Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mol Biol Rep ; 51(1): 511, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622444

ABSTRACT

BACKGROUND: Lipases play a crucial role in various industrial applications, and microbial lipases, particularly those from bacteria, possess significant properties. With increasing concerns about the environmental and health impacts of hydrocarbons from pipelines and refineries, there is a growing need to mitigate the risks associated with these compounds. METHODS: In this study, 40 bacterial isolates were recovered from contaminated soil samples collected from multiple refineries across Iraq. Using the Vitek system, bacterial isolates were identified up to the species level, revealing that only 12 isolates exhibited lipase-producing capabilities. RESULTS: Among the lipase-producing isolates, Ralstonia mannitolilytica demonstrated the highest extracellular lipase activity, as determined by an olive oil plate assay supplemented with rhodamine B. Confirmation of the species identity was achieved through 16S rRNA gene sequencing, with the obtained sequence deposited under accession number LC772176.1. Further sequence analysis revealed single nucleotide polymorphisms (SNPs) in the genome of Ralstonia mannitolilytica strain H230303-10_N19_7x_R2 (CP011257.1, positions 1,311,102 and 1,311,457). Additionally, the presence of the lipase gene was confirmed through amplification and sequencing using a thermocycler PCR. Sequence analysis of the gene, aligned using Geneious Prime software, identified SNPs (CP010799, CP049132, AY364601, CP011257, and CP023537), and a phylogenetic tree was constructed based on genetic characterization. CONCLUSION: Our findings highlight the potential of Ralstonia mannitolilytica as a promising candidate for lipase production and contribute to our understanding of its genetic diversity and biotechnological applications in hydrocarbon degradation and industrial processes.


Subject(s)
Petroleum , Ralstonia , Petroleum/microbiology , RNA, Ribosomal, 16S/genetics , Phylogeny , Iraq , Lipase/genetics , Soil
2.
Appl Microbiol Biotechnol ; 108(1): 189, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305872

ABSTRACT

Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.


Subject(s)
Hordeum , Hydrocarbons, Aromatic , Petroleum , Soil Pollutants , Petroleum/microbiology , Oil and Gas Fields , Hordeum/metabolism , Soil Pollutants/metabolism , Hydrocarbons, Aromatic/metabolism , Bacillus subtilis/metabolism , Carbon/metabolism , Soil , Biodegradation, Environmental , Soil Microbiology , Hydrocarbons/metabolism
3.
Appl Microbiol Biotechnol ; 108(1): 116, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229295

ABSTRACT

Biotreatment of oily sludge and the involved microbial communities, particularly in saline environments, have been rarely investigated. We enriched a halophilic bacterial consortium (OS-100) from petroleum refining oily sludge, which degraded almost 86% of the aliphatic hydrocarbon (C10-C30) fraction of the oily sludge within 7 days in the presence of 100 g/L NaCl. Two halophilic hydrocarbon-degrading bacteria related to the genera Chromohalobacter and Halomonas were isolated from the OS-100 consortium. Hydrocarbon degradation by the OS-100 consortium was relatively higher compared to the isolated bacteria, indicating potential synergistic interactions among the OS-100 community members. Exclusion of FeCl2, MgCl2, CaCl2, trace elements, and vitamins from the culture medium did not significantly affect the hydrocarbon degradation efficiency of the OS-100 consortium. To the contrary, hydrocarbon biodegradation dropped from 94.1 to 54.4% and 5% when the OS-100 consortium was deprived from phosphate and nitrogen sources in the culture medium, respectively. Quantitative PCR revealed that alkB gene expression increased up to the 3rd day of incubation with 11.277-fold, consistent with the observed increments in hydrocarbon degradation. Illumina-MiSeq sequencing of 16 S rRNA gene fragments revealed that the OS-100 consortium was mainly composed of the genera Halomonas, Idiomarina, Alcanivorax and Chromohalobacter. This community structure changed depending on the culturing conditions. However, remarkable changes in the community structure were not always associated with remarkable shifts in the hydrocarbonoclastic activity and vice versa. The results show that probably synergistic interactions between community members and different subpopulations of the OS-100 consortium contributed to salinity tolerance and hydrocarbon degradation.


Subject(s)
Petroleum , Sewage , Sewage/microbiology , Oils/metabolism , Bacteria/genetics , Bacteria/metabolism , Hydrocarbons/metabolism , Petroleum/microbiology , Biodegradation, Environmental , Archaea/metabolism , Culture Media/metabolism
4.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38650069

ABSTRACT

Environmental pollution with aromatic and aliphatic hydrocarbons caused by oil and petrochemical industries has very toxic and carcinogenic effects on living organisms and should be removed from the environment. In this research, after analyzing the oil sludge of the Bahregan area, it was found that most aliphatic paraffin compounds are related to octadecane, most liquid aliphatic compounds are related to hexadecane, and most aromatic compounds are related to naphthalene, phenanthrene, fluoranthene, and anthracene. Then, we investigated the ability of native bacteria from this area, such as Thalassospira, Chromohalobacter, and a bacterial consortium, to biodegrade the dominant aromatic and aliphatic hydrocarbons found in oil sludge. The results of Gas Chromatography-Mass Spectrometry analysis showed that among the tested hydrocarbon sources, Thalassospira can completely remove octadecane and hexadecane, and Chromohalobacter can reduce hexadecane from 15.9 to 9.9%. The bacterial consortium can completely remove octadecane and reduce hexadecane from 15.9 to 5.1%, toluene from 25.6 to 0.6%, and phenanthrene from 12.93 to 6%. According to the obtained results, the bacterial consortium effectively plays a role in the biodegradation of aromatic and aliphatic hydrocarbons, making it a viable solution for treating hydrocarbon pollutants in various environments.


Subject(s)
Bacteria , Biodegradation, Environmental , Hydrocarbons, Aromatic , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Hydrocarbons, Aromatic/metabolism , Alkanes/metabolism , Sewage/microbiology , Phenanthrenes/metabolism , Gas Chromatography-Mass Spectrometry , Petroleum/metabolism , Petroleum/microbiology , Microbial Consortia
5.
Fungal Biol ; 128(3): 1751-1757, 2024 May.
Article in English | MEDLINE | ID: mdl-38796259

ABSTRACT

This study explores the fungal diversity associated with tarballs, weathered crude oil deposits, on Goa's tourist beaches. Despite tarball pollution being a longstanding issue in Goa state in India, comprehensive studies on associated fungi are scarce. Our research based on amplicon sequence analysis of fungal ITS region fills this gap, revealing a dominance of Aspergillus, particularly Aspergillus penicillioides, associated with tarballs from Vagator and Morjim beaches. Other notable species, including Aspergillus sydowii, Aspergillus carbonarius, and Trichoderma species, were identified, all with potential public health and ecosystem implications. A FUNGuild analysis was conducted to investigate the potential ecological roles of these fungi, revealing a diverse range of roles, including nutrient cycling, disease propagation, and symbiotic relationships. The study underscores the need for further research and monitoring, given the potential health risks and contribution of tarball-associated fungi to the bioremediation of crude oil-contaminated beaches.


Subject(s)
Biodiversity , DNA, Fungal , Fungi , India , DNA, Fungal/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , Phylogeny , Petroleum/microbiology
6.
Environ Microbiol Rep ; 16(3): e13264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692840

ABSTRACT

This study assessed the bacterioplankton community and its relationship with environmental variables, including total petroleum hydrocarbon (TPH) concentration, in the Yucatan shelf area of the Southern Gulf of Mexico. Beta diversity analyses based on 16S rRNA sequences indicated variations in the bacterioplankton community structure among sampling sites. PERMANOVA indicated that these variations could be mainly related to changes in depth (5 to 180 m), dissolved oxygen concentration (2.06 to 5.93 mg L-1), and chlorophyll-a concentration (0.184 to 7.65 mg m3). Moreover, SIMPER and one-way ANOVA analyses showed that the shifts in the relative abundances of Synechococcus and Prochlorococcus were related to changes in microbial community composition and chlorophyll-a values. Despite the low TPH content measured in the studied sites (0.01 to 0.86 µL L-1), putative hydrocarbon-degrading bacteria such as Alteromonas, Acinetobacter, Balneola, Erythrobacter, Oleibacter, Roseibacillus, and the MWH-UniP1 aquatic group were detected. The relatively high copy number of the alkB gene detected in the water column by qPCR and the enrichment of hydrocarbon-degrading bacteria obtained during lab crude oil tests exhibited the potential of bacterioplankton communities from the Yucatan shelf to respond to potential hydrocarbon impacts in this important area of the Gulf Mexico.


Subject(s)
Bacteria , Hydrocarbons , RNA, Ribosomal, 16S , Seawater , Gulf of Mexico , Hydrocarbons/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Seawater/microbiology , RNA, Ribosomal, 16S/genetics , Microbiota , Phylogeny , Petroleum/metabolism , Petroleum/microbiology , Biodegradation, Environmental , Biodiversity
7.
Braz. j. microbiol ; 48(4): 637-647, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-889185

ABSTRACT

ABSTRACT Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O) and catechol 2,3 dioxygenase (C23O) was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH) in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem.


Subject(s)
Soil Pollutants/metabolism , Surface-Active Agents/metabolism , Bacterial Proteins/metabolism , Petroleum/microbiology , Actinobacteria/metabolism , Corynebacterium/metabolism , Acinetobacter baumannii/metabolism , Dioxygenases/metabolism , Phylogeny , Soil Microbiology , Surface-Active Agents/chemistry , Bacterial Proteins/genetics , Biodegradation, Environmental , Petroleum/analysis , Petroleum Pollution/analysis , Actinobacteria/growth & development , Actinobacteria/enzymology , Actinobacteria/genetics , Corynebacterium/growth & development , Corynebacterium/enzymology , Corynebacterium/genetics , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/genetics , Dioxygenases/genetics , India
8.
Braz. j. microbiol ; 47(3): 712-723, July-Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-788978

ABSTRACT

ABSTRACT Unraveling the microbial diversity and its complexity in petroleum reservoir environments has been a challenge throughout the years. Despite the techniques developed in order to improve methodologies involving DNA extraction from crude oil, microbial enrichments using different culture conditions can be applied as a way to increase the recovery of DNA from environments with low cellular density for further microbiological analyses. This work aimed at the evaluation of different matrices (arenite, shale and polyurethane foam) as support materials for microbial growth and biofilm formation in enrichments using a biodegraded petroleum sample as inoculum in sulfate reducing condition. Subsequent microbial diversity characterization was carried out using Scanning Electronic Microscopy (SEM), Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA gene libraries in order to compare the microbial biomass yield, DNA recovery efficiency and diversity among the enrichments. The DNA from microbial communities in petroleum enrichments was purified according to a protocol established in this work and used for 16S rRNA amplification with bacterial generic primers. The PCR products were cloned, and positive clones were screened by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Sequencing and phylogenetic analyses revealed that the bacterial community was mostly represented by members of the genera Petrotoga, Bacillus, Pseudomonas, Geobacillus and Rahnella. The use of different support materials in the enrichments yielded an increase in microbial biomass and biofilm formation, indicating that these materials may be employed for efficient biomass recovery from petroleum reservoir samples. Nonetheless, the most diverse microbiota were recovered from the biodegraded petroleum sample using polyurethane foam cubes as support material.


Subject(s)
Bacteria/classification , Petroleum/microbiology , Biodiversity , Environmental Microbiology , Phylogeny , Bacteria/genetics , Bacteria/ultrastructure , RNA, Ribosomal, 16S/genetics
9.
Rev. microbiol ; 29(4): 254-8, out.-dez. 1998. tab, graf
Article in English | LILACS | ID: lil-251732

ABSTRACT

Large amaounts of oily sludge are generated as residues by the oil industry, representing a real problem for refineries. This work studied the technical viability of treating oily aludge biologically, through stimulation of native microorganisms, at bench scale. Such microorganisms were able to grow in a medium containing oily sludge as the only carbon and energy source. Two oily sludge concentrations were studied, 5(per cent) (v/v) and 10 (per cent) (v/v), with a C:N ratio of 100:1. Higher microbial populations were observed in the first case. Substrate inhibition and/or toxic effect took place in the second case. The importance of aeration on the microbial activity and on the biodegradation of the residue was ascertained. In terms of n-paraffins, pristane and phytane consumption, maximum global efficiency of the genus "Pseudomonas sp." predominated. Two yeast species were also identified and two filamentous fungi were isolated.


Subject(s)
Bacteria/growth & development , Fungi/growth & development , Aeration , Petroleum/microbiology , Water Purification , Biodegradation, Environmental
10.
Rev. argent. microbiol ; 35(2): 62-68, abr.-jun. 2003.
Article in Spanish | LILACS | ID: lil-356631

ABSTRACT

La compleja composición del petróleo crudo, derivados y deshechos de las diferentes etapas de la industria petrolera hacen de este producto una mezcla que presenta diferentes dificultades para su eliminación por métodos biológicos. El objetivo de este trabajo fue mostrar el potencial de biodegradación de comunidades bacterianas autóctonas frente a hidrocarburos obtenidos de cuatro sitios contaminados y sometidos a biorremediación, en un sistema de Landfarming por casi un década. Los resultados mostraron una marcada diferencia de biodegradabilidad de las tres principales fracciones alifáticas, aromáticas, y polares, obtenidas por cromatografía en columna. Si bien todas las fracciones fueron utilizadas como fuente de carbono y energía, existieron variaciones importantes en la producción de biomasa entre ellas, como asimismo en la cinética de biodegradación, según la composición de cada fracción.


Subject(s)
Argentina , Biodegradation, Environmental , Biota , Hydrocarbons , Petroleum/microbiology , Environmental Pollution
SELECTION OF CITATIONS
SEARCH DETAIL