriptional regulatory roles in gene expression and can greatly influence viral replication and pathogenesis. Here, we employed deep sequencing technology to determine cellular miRNA expression profile in goat peripheral blood mononuclear cells (PBMC) infected with Nigeria 75/1 vaccine virus, a widely used vaccine strain for mass vaccination programs against Peste des petits ruminants. Expression analysis demonstrated that PPRV infection can elicit 316 significantly differentially expressed (DE) miRNA including 103 known and 213 novel miRNA candidates in infected PBMC at 24 hours post-infection (hpi) as compared with a mock control. Target prediction and functional analysis of these DEmiRNA revealed significant enrichment for several signaling pathways including TLR signaling pathways, PI3K-Akt, endocytosis, viral carcinogenesis, and JAK-STAT signaling pathways. This study provides a valuable basis for further investigation of the roles of miRNA in PPRV replication and pathogenesis.


Subject(s)
Gene Expression Regulation , Goat Diseases/genetics , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , Peste-des-Petits-Ruminants/genetics , Peste-des-petits-ruminants virus/physiology , Animals , China , Gene Expression Profiling/veterinary , Goat Diseases/virology , Goats , High-Throughput Nucleotide Sequencing/veterinary , MicroRNAs/metabolism , Peste-des-Petits-Ruminants/virology
12.
Microb Pathog ; 107: 81-87, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28330747

ABSTRACT

Peste des petits ruminants virus (PPRV), belonging to paramyxoviruses, has six structure proteins (such as matrix protein (M), nucleocapsid proteins (N), fusion protein (F) and hemagglutinin protein (H)) and could cause high morbidity and mortality in sheep and goats. Although a vaccine strain of PPRV has been rescued and co-expression of M and N could yield PPRV-like particles, the roles of structure proteins in virion assembly and release have not been investigated in detail. In this study, plasmids carrying PPRV cDNA sequences encoding the N, M, H, and F proteins were expressed in Vero cells. The co-expression of all four proteins resulted in the release of virus-like particles (VLPs) with similar release efficiency to that of authentic virions. Moreover, the co-expression of M together with F also resulted in efficient VLPs release. In the absence of M protein, the expression of no combination of the other proteins resulted in particle release. In summary, a VLPs production system for PPRV has been established and M protein is necessary for promoting the assembly and release of VLPs, of which the predominant protein is M protein. Further study will be focused on the immunogenicity of the VLPs.


Subject(s)
Peste-des-petits-ruminants virus/metabolism , Peste-des-petits-ruminants virus/physiology , Vero Cells/metabolism , Viral Matrix Proteins/metabolism , Animals , Antibodies, Viral , Chlorocebus aethiops/metabolism , Chlorocebus aethiops/physiology , DNA, Complementary , DNA, Viral , Hemagglutinins, Viral/metabolism , Hemagglutinins, Viral/physiology , Mice , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/physiology , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/immunology , Viral Fusion Proteins/metabolism , Viral Fusion Proteins/physiology
13.
Acta Virol ; 59(1): 78-83, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25790054

ABSTRACT

In this study, we found out that blocking the receptor tyrosine kinase (RTK) signaling in Vero cells by tryphostin AG879 impairs the in vitro replication of the peste des petits ruminants virus (PPRV). A reduced virus replication in Trk1-knockdown (siRNA) Vero cells confirmed the essential role of RTK in the virus replication, in particular a specific regulation of viral RNA synthesis. These data represent the first evidence that the RTK signaling regulates replication of a morbillivirus.


Subject(s)
Peste-des-Petits-Ruminants/enzymology , Peste-des-petits-ruminants virus/physiology , Receptor, trkA/metabolism , Signal Transduction , Virus Replication , Animals , Chlorocebus aethiops , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/genetics , Receptor, trkA/genetics , Vero Cells
14.
J Virol ; 87(8): 4756-61, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23388720

ABSTRACT

Small ruminants infected with peste des petits ruminants virus exhibit lesions typical of epithelial infection and necrosis. However, the only established host receptor for this virus is the immune cell marker signaling lymphocyte activation molecule (SLAM). We have confirmed that the ovine Nectin-4 protein, when overexpressed in epithelial cells, permits efficient replication of PPRV. Furthermore, this gene was predominantly expressed in epithelial tissues and encoded by multiple haplotypes in sheep breeds from around the world.


Subject(s)
Cell Adhesion Molecules/metabolism , Peste-des-petits-ruminants virus/physiology , Receptors, Virus/metabolism , Virus Attachment , Animals , Epithelial Cells/virology , Nectins , Peste-des-petits-ruminants virus/growth & development , Sheep
15.
Vet Res ; 45: 22, 2014 Feb 22.
Article in English | MEDLINE | ID: mdl-24559207

ABSTRACT

Peste des petits ruminants is a viral disease of sheep and goats that has spread through most of Africa as well as the Middle East and the Indian subcontinent. Although, the spread of the disease and its economic impact has made it a focus of international concern, relatively little is known about the nature of the disease itself. We have studied the early stages of pathogenesis in goats infected with six different isolates of Peste des petits ruminants virus representing all four known lineages of the virus. No lineage-specific difference in the pathogenicity of the virus isolates was observed, although there was evidence that even small numbers of cell culture passages could affect the degree of pathogenicity of an isolate. A consistent reduction in CD4+ T cells was observed at 4 days post infection (dpi). Measurement of the expression of various cytokines showed elements of a classic inflammatory response but also a relatively early induction of interleukin 10, which may be contributing to the observed disease.


Subject(s)
Cytokines/genetics , Goat Diseases/genetics , Peste-des-Petits-Ruminants/veterinary , Peste-des-petits-ruminants virus/physiology , Animals , Cytokines/blood , Goat Diseases/virology , Goats , Male , Peste-des-Petits-Ruminants/genetics , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/genetics , RNA, Messenger/blood , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/veterinary
16.
Commun Biol ; 7(1): 937, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095591

ABSTRACT

Peste des petits ruminants virus (PPRV) is a multi-host pathogen with sheep and goats as main hosts. To investigate the role of cattle in the epidemiology of PPR, we simulated conditions similar to East African zero-grazing husbandry practices in a series of trials with local Zebu cattle (Bos taurus indicus) co-housed with goats (Capra aegagrus hircus). Furthermore, we developed a mathematical model to assess the impact of PPRV-transmission from cattle to goats. Of the 32 cattle intranasally infected with the locally endemic lineage IV strain PPRV/Ethiopia/Habru/2014 none transmitted PPRV to 32 co-housed goats. However, these cattle or cattle co-housed with PPRV-infected goats seroconverted. The results confirm previous studies that cattle currently play a negligible role in PPRV-transmission and small ruminant vaccination is sufficient for eradication. However, the possible emergence of PPRV strains more virulent for cattle may impact eradication. Therefore, continued monitoring of PPRV circulation and evolution is recommended.


Subject(s)
Goat Diseases , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Peste-des-Petits-Ruminants/transmission , Peste-des-Petits-Ruminants/virology , Peste-des-Petits-Ruminants/epidemiology , Cattle , Peste-des-petits-ruminants virus/immunology , Peste-des-petits-ruminants virus/physiology , Goats/virology , Goat Diseases/virology , Goat Diseases/transmission , Cattle Diseases/transmission , Cattle Diseases/virology , Cattle Diseases/epidemiology , Disease Eradication/methods
17.
Virology ; 595: 110056, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552409

ABSTRACT

The Peste des petits ruminant virus (PPRV) is a member of the Paramyxoviridae family and is classified into the genus Measles virus. PPRV predominantly infects small ruminants, leading to mortality rates of nearly 100%, which have caused significant economic losses in developing countries. Host proteins are important in virus replication, but the PPRV nucleocapsid (N) protein-host interacting partners for regulating PPRV replication remain unclear. The present study confirmed the interaction between PPRV-N and the host protein vimentin by co-immunoprecipitation and co-localization experiments. Overexpression of vimentin suppressed PPRV replication, whereas vimentin knockdown had the opposite effect. Mechanistically, N was subjected to degradation via the ubiquitin/proteasome pathway, where vimentin recruits the E3 ubiquitin ligase NEDD4L to fulfill N-ubiquitination, resulting in the degradation of the N protein. These findings suggest that the host protein vimentin and E3 ubiquitin ligase NEDD4L have an anti-PPRV effect.


Subject(s)
Nucleocapsid Proteins , Peste-des-petits-ruminants virus , Vimentin , Virus Replication , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Vimentin/metabolism , Vimentin/genetics , Animals , Peste-des-petits-ruminants virus/physiology , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/metabolism , Humans , Ubiquitination , Host-Pathogen Interactions , HEK293 Cells , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Cell Line , Peste-des-Petits-Ruminants/virology , Peste-des-Petits-Ruminants/metabolism , Protein Binding
18.
J Virol ; 86(2): 786-95, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072768

ABSTRACT

Viruses are serious threats to human and animal health. Vaccines can prevent viral diseases, but few antiviral treatments are available to control evolving infections. Among new antiviral therapies, RNA interference (RNAi) has been the focus of intensive research. However, along with the development of efficient RNAi-based therapeutics comes the risk of emergence of resistant viruses. In this study, we challenged the in vitro propensity of a morbillivirus (peste des petits ruminants virus), a stable RNA virus, to escape the inhibition conferred by single or multiple small interfering RNAs (siRNAs) against conserved regions of the N gene. Except with the combination of three different siRNAs, the virus systematically escaped RNAi after 3 to 20 consecutive passages. The genetic modifications involved consisted of single or multiple point nucleotide mutations and a deletion of a stretch of six nucleotides, illustrating that this virus has an unusual genomic malleability.


Subject(s)
Genetic Variation , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/genetics , RNA Interference , RNA, Small Interfering/genetics , Amino Acid Sequence , Animals , Base Sequence , Chlorocebus aethiops , Genomic Instability , Humans , Molecular Sequence Data , Mutation , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Peste-des-Petits-Ruminants/drug therapy , Peste-des-petits-ruminants virus/physiology , RNA, Small Interfering/metabolism , RNA, Small Interfering/therapeutic use , Vero Cells , Virus Replication
19.
Microb Pathog ; 52(4): 217-26, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22248720

ABSTRACT

In this study an attempt to address the effects of immunosuppression on pathogenesis of peste des petits ruminants (PPR) virus infection was undertaken. Cyclophosphamide and dexamethasone were used to immunosuppress the animals. The drug treated animals exhibited severe leukopaenia and lymphopaenia; one of the indicators of immunosuppression. Experimental peste des petits ruminants virus (PPRV) infection was then given to both drug-induced immunosuppressed and non-immunosuppressed goats and observed their effects. Findings indicated that, the immunosuppressed goats had a short period of viremia, more extensive and severe disease advancement and higher mortality rate than the non-immunosuppressed goats. PPRV antigen distribution in both ante-mortem and post-mortem materials was extensive and diffused in immunosuppressed animals than that of non-immunosuppressed. Some of the atypical organ(s)/tissues like liver, kidney, heart etc showed more antigen load than non-immunosuppressed group. Histopathological and immunohistochemical studies of tissues from the two groups showed that pathological changes in the non-immunosuppressed animals were confined only to gastrointestinal tract, whereas in the immunosuppressed animals histopathological changes and PPRV antigen distribution were more extensive and diffused. The present study indicated that immunosuppression increased the extent and severity of the pathological lesions associated with peste des petits ruminants virus infection.


Subject(s)
Goat Diseases/immunology , Immunosuppressive Agents/adverse effects , Peste-des-Petits-Ruminants/veterinary , Peste-des-petits-ruminants virus/pathogenicity , Animals , Goat Diseases/chemically induced , Goat Diseases/virology , Goats , Immunosuppressive Agents/pharmacology , Peste-des-Petits-Ruminants/chemically induced , Peste-des-Petits-Ruminants/immunology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/drug effects , Peste-des-petits-ruminants virus/immunology , Peste-des-petits-ruminants virus/physiology
20.
Virol J ; 9: 302, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23216711

ABSTRACT

BACKGROUND: Peste-des-petits ruminants virus (PPRV) is a non segmented negative strand RNA virus of the genus Morbillivirus within Paramyxoviridae family. Negative strand RNA viruses are known to carry nucleocapsid (N) protein, phospho (P) protein and RNA polymerase (L protein) packaged within the virion which possess all activities required for transcription, post-transcriptional modification of mRNA and replication. In order to understand the mechanism of transcription and replication of the virus, an in vitro transcription reconstitution system is required. In the present work, an in vitro transcription system has been developed with ribonucleoprotein (RNP) complex purified from virus infected cells as well as partially purified recombinant polymerase (L-P) complex from insect cells along with N-RNA (genomic RNA encapsidated by N protein) template isolated from virus infected cells. RESULTS: RNP complex isolated from virus infected cells and recombinant L-P complex purified from insect cells was used to reconstitute transcription on N-RNA template. The requirement for this transcription reconstitution has been defined. Transcription of viral genes in the in vitro system was confirmed by PCR amplification of cDNAs corresponding to individual transcripts using gene specific primers. In order to measure the relative expression level of viral transcripts, real time PCR analysis was carried out. qPCR analysis of the transcription products made in vitro showed a gradient of polarity of transcription from 3' end to 5' end of the genome similar to that exhibited by the virus in infected cells. CONCLUSION: This report describes for the first time, the development of an in vitro transcription reconstitution system for PPRV with RNP complex purified from infected cells and recombinant L-P complex expressed in insect cells. Both the complexes were able to synthesize all the mRNA species in vitro, exhibiting a gradient of polarity in transcription.


Subject(s)
Peste-des-petits-ruminants virus/physiology , Transcription, Genetic , Virology/methods , Virus Replication , Animals , Peste-des-petits-ruminants virus/genetics , RNA, Viral/isolation & purification , RNA, Viral/metabolism , Sf9 Cells , Viral Proteins/isolation & purification , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL