Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Mol Cell Proteomics ; 23(5): 100757, 2024 May.
Article in English | MEDLINE | ID: mdl-38556169

ABSTRACT

Picornaviridae represent a large family of single-stranded positive RNA viruses of which different members can infect both humans and animals. These include the enteroviruses (e.g., poliovirus, coxsackievirus, and rhinoviruses) as well as the cardioviruses (e.g., encephalomyocarditis virus). Picornaviruses have evolved to interact with, use, and/or evade cellular host systems to create the optimal environment for replication and spreading. It is known that viruses modify kinase activity during infection, but a proteome-wide overview of the (de)regulation of cellular kinases during picornavirus infection is lacking. To study the kinase activity landscape during picornavirus infection, we here applied dedicated targeted mass spectrometry-based assays covering ∼40% of the human kinome. Our data show that upon infection, kinases of the MAPK pathways become activated (e.g., ERK1/2, RSK1/2, JNK1/2/3, and p38), while kinases involved in regulating the cell cycle (e.g., CDK1/2, GWL, and DYRK3) become inactivated. Additionally, we observed the activation of CHK2, an important kinase involved in the DNA damage response. Using pharmacological kinase inhibitors, we demonstrate that several of these activated kinases are essential for the replication of encephalomyocarditis virus. Altogether, the data provide a quantitative understanding of the regulation of kinome activity induced by picornavirus infection, providing a resource important for developing novel antiviral therapeutic interventions.


Subject(s)
Picornaviridae Infections , Picornaviridae , Humans , Picornaviridae/physiology , Picornaviridae/enzymology , Picornaviridae Infections/virology , Picornaviridae Infections/metabolism , HeLa Cells , Proteome/metabolism , Protein Kinases/metabolism , Virus Replication , Phosphorylation
2.
J Biol Chem ; 298(6): 101882, 2022 06.
Article in English | MEDLINE | ID: mdl-35367208

ABSTRACT

Picornaviruses are small RNA viruses that hijack host cell machinery to promote their replication. During infection, these viruses express two proteases, 2Apro and 3Cpro, which process viral proteins. They also subvert a number of host functions, including innate immune responses, host protein synthesis, and intracellular transport, by utilizing poorly understood mechanisms for rapidly and specifically targeting critical host proteins. Here, we used proteomic tools to characterize 2Apro interacting partners, functions, and targeting mechanisms. Our data indicate that, initially, 2Apro primarily targets just two cellular proteins: eukaryotic translation initiation factor eIF4G (a critical component of the protein synthesis machinery) and Nup98 (an essential component of the nuclear pore complex, responsible for nucleocytoplasmic transport). The protease appears to employ two different cleavage mechanisms; it likely interacts with eIF3L, utilizing the eIF3 complex to proteolytically access the eIF4G protein but also directly binds and degrades Nup98. This Nup98 cleavage results in only a marginal effect on nuclear import of proteins, while nuclear export of proteins and mRNAs were more strongly affected. Collectively, our data indicate that 2Apro selectively inhibits protein translation, key nuclear export pathways, and cellular mRNA localization early in infection to benefit viral replication at the expense of particular cell functions.


Subject(s)
Peptide Hydrolases , Picornaviridae , Eukaryotic Initiation Factor-4G/metabolism , Peptide Hydrolases/metabolism , Picornaviridae/enzymology , Picornaviridae/genetics , Proteomics , RNA, Messenger/metabolism
3.
J Virol ; 96(13): e0073622, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35727031

ABSTRACT

Senecavirus A (SVA) is an emerging picornavirus infecting porcine of all age groups and causing foot and mouth disease (FMD)-like symptoms. One of its key enzymes is the 3C protease (3Cpro), which is similar to other picornaviruses and essential for virus maturation by controlling polyprotein cleavage and RNA replication. In this study, we reported the crystal structure of SVA 3Cpro at a resolution of 1.9 Å and a thorough structural comparison against all published picornavirus 3Cpro structures. Using statistical and graphical visualization techniques, we also investigated the sequence specificity of the 3Cpro. The structure revealed that SVA 3Cpro adopted a typical chymotrypsin-like fold with the S1 subsite as the most conservative site among picornavirus 3Cpro. The surface loop, A1-B1 hairpin, adopted a novel conformation in SVA 3Cpro and formed a positively charged protrusion around S' subsites. Correspondingly, SVA scissile bonds preferred Asp rather than neutral amino acids at P3' and P4'. Moreover, SVA 3Cpro showed a wide range tolerance to P4 residue volume (acceptable range: 67 Å3 to 141 Å3), such as aromatic side chain, in contrast to other picornaviruses. In summary, our results provided valuable information for understanding the cleavage pattern of 3Cpro. IMPORTANCE Picornaviridae is a group of RNA viruses that harm both humans and livestock. 3Cpro is an essential enzyme for picornavirus maturation, which makes it a promising target for antiviral drug development and a critical component for virus-like particle (VLP) production. However, the current challenge in the development of antiviral drugs and VLP vaccines includes the limited knowledge of how subsite structure determines the 3Cpro cleavage pattern. Thus, an extensive comparative study of various picornaviral 3Cpro was required. Here, we showed the 1.9 Å crystal structure of SVA 3Cpro. The structure revealed similarities and differences in the substrate-binding groove among picornaviruses, providing new insights into the development of inhibitors and VLP.


Subject(s)
3C Viral Proteases , Picornaviridae , 3C Viral Proteases/chemistry , 3C Viral Proteases/metabolism , Animals , Antiviral Agents/pharmacology , Humans , Picornaviridae/chemistry , Picornaviridae/enzymology , Swine
4.
J Virol ; 96(17): e0112122, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36000840

ABSTRACT

Seneca Valley virus (SVV) is a new pathogen associated with porcine idiopathic vesicular disease (PIVD) in recent years. However, SVV-host interaction is still unclear. In this study, through LC-MS/MS analysis and coimmunoprecipitation analysis, DHX30 was identified as a 3Cpro-interacting protein. 3Cpro mediated the cleavage of DHX30 at a specific site, which depends on its protease activity. Further study showed that DHX30 was an intrinsic antiviral factor against SVV that was dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of viral infection. RIP-seq showed comparatively higher coverage depth at SVV 5'UTR, but the distribution across SVV RNA suggested that the interaction had low specificity. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. Interestingly, DHX30 was determined to interact with 3D in an SVV RNA-dependent manner. Thus, DHX30 negatively regulated SVV propagation by blocking viral RNA synthesis, presumably by participating in the viral replication complex. IMPORTANCE DHX30, an RNA helicase, is identified as a 3Cpro-interacting protein regulating Seneca Valley virus (SVV) replication dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of virus infection. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. In addition, 3Cpro abolished DHX30 antiviral effects by inducing DHX30 cleavage. Thus, DHX30 is an intrinsic antiviral factor that inhibits SVV replication.


Subject(s)
3C Viral Proteases , Picornaviridae , Proteolysis , RNA Helicases , 3C Viral Proteases/metabolism , Animals , Chromatography, Liquid , Immunoprecipitation , Picornaviridae/enzymology , Picornaviridae/genetics , Picornaviridae/growth & development , Picornaviridae/physiology , Protein Binding , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA, Double-Stranded/biosynthesis , RNA, Viral/biosynthesis , Swine/virology , Swine Vesicular Disease/virology , Tandem Mass Spectrometry , Virus Replication
5.
J Immunol ; 207(1): 189-199, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34183365

ABSTRACT

Seneca Valley virus (SVV), a newly emerging virus belonging to the Picornaviridae family, has caused vesicular disease in the swine industry. However, the molecular mechanism of viral pathogenesis remains poorly understood. This study revealed that SVV infection could induce pyroptosis in SK6 cells in a caspase-dependent and -independent manner. SVV may inhibit caspase-1 activation at late infection because of 3Cpro cleavage of NLRP3, which counteracted pyroptosis activation. Further study showed that 3Cpro targeted porcine gasdermin D (pGSDMD) for cleavage through its protease activity. 3Cpro cleaved porcine GSDMD (pGSDMD) at two sites, glutamine 193 (Q193) and glutamine 277 (Q277), and Q277 was close to the caspase-1-induced pGSDMD cleavage site. pGSDMD1-277 triggered cell death, which was similar to N-terminal fragment produced by caspase-1 cleavage of pGSDMD, and other fragments exhibited no significant inhibitory effects on cellular activity. Ectopic expression of pGSDMD converted 3Cpro-induced apoptosis to pyroptosis in 293T cells. Interestingly, 3Cpro did not cleave mouse GSDMD or human GSDMD. And, both pGSDMD and pGSDMD1-277 exhibited bactericidal activities in vivo. Nevertheless, pGSDMD cannot kill bacteria in vitro. Taken together, our results reveal a novel pyroptosis activation manner produced by viral protease cleavage of pGSDMD, which may provide an important insight into the pathogenesis of SVV and cancer therapy.


Subject(s)
3C Viral Proteases/immunology , Phosphate-Binding Proteins/immunology , Picornaviridae/enzymology , Animals , Cells, Cultured , HEK293 Cells , Humans , Pyroptosis/immunology , Swine
6.
PLoS Pathog ; 16(10): e1008970, 2020 10.
Article in English | MEDLINE | ID: mdl-33104725

ABSTRACT

Senecavirus A (SVA), discovered in 2002, is an emerging pathogen of swine that has since been reported in numerous pork producing countries. To date, the mechanism of SVA replication remains poorly understood. In this study, utilizing iTRAQ analysis we found that UBE2L6, an E2 ubiquitin-conjugating enzyme, is up-regulated in SVA-infected BHK-21 cells, and that its overexpression promotes SVA replication. We determined that UBE2L6 interacts with, and ubiquitinates the RNA-dependent RNA polymerase of SVA, (the 3D protein) and this ubiquitination serves to inhibit the degradation of 3D. UBE2L6-mediated ubiquitination of 3D requires a cystine at residue 86 in UBE2L6, and lysines at residues 169 and 321 in 3D. Virus with mutations in 3D (rK169R and rK321R) exhibited significantly decreased replication compared to wild type SVA and the repaired viruses, rK169R(R) and rK321R(R). These data indicate that UBE2L6, the enzyme, targets the 3D polymerase, the substrate, during SVA infection to facilitate replication.


Subject(s)
Picornaviridae Infections/virology , Picornaviridae/growth & development , RNA-Dependent RNA Polymerase/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Viral Proteins/metabolism , Virus Replication , Animals , Cells, Cultured , Cricetinae , Host-Pathogen Interactions , Picornaviridae/enzymology , Picornaviridae Infections/genetics , Picornaviridae Infections/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Swine , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination , Viral Proteins/genetics
7.
Rev Med Virol ; 31(5): 1-22, 2021 09.
Article in English | MEDLINE | ID: mdl-33624382

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 is the etiological agent of the ongoing pandemic of coronavirus disease-2019, a multi-organ disease that has triggered an unprecedented global health and economic crisis. The virally encoded 3C-like protease (3CLpro ), which is named after picornaviral 3C protease (3Cpro ) due to their similarities in substrate recognition and enzymatic activity, is essential for viral replication and has been considered as the primary drug target. However, information regarding the cellular substrates of 3CLpro and its interaction with the host remains scarce, though recent work has begun to shape our understanding more clearly. Here we summarized and compared the mechanisms by which picornaviruses and coronaviruses have evolved to evade innate immune surveillance, with a focus on the established role of 3Cpro in this process. Through this comparison, we hope to highlight the potential action and mechanisms that are conserved and shared between 3Cpro and 3CLpro . In this review, we also briefly discussed current advances in the development of broad-spectrum antivirals targeting both 3Cpro and 3CLpro .


Subject(s)
COVID-19/virology , Coronavirus 3C Proteases/immunology , Immune Evasion , SARS-CoV-2/enzymology , Animals , COVID-19/immunology , Coronavirus 3C Proteases/genetics , Humans , Picornaviridae/enzymology , Picornaviridae/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology
8.
PLoS Pathog ; 14(2): e1006901, 2018 02.
Article in English | MEDLINE | ID: mdl-29415027

ABSTRACT

Stress granules (SGs) contain stalled messenger ribonucleoprotein complexes and are related to the regulation of mRNA translation. Picornavirus infection can interfere with the formation of SGs. However, the detailed molecular mechanisms and functions of picornavirus-mediated regulation of SG formation are not clear. Here, we found that the 2A protease of a picornavirus, EV71, induced atypical stress granule (aSG), but not typical stress granule (tSG), formation via cleavage of eIF4GI. Furthermore, 2A was required and sufficient to inhibit tSGs induced by EV71 infection, sodium arsenite, or heat shock. Infection of 2A protease activity-inactivated recombinant EV71 (EV71-2AC110S) failed to induce aSG formation and only induced tSG formation, which is PKR and eIF2α phosphorylation-dependent. By using a Renilla luciferase mRNA reporter system and RNA fluorescence in situ hybridization assay, we found that EV71-induced aSGs were beneficial to viral translation through sequestering only cellular mRNAs, but not viral mRNAs. In addition, we found that the 2A protease of other picornaviruses such as poliovirus and coxsackievirus also induced aSG formation and blocked tSG formation. Taken together, our results demonstrate that, on one hand, EV71 infection induces tSG formation via the PKR-eIF2α pathway, and on the other hand, 2A, but not 3C, blocks tSG formation. Instead, 2A induces aSG formation by cleaving eIF4GI to sequester cellular mRNA but release viral mRNA, thereby facilitating viral translation.


Subject(s)
Cysteine Endopeptidases/physiology , Cytoplasmic Granules/metabolism , Host-Pathogen Interactions , Picornaviridae/enzymology , Stress, Physiological/physiology , Viral Proteins/metabolism , Eukaryotic Initiation Factor-4G/metabolism , HEK293 Cells , HeLa Cells , Humans , Picornaviridae/metabolism , Protein Biosynthesis , Proteolysis
9.
PLoS Pathog ; 14(5): e1007086, 2018 05.
Article in English | MEDLINE | ID: mdl-29782554

ABSTRACT

RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is a marker of the RO. Studies to date indicate that the viral 3A protein hijacks a PI4 kinase to induce PI4P by a mechanism unrelated to the cellular pathway, which requires Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1, GBF1, and ADP ribosylation factor 1, Arf1. Here we show that a picornaviral 3CD protein is sufficient to induce synthesis of not only PI4P but also phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylcholine (PC). Synthesis of PI4P requires GBF1 and Arf1. We identified 3CD derivatives: 3CDm and 3CmD, that we used to show that distinct domains of 3CD function upstream of GBF1 and downstream of Arf1 activation. These same 3CD derivatives still supported induction of PIP2 and PC, suggesting that pathways and corresponding mechanisms used to induce these phospholipids are distinct. Phospholipid induction by 3CD is localized to the perinuclear region of the cell, the outcome of which is the proliferation of membranes in this area of the cell. We conclude that a single viral protein can serve as a master regulator of cellular phospholipid and membrane biogenesis, likely by commandeering normal cellular pathways.


Subject(s)
Peptide Hydrolases/metabolism , Phospholipids/biosynthesis , Picornaviridae/enzymology , Viral Proteins/metabolism , ADP-Ribosylation Factor 1/metabolism , Brefeldin A/pharmacology , Cell Membrane/ultrastructure , Dactinomycin/pharmacology , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , Humans , Microscopy, Electron, Transmission , Organelle Biogenesis , Phosphatidylinositol Phosphates/metabolism , Poliovirus/enzymology , Protein Synthesis Inhibitors/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology
10.
J Struct Biol ; 208(2): 92-98, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31415898

ABSTRACT

RNA-dependent RNA polymerase 3Dpol is a key enzyme for the replication of picornaviruses. The viral genome is translated into a single polyprotein that is subsequently proteolytically processed into matured products. The 3Dpol enzyme arises from a stable 3CD precursor that has high proteolytic activity but no polymerase activity. Upon cleavage of the precursor the newly established N-terminus of 3Dpol is liberated and inserts itself into a pocket on the surface of the 3Dpol enzyme. The essential residue for this mechanism is the very first glycine that is conserved among almost all picornaviruses. However, kobuviruses and siciniviruses have a serine residue instead. Intrigued by this anomaly we sought to solve the crystal structure of these 3Dpol enzymes. The structures revealed a unique fold of the 3Dpol N-termini but the very first serine residues were inserted into a charged pocket in a similar manner as the glycine residue in other picornaviruses. These structures revealed a common underlying mechanism of 3Dpol activation that lies in activation of the α10 helix containing a key catalytical residue Asp238 that forms a hydrogen bond with the 2' hydroxyl group of the incoming NTP nucleotide.


Subject(s)
Kobuvirus/enzymology , Picornaviridae/enzymology , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Crystallography, X-Ray , Flow Cytometry , HeLa Cells , Humans , Hydrogen Bonding , Mutagenesis, Site-Directed , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
11.
J Virol ; 91(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28566380

ABSTRACT

Seneca Valley virus (SVV) is an oncolytic RNA virus belonging to the Picornaviridae family. Its nucleotide sequence is highly similar to those of members of the Cardiovirus genus. SVV is also a neuroendocrine cancer-selective oncolytic picornavirus that can be used for anticancer therapy. However, the interaction between SVV and its host is yet to be fully characterized. In this study, SVV inhibited antiviral type I interferon (IFN) responses by targeting different host adaptors, including mitochondrial antiviral signaling (MAVS), Toll/interleukin 1 (IL-1) receptor domain-containing adaptor inducing IFN-ß (TRIF), and TRAF family member-associated NF-κB activator (TANK), via viral 3C protease (3Cpro). SVV 3Cpro mediated the cleavage of MAVS, TRIF, and TANK at specific sites, which required its protease activity. The cleaved MAVS, TRIF, and TANK lost the ability to regulate pattern recognition receptor (PRR)-mediated IFN production. The cleavage of TANK also facilitated TRAF6-induced NF-κB activation. SVV was also found to be sensitive to IFN-ß. Therefore, SVV suppressed antiviral IFN production to escape host antiviral innate immune responses by cleaving host adaptor molecules.IMPORTANCE Host cells have developed various defenses against microbial pathogen infection. The production of IFN is the first line of defense against microbial infection. However, viruses have evolved many strategies to disrupt this host defense. SVV, a member of the Picornavirus genus, is an oncolytic virus that shows potential functions in anticancer therapy. It has been demonstrated that IFN can be used in anticancer therapy for certain tumors. However, the relationship between oncolytic virus and innate immune response in anticancer therapy is still not well known. In this study, we showed that SVV has evolved as an effective mechanism to inhibit host type I IFN production by using its 3Cpro to cleave the molecules MAVS, TRIF, and TANK directly. These molecules are crucial for the Toll-like receptor 3 (TLR3)-mediated and retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated signaling pathway. We also found that SVV is sensitive to IFN-ß. These findings increase our understanding of the interaction between SVV and host innate immunity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Cysteine Endopeptidases/metabolism , Immune Evasion , Interferon Type I/antagonists & inhibitors , Picornaviridae/growth & development , Viral Proteins/metabolism , 3C Viral Proteases , Animals , Cell Line , Cricetinae , Host-Pathogen Interactions , Humans , Picornaviridae/enzymology , Proteolysis
12.
J Virol ; 90(16): 7415-7428, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27279608

ABSTRACT

UNLABELLED: Positive-sense RNA viruses encode RNA-dependent RNA polymerases (RdRps) essential for genomic replication. With the exception of the large nidoviruses, such as coronaviruses (CoVs), RNA viruses lack proofreading and thus are dependent on RdRps to control nucleotide selectivity and fidelity. CoVs encode a proofreading exonuclease in nonstructural protein 14 (nsp14-ExoN), which confers a greater-than-10-fold increase in fidelity compared to other RNA viruses. It is unknown to what extent the CoV polymerase (nsp12-RdRp) participates in replication fidelity. We sought to determine whether homology modeling could identify putative determinants of nucleotide selectivity and fidelity in CoV RdRps. We modeled the CoV murine hepatitis virus (MHV) nsp12-RdRp structure and superimposed it on solved picornaviral RdRp structures. Fidelity-altering mutations previously identified in coxsackie virus B3 (CVB3) were mapped onto the nsp12-RdRp model structure and then engineered into the MHV genome with [nsp14-ExoN(+)] or without [nsp14-ExoN(-)] ExoN activity. Using this method, we identified two mutations conferring resistance to the mutagen 5-fluorouracil (5-FU): nsp12-M611F and nsp12-V553I. For nsp12-V553I, we also demonstrate resistance to the mutagen 5-azacytidine (5-AZC) and decreased accumulation of mutations. Resistance to 5-FU, and a decreased number of genomic mutations, was effectively masked by nsp14-ExoN proofreading activity. These results indicate that nsp12-RdRp likely functions in fidelity regulation and that, despite low sequence conservation, some determinants of RdRp nucleotide selectivity are conserved across RNA viruses. The results also indicate that, with regard to nucleotide selectivity, nsp14-ExoN is epistatic to nsp12-RdRp, consistent with its proposed role in a multiprotein replicase-proofreading complex. IMPORTANCE: RNA viruses have evolutionarily fine-tuned replication fidelity to balance requirements for genetic stability and diversity. Responsibility for replication fidelity in RNA viruses has been attributed to the RNA-dependent RNA polymerases, with mutations in RdRps for multiple RNA viruses shown to alter fidelity and attenuate virus replication and virulence. Coronaviruses (CoVs) are the only known RNA viruses to encode a proofreading exonuclease (nsp14-ExoN), as well as other replicase proteins involved in regulation of fidelity. This report shows that the CoV RdRp (nsp12) likely functions in replication fidelity; that residue determinants of CoV RdRp nucleotide selectivity map to similar structural regions of other, unrelated RNA viral polymerases; and that for CoVs, the proofreading activity of the nsp14-ExoN is epistatic to the function of the RdRp in fidelity.


Subject(s)
Murine hepatitis virus/enzymology , Mutagens/metabolism , Mutation , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Models, Molecular , Molecular Conformation , Murine hepatitis virus/drug effects , Murine hepatitis virus/genetics , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Picornaviridae/enzymology , RNA-Dependent RNA Polymerase/chemistry , Reverse Genetics
13.
Virus Genes ; 50(2): 277-85, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25557929

ABSTRACT

The complete genome sequence of Chinese sacbrood virus (CSBV), isolated from diseased larvae of Apis cerana in Fujian province, China was analyzed. The viral genome consisted of 8,800 nucleotides, encoding 2,848 amino acids. A phylogenetic tree analysis showed the sacbrood virus (SBV) segregated into three distinct groups. The isolates originated from A. c. indica and were the first distinct evolutionary group. The AcSBV-SBM2 isolate, from A. c. cerana, belonged to the second distinct group. The remaining SBV isolates formed the third group. The phylogenetic relationships of SBV isolates suggest that they are derived from similar honeybee species or geographic origins. The 3C-like cysteine protease protein plays an important role in viral replication. The 3C-like cysteine protease protein of CSBV-FZ was predicted to contain a transmembrane domain. The subcellular localization of 3C-like cysteine protease was distributed as discrete punctate inclusions and co-localized with VP1 of CSBV. These results suggest that the non-structural protein 3C-like cysteine protease might be involved in viral replication. Insect cell cultures can further advance our understanding of picorna-like virus replication.


Subject(s)
Bees/virology , Cysteine Proteases/genetics , Genome, Viral , Picornaviridae/genetics , Picornaviridae/isolation & purification , Viral Proteins/genetics , Animals , Base Sequence , China , Larva/virology , Molecular Sequence Data , Open Reading Frames , Phylogeny , Picornaviridae/classification , Picornaviridae/enzymology
14.
J Virol ; 87(8): 4339-51, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23388726

ABSTRACT

We have determined the cleavage specificity and the crystal structure of the 3C protease of enterovirus 68 (EV68 3C(pro)). The protease exhibits a typical chymotrypsin fold with a Cys...His...Glu catalytic triad; its three-dimensional structure is closely related to that of the 3C(pro) of rhinovirus 2, as well as to that of poliovirus. The phylogenetic position of the EV68 3C(pro) between the corresponding enzymes of rhinoviruses on the one hand and classical enteroviruses on the other prompted us to use the crystal structure for the design of irreversible inhibitors, with the goal of discovering broad-spectrum antiviral compounds. We synthesized a series of peptidic α,ß-unsaturated ethyl esters of increasing length and for each inhibitor candidate, we determined a crystal structure of its complex with the EV68 3C(pro), which served as the basis for the next design round. To exhibit inhibitory activity, compounds must span at least P3 to P1'; the most potent inhibitors comprise P4 to P1'. Inhibitory activities were found against the purified 3C protease of EV68, as well as with replicons for poliovirus and EV71 (50% effective concentration [EC(50)] = 0.5 µM for the best compound). Antiviral activities were determined using cell cultures infected with EV71, poliovirus, echovirus 11, and various rhinovirus serotypes. The most potent inhibitor, SG85, exhibited activity with EC(50)s of ≈180 nM against EV71 and ≈60 nM against human rhinovirus 14 in a live virus-cell-based assay. Even the shorter SG75, spanning only P3 to P1', displayed significant activity (EC(50) = 2 to 5 µM) against various rhinoviruses.


Subject(s)
Antiviral Agents/pharmacology , Designer Drugs/pharmacology , Picornaviridae/drug effects , Picornaviridae/enzymology , Protease Inhibitors/pharmacology , Viral Proteins/antagonists & inhibitors , 3C Viral Proteases , Antiviral Agents/chemistry , Cell Line , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Designer Drugs/chemistry , Drug Design , Humans , Microbial Sensitivity Tests , Protease Inhibitors/chemistry , Protein Conformation , Viral Proteins/chemistry
15.
J Virol ; 86(21): 11754-62, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22915796

ABSTRACT

Phylogenetic analysis has demonstrated that some positive-sense RNA viruses can be classified into the picornavirus-like supercluster, which includes picornaviruses, caliciviruses, and coronaviruses. These viruses possess 3C or 3C-like proteases (3Cpro or 3CLpro, respectively), which contain a typical chymotrypsin-like fold and a catalytic triad (or dyad) with a Cys residue as a nucleophile. The conserved key sites of 3Cpro or 3CLpro may serve as attractive targets for the design of broad-spectrum antivirals for multiple viruses in the supercluster. We previously reported the structure-based design and synthesis of potent protease inhibitors of Norwalk virus (NV), a member of the Caliciviridae family. We report herein the broad-spectrum antiviral activities of three compounds possessing a common dipeptidyl residue with different warheads, i.e., an aldehyde (GC373), a bisulfite adduct (GC376), and an α-ketoamide (GC375), against viruses that belong to the supercluster. All compounds were highly effective against the majority of tested viruses, with half-maximal inhibitory concentrations in the high nanomolar or low micromolar range in enzyme- and/or cell-based assays and with high therapeutic indices. We also report the high-resolution X-ray cocrystal structures of NV 3CLpro-, poliovirus 3Cpro-, and transmissible gastroenteritis virus 3CLpro- GC376 inhibitor complexes, which show the compound covalently bound to a nucleophilic Cys residue in the catalytic site of the corresponding protease. We conclude that these compounds have the potential to be developed as antiviral therapeutics aimed at a single virus or multiple viruses in the picornavirus-like supercluster by targeting 3Cpro or 3CLpro.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Norovirus/drug effects , Picornaviridae/drug effects , Protease Inhibitors/pharmacology , Viral Proteins/antagonists & inhibitors , 3C Viral Proteases , Animals , Antiviral Agents/chemistry , Cell Line , Coronavirus/enzymology , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Models, Molecular , Norovirus/enzymology , Picornaviridae/enzymology , Protease Inhibitors/chemistry , Protein Conformation , Viral Proteins/chemistry
16.
Bioorg Med Chem Lett ; 23(13): 3709-12, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23727045

ABSTRACT

The design, synthesis, and in vitro evaluation of the first macrocyclic inhibitor of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus are reported. The in vitro inhibitory activity (50% effective concentration) of the macrocyclic inhibitor toward enterovirus 3C protease (CVB3 Nancy strain), and coronavirus (SARS-CoV) and norovirus 3C-like proteases, was determined to be 1.8, 15.5 and 5.1 µM, respectively.


Subject(s)
Coronavirus/enzymology , Macrocyclic Compounds/pharmacology , Norovirus/enzymology , Peptide Hydrolases/metabolism , Picornaviridae/enzymology , Protease Inhibitors/pharmacology , Dose-Response Relationship, Drug , Drug Design , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Models, Molecular , Molecular Conformation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
17.
Biochem Soc Trans ; 39(5): 1371-5, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21936817

ABSTRACT

SARS-CoV (severe acute respiratory syndrome-associated coronavirus) caused infection of ~8000 people and death of ~800 patients around the world during the 2003 outbreak. In addition, picornaviruses such as enterovirus, coxsackievirus and rhinovirus also can cause life-threatening diseases. Replication of picornaviruses and coronaviruses requires 3Cpro (3C protease) and 3CLpro (3C-like protease) respectively, which are structurally analogous with chymotrypsin-fold, but the former is a monomer and the latter is dimeric due to an extra third domain for dimerization. Subtle structural differences in the S2 and S3 pockets of these proteases make inhibitors selective, but some dual inhibitors have been discovered. Our findings as summarized in the present review provide new potential anti-coronavirus and anti-picornavirus therapeutic agents and a clue to convert 3CLpro inhibitors into 3Cpro inhibitors and vice versa.


Subject(s)
Drug Discovery , Picornaviridae Infections/drug therapy , Picornaviridae/drug effects , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Viral Proteins/antagonists & inhibitors , 3C Viral Proteases , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/ultrastructure , Humans , Molecular Structure , Picornaviridae/enzymology , Picornaviridae/physiology , Protease Inhibitors/chemistry , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Virus Replication
18.
Curr Opin Virol ; 51: 16-24, 2021 12.
Article in English | MEDLINE | ID: mdl-34564030

ABSTRACT

Structure-based antiviral developments in the past two years have been dominated by the structure determination and inhibition of SARS-CoV-2 proteins and new lead molecules for picornaviruses. The SARS-CoV-2 spike protein has been targeted successfully with antibodies, nanobodies, and receptor protein mimics effectively blocking receptor binding or fusion. The two most promising non-structural proteins sharing strong structural and functional conservation across virus families are the main protease and the RNA-dependent RNA polymerase, for which design and reuse of broad range inhibitors already approved for use has been an attractive avenue. For picornaviruses, the increasing recognition of the transient expansion of the capsid as a critical transition towards RNA release has been targeted through a newly identified, apparently widely conserved, druggable, interprotomer pocket preventing viral entry. We summarize some of the key papers in these areas and ponder the practical uses and contributions of molecular modeling alongside empirical structure determination.


Subject(s)
Antiviral Agents/chemistry , Picornaviridae/chemistry , SARS-CoV-2/chemistry , Animals , Antiviral Agents/pharmacology , Drug Delivery Systems , Drug Design , Drug Repositioning , Humans , Picornaviridae/enzymology , SARS-CoV-2/enzymology , COVID-19 Drug Treatment
19.
Front Immunol ; 11: 577838, 2020.
Article in English | MEDLINE | ID: mdl-33133097

ABSTRACT

Stress granules (SGs) are the sites of mRNA storage and related to the regulation of mRNA translation, which are dynamic structures in response to various environmental stresses and viral infections. Seneca Valley virus (SVV), an oncolytic RNA virus belonging to Picornaviridae family, can cause vesicular disease (VD) indistinguished from foot-and-mouth disease (FMD) and other pig VDs. In this study, we found that SVV induced SG formation in the early stage of infection in a PKR-eIF2α dependent manner, as demonstrated by the recruitment of marker proteins of G3BP1 and eIF4GI. Surprisingly, we found that downregulating SG marker proteins TIA1 or G3BP1, or expressing an eIF2α non-phosphorylatable mutant inhibited SG formation, but this inhibition of transient SG formation had no significant effect on SVV propagation. Depletion of G3BP1 significantly attenuated the activation of NF-κB signaling pathway. In addition, we found that SVV inhibited SG formation at the late stage of infection and 3C protease was essential for the inhibition depending on its enzyme activity. Furthermore, we also found that 3C protease blocked the SG formation by disrupting eIF4GI-G3BP1 interaction. Overall, our results demonstrate that SVV induces transient SG formation in an eIF2α phosphorylation and PKR-dependent manner, and that 3C protease inhibits SG formation by interfering eIF4GI-G3BP1 interaction.


Subject(s)
3C Viral Proteases/metabolism , Cytoplasmic Granules/metabolism , DNA Helicases/metabolism , Eukaryotic Initiation Factor-4G/metabolism , Picornaviridae/enzymology , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Stress, Physiological , 3C Viral Proteases/genetics , Cytoplasmic Granules/virology , DNA Helicases/genetics , Eukaryotic Initiation Factor-4G/genetics , HEK293 Cells , Host-Pathogen Interactions , Humans , Phosphorylation , Picornaviridae/genetics , Picornaviridae/growth & development , Poly-ADP-Ribose Binding Proteins/genetics , Protein Binding , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , Signal Transduction , Virus Replication , eIF-2 Kinase/metabolism
20.
J Virol ; 82(19): 9577-90, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18632861

ABSTRACT

The RNA-dependent RNA polymerase (RdRp) is a central piece in the replication machinery of RNA viruses. In picornaviruses this essential RdRp activity also uridylates the VPg peptide, which then serves as a primer for RNA synthesis. Previous genetic, binding, and biochemical data have identified a VPg binding site on poliovirus RdRp and have shown that is was implicated in VPg uridylation. More recent structural studies have identified a topologically distinct site on the closely related foot-and-mouth disease virus RdRp supposed to be the actual VPg-primer-binding site. Here, we report the crystal structure at 2.5-A resolution of active coxsackievirus B3 RdRp (also named 3D(pol)) in a complex with VPg and a pyrophosphate. The pyrophosphate is situated in the active-site cavity, occupying a putative binding site either for the coproduct of the reaction or an incoming NTP. VPg is bound at the base of the thumb subdomain, providing first structural evidence for the VPg binding site previously identified by genetic and biochemical methods. The binding mode of VPg to CVB3 3D(pol) at this site excludes its uridylation by the carrier 3D(pol). We suggest that VPg at this position is either uridylated by another 3D(pol) molecule or that it plays a stabilizing role within the uridylation complex. The CVB3 3D(pol)/VPg complex structure is expected to contribute to the understanding of the multicomponent VPg-uridylation complex essential for the initiation of genome replication of picornaviruses.


Subject(s)
Enterovirus/enzymology , Picornaviridae/enzymology , RNA-Dependent RNA Polymerase/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray/methods , Diphosphates/chemistry , Enterovirus/genetics , Genome, Viral , Guanosine Triphosphate/chemistry , Molecular Conformation , Molecular Sequence Data , Peptides/chemistry , Protein Binding , Sequence Homology, Amino Acid , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL