Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33372152

ABSTRACT

Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Amino Acid Sequence/genetics , Animals , Anti-Infective Agents/metabolism , Antimicrobial Cationic Peptides/metabolism , Brain/immunology , Brain/metabolism , Cell Death/drug effects , Computer Simulation , Databases, Genetic , Inflammation/metabolism , Mice , Mice, Inbred BALB C , Neuropeptides/metabolism , Phylogeny , Signal Transduction/physiology
2.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835411

ABSTRACT

Heat stroke is a life-threatening illness caused by exposure to high ambient temperatures and relative humidity. The incidence of heat stroke is expected to increase due to climate change. Although pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in thermoregulation, the role of PACAP on heat stress remains unclear. PACAP knockout (KO) and wild-type ICR mice were subjected to heat exposure at an ambient temperature of 36 °C and relative humidity of 99% for 30-150 min. After heat exposure, the PACAP KO mice had a greater survival rate and maintained a lower body temperature than the wild-type mice. Moreover, the gene expression and immunoreaction of c-Fos in the ventromedially preoptic area of the hypothalamus, which is known to harbor temperature-sensitive neurons, were significantly lower in PACAP KO mice than those in wild-type mice. In addition, differences were observed in the brown adipose tissue, the primary site of heat production, between PACAP KO and wild-type mice. These results suggest that PACAP KO mice are resistant to heat exposure. The heat production mechanism differs between PACAP KO and wild-type mice.


Subject(s)
Heat Stroke , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Mice , Heat Stroke/genetics , Heat Stroke/metabolism , Hypothalamus/metabolism , Mice, Inbred ICR , Mice, Knockout , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology
3.
Neuroendocrinology ; 111(1-2): 45-69, 2021.
Article in English | MEDLINE | ID: mdl-32028278

ABSTRACT

OBJECTIVE: We examined whether pituitary adenylate cyclase-activating polypeptide (PACAP) excites proopiomelanocortin (POMC) neurons via PAC1 receptor mediation and transient receptor potential cation (TRPC) channel activation. METHODS: Electrophysiological recordings were done in slices from both intact male and ovariectomized (OVX) female PACAP-Cre mice and eGFP-POMC mice. RESULTS: In recordings from POMC neurons in eGFP-POMC mice, PACAP induced a robust inward current and increase in conductance in voltage clamp, and a depolarization and increase in firing in current clamp. These postsynaptic actions were abolished by inhibitors of the PAC1 receptor, TRPC channels, phospholipase C, phosphatidylinositol-3-kinase, and protein kinase C. Estradiol augmented the PACAP-induced inward current, depolarization, and increased firing, which was abrogated by estrogen receptor (ER) antagonists. In optogenetic recordings from POMC neurons in PACAP-Cre mice, high-frequency photostimulation induced inward currents, depolarizations, and increased firing that were significantly enhanced by Gq-coupled membrane ER signaling in an ER antagonist-sensitive manner. Importantly, the PACAP-induced excitation of POMC neurons was notably reduced in obese, high-fat (HFD)-fed males. In vivo experiments revealed that intra-arcuate nucleus (ARC) PACAP as well as chemogenetic and optogenetic stimulation of ventromedial nucleus (VMN) PACAP neurons produced a significant decrease in energy intake accompanied by an increase in energy expenditure, effects blunted by HFD in males and partially potentiated by estradiol in OVX females. CONCLUSIONS: These findings reveal that the PACAP-induced activation of PAC1 receptor and TRPC5 channels at VMN PACAP/ARC POMC synapses is potentiated by estradiol and attenuated under conditions of diet-induced obesity/insulin resistance. As such, they advance our understanding of how PACAP regulates the homeostatic energy balance circuitry under normal and pathophysiological circumstances.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Energy Metabolism/physiology , Neurons/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Pro-Opiomelanocortin , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Transient Receptor Potential Channels/physiology , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Electrophysiological Phenomena , Energy Metabolism/drug effects , Female , Guinea Pigs , Homeostasis , Male , Mice , Mice, Transgenic , Neurons/drug effects , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Transient Receptor Potential Channels/drug effects
4.
J Neurosci Res ; 98(8): 1549-1560, 2020 08.
Article in English | MEDLINE | ID: mdl-32476165

ABSTRACT

Recent evidence implicates endogenous pituitary adenylyl cyclase activating polypeptide (PACAP) in the aversive effect of nicotine. In the present study, we assessed if nicotine-induced conditioned place preference (CPP) or affective signs of nicotine withdrawal would be altered in the absence of PACAP and if there were any sex-related differences in these responses. Male and female mice lacking PACAP and their wild-type controls were tested for baseline place preference on day 1, received conditioning with saline or nicotine (1 mg/kg) on alternate days for 6 days and were then tested for CPP the next day. Mice were then exposed to four additional conditioning and were tested again for nicotine-induced CPP 24 hr later. Controls were conditioned with saline in both chambers and tested similarly. All mice were then, 96 hr later, challenged with mecamylamine (3 mg/kg), and tested for anxiety-like behaviors 30 min later. Mice were then, 2 hr later, forced to swim for 15 min and then tested for depression-like behaviors 24 hr later. Our results showed that male but not female mice lacking PACAP expressed a significant CPP that was comparable to their wild-type controls. In contrast, male but not female mice lacking PACAP exhibited reduced anxiety- and depression-like behaviors compared to their wild-type controls following the mecamylamine challenge. These results suggest that endogenous PACAP is involved in affective signs of nicotine withdrawal, but there is a sex-related difference in this response.


Subject(s)
Conditioning, Psychological/physiology , Nicotine/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Substance Withdrawal Syndrome/physiopathology , Animals , Anxiety , Depression , Female , Male , Mecamylamine/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency , Sex Factors , Substance Withdrawal Syndrome/genetics , Tobacco Use Disorder/psychology
5.
Cephalalgia ; 39(13): 1606-1622, 2019 11.
Article in English | MEDLINE | ID: mdl-29929378

ABSTRACT

BACKGROUND: The exact mechanisms underlying the onset of a migraine attack are not completely understood. It is, however, now well accepted that the onset of the excruciating throbbing headache of migraine is mediated by the activation and increased mechanosensitivity (i.e. sensitization) of trigeminal nociceptive afferents that innervate the cranial meninges and their related large blood vessels. OBJECTIVES: To provide a critical summary of current understanding of the role that the cranial meninges, their associated vasculature, and immune cells play in meningeal nociception and the ensuing migraine headache. METHODS: We discuss the anatomy of the cranial meninges, their associated vasculature, innervation and immune cell population. We then debate the meningeal neurogenic inflammation hypothesis of migraine and its putative contribution to migraine pain. Finally, we provide insights into potential sources of meningeal inflammation and nociception beyond neurogenic inflammation, and their potential contribution to migraine headache.


Subject(s)
Meninges/physiopathology , Migraine Disorders/physiopathology , Trigeminal Nerve/physiopathology , Afferent Pathways/physiopathology , Animals , Autonomic Fibers, Postganglionic/physiology , Capillary Permeability , Humans , Inflammation/physiopathology , Macrophages/physiology , Mast Cells/physiology , Meninges/blood supply , Meninges/pathology , Mice , Models, Biological , Nociception/physiology , Nociceptors/physiology , Ophthalmic Nerve/physiopathology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Rats , T-Lymphocytes/immunology , Vasodilation
6.
Reproduction ; 155(2): 129-139, 2018 02.
Article in English | MEDLINE | ID: mdl-29101268

ABSTRACT

PACAP is a neuropeptide with diverse functions in various organs, including reproductive system. It is present in the testis in high concentrations, and in addition to the stage-specific expression within the seminiferous tubules, PACAP affects spermatogenesis and the functions of Leydig and Sertoli cells. Mice lacking endogenous PACAP show reduced fertility, but the possibility of abnormalities in spermatogenic signaling has not yet been investigated. Therefore, we performed a detailed morphological analysis of spermatozoa, sperm motility and investigated signaling pathways that play a role during spermatogenesis in knockout mice. No significant alterations were found in testicular morphology or motility of sperm in homozygous and heterozygous PACAP-deficient mice in spite of the moderately increased number of severely damaged sperms. However, we found robust changes in mRNA and/or protein expression of several factors that play an important role in spermatogenesis. Protein kinase A expression was markedly reduced, while downstream phospho-ERK and p38 were elevated in knockout animals. Expression of major transcription factors, such as Sox9 and phospho-Sox9, was decreased, while that of Sox10, as a redundant factor, was increased in PACAP-deficient mice. The reduced phospho-Sox9 expression was partly due to increased expression and activity of phosphatase PP2A in knockout mice. Targets of Sox transcription factors, such as collagen type IV, were reduced in knockout mice. In summary, our results show that lack of PACAP leads to disturbed signaling in spermatogenesis, which could be a factor responsible for reduced fertility in PACAP knockout mice, and further support the role of PACAP in reproduction.


Subject(s)
Biomarkers/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Seminiferous Tubules/pathology , Sperm Motility/physiology , Spermatogenesis , Spermatozoa/pathology , Animals , Male , Mice , Mice, Knockout , Protein Phosphatase 2/metabolism , Reproduction , Seminiferous Tubules/metabolism , Spermatozoa/metabolism
7.
Exp Eye Res ; 169: 134-140, 2018 04.
Article in English | MEDLINE | ID: mdl-29428294

ABSTRACT

The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Intraocular Pressure/physiology , Light , Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency , Receptors, Vasoactive Intestinal Peptide, Type II/deficiency , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Receptors, Vasoactive Intestinal Peptide, Type II/physiology , Tonometry, Ocular
8.
J Headache Pain ; 19(1): 28, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29619773

ABSTRACT

Pituitary adenylate-cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide (VIP)/glucagon/secretin family. PACAP shows particularly high homology (~ 68%) to VIP. Because of the high homology of the amino acid sequences of PACAP and VIP, these peptides share three class B-G-protein coupled receptors: the PAC1-Receptor (PAC1-R), the VPAC1-Receptor (VPAC1-R) and VPAC2-Receptor (VPAC2-R). These receptors have high homology to each other, and their high homology is utilized for these discoveries. This review provides mainly an overview of the history of the discovery of PACAP and its three receptors.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Animals , Humans
9.
Br J Dermatol ; 176(2): 413-422, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27453364

ABSTRACT

BACKGROUND: Sweat secretion is the major function of eccrine sweat glands; when this process is disturbed (paridrosis), serious skin problems can arise. To elucidate the causes of paridrosis, an improved understanding of the regulation, mechanisms and factors underlying sweat production is required. Pituitary adenylate cyclase-activating polypeptide (PACAP) exhibits pleiotropic functions that are mediated via its receptors [PACAP-specific receptor (PAC1R), vasoactive intestinal peptide (VIP) receptor type 1 (VPAC1R) and VPAC2R]. Although some studies have suggested a role for PACAP in the skin and several exocrine glands, the effects of PACAP on the process of eccrine sweat secretion have not been examined. OBJECTIVES: To investigate the effect of PACAP on eccrine sweat secretion. METHODS: Reverse transcriptase-polymerase chain reaction and immunostaining were used to determine the expression and localization of PACAP and its receptors in mouse and human eccrine sweat glands. We injected PACAP subcutaneously into the footpads of mice and used the starch-iodine test to visualize sweat-secreting glands. RESULTS: Immunostaining showed PACAP and PAC1R expression by secretory cells from mouse and human sweat glands. PACAP immunoreactivity was also localized in nerve fibres around eccrine sweat glands. PACAP significantly promoted sweat secretion at the injection site, and this could be blocked by the PAC1R-antagonist PACAP6-38. VIP, an agonist of VPAC1R and VPAC2R, failed to induce sweat secretion. CONCLUSIONS: This is the first report demonstrating that PACAP may play a crucial role in sweat secretion via its action on PAC1R located in eccrine sweat glands. The mechanisms underlying the role of PACAP in sweat secretion may provide new therapeutic options to combat sweating disorders.


Subject(s)
Eccrine Glands/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Sweat/metabolism , Adult , Animals , Female , Foot , Humans , Male , Mice, Inbred C57BL , Nerve Fibers/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , RNA, Messenger/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/physiology , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/physiology
10.
J Neurochem ; 137(3): 384-93, 2016 May.
Article in English | MEDLINE | ID: mdl-26851652

ABSTRACT

Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.


Subject(s)
Astrocytes/metabolism , Glutamic Acid/metabolism , Neurons/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Amino Acid Transport Systems, Acidic , Animals , Cystine/metabolism , Female , Neurons/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/biosynthesis , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/biosynthesis , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Synaptic Transmission/physiology , Up-Regulation/genetics
11.
J Neurosci Res ; 94(12): 1472-1487, 2016 12.
Article in English | MEDLINE | ID: mdl-27717098

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are neuropeptides with wide, complementary, and overlapping distributions in the central and peripheral nervous systems, where they exert important regulatory roles in many physiological processes. VIP and PACAP display a large range of biological cellular targets and functions in the adult nervous system including regulation of neurotransmission and neuroendocrine secretion and neuroprotective and neuroimmune responses. As the main focus of the present review, VIP and PACAP also have been long implicated in nervous system development and maturation through their interaction with the seven transmembrane domain G protein-coupled receptors, PAC1, VPAC1, and VPAC2, initiating multiple signaling pathways. Compared with PAC1, which solely binds PACAP with very high affinity, VPACs exhibit high affinities for both VIP and PACAP but differ from each other because of their pharmacological profile for both natural accessory peptides and synthetic or chimeric molecules, with agonistic and antagonistic properties. Complementary to initial pharmacological studies, transgenic animals lacking these neuropeptides or their receptors have been used to further characterize the neuroanatomical, electrophysiological, and behavioral roles of PACAP and VIP in the developing central nervous system. In this review, we recapitulate the critical steps and processes guiding/driving neurodevelopment in vertebrates and superimposing the potential contribution of PACAP and VIP receptors on the given timeline. We also describe how alterations in VIP/PACAP signaling may contribute to both (neuro)developmental and adult pathologies and suggest that tuning of VIP/PACAP signaling in a spatiotemporal manner may represent a novel avenue for preventive therapies of neurological and psychiatric disorders. © 2016 Wiley Periodicals, Inc.


Subject(s)
Central Nervous System/growth & development , Central Nervous System/physiology , Neuropeptides/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Signal Transduction/physiology , Vasoactive Intestinal Peptide/physiology , Animals , Humans , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
12.
Neurobiol Learn Mem ; 118: 120-4, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25490058

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) has a broad spectrum of biological functions including neurotransmitter, neurotrophic and neuroprotective. Moreover, it has been suggested that PACAP plays a role in the modulation of learning and memory as well as on the modulation of glutamate signaling. Thus, in the current study we investigated in the CA1 region of hippocampus and in the basolateral amygdala (BLA) the role of PACAP in the consolidation and extinction of contextual fear conditioning (CFC) and the interaction between PACAP and NMDA receptors. Male rats with cannulae implanted in the CA1 region of the hippocampus or in the BLA received immediately after the training or extinction training of the CFC infusions of the Vehicle, PACAP-38 (40 pg/side), PACAP 6-38 (40 pg/side) or PACAP 6-38 plus D-serine (50 µg/side). After 24h, the animals were subjected to a 3-min retention test. The results indicated that in the CA1 region of hippocampus, PACAP participates in the consolidation and extinction of the CFC, and in the BLA, PACAP participates only in the consolidation of the CFC. Additionally, the results suggest that the action of PACAP on the consolidation and extinction of the CFC is mediated by the glutamate NMDA receptors.


Subject(s)
Basolateral Nuclear Complex/physiology , CA1 Region, Hippocampal/physiology , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Animals , Basolateral Nuclear Complex/drug effects , CA1 Region, Hippocampal/drug effects , Conditioning, Classical/drug effects , Extinction, Psychological/drug effects , Fear/drug effects , Male , Motor Activity/drug effects , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Rats , Rats, Wistar
13.
J Cell Sci ; 125(Pt 6): 1401-6, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22328515

ABSTRACT

The neuropeptide pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) has been implicated in the induction of synaptic plasticity at the excitatory glutamatergic synapse. In particular, recent studies have shown that it is involved in the regulation of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor activation. Here we demonstrate the effect of PACAP38 on the modulation of dendritic spine morphology through a disintegrin and metalloproteinase 10 (ADAM10)-N-cadherin-AMPA receptor signaling pathway. Treatment of primary hippocampal neurons with PACAP38 induced an accumulation of ADAM10 at the postsynaptic membrane. This event led to a significant decrease of dendritic spine head width and to a concomitant reduction of GluR1 colocalization with postsynaptic markers. The PACAP38-induced effect on dendritic spine head width was prevented by either treatment with the ADAM10-specific inhibitor or transfection of a cleavage-defective N-cadherin construct mutated in the ADAM10 cleavage site. Overall, our findings reveal that PACAP38 is involved in the modulation of dendritic spine morphology in hippocampal neurons, and assign to the ADAM10-N-cadherin signaling pathway a crucial role in this modification of the excitatory glutamatergic synapse.


Subject(s)
ADAM Proteins/physiology , Cadherins/physiology , Dendritic Spines/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/physiology , Neuronal Plasticity/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Signal Transduction/physiology , ADAM Proteins/antagonists & inhibitors , ADAM10 Protein , Animals , Cadherins/chemistry , Cadherins/genetics , Glutamic Acid/physiology , Hippocampus/cytology , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Primary Cell Culture , Rats
14.
J Neurosci ; 32(41): 14165-77, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-23055486

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide expressed in the brain, where it may act as a neuromodulator or neurotransmitter contributing to different behavioral processes and stress responses. PACAP is highly expressed in the amygdala, a subcortical brain area involved in both innate and learned fear, suggesting a role for PACAP-mediated signaling in fear-related behaviors. It remains unknown, however, whether and how PACAP affects neuronal and synaptic functions in the amygdala. In this study, we focused on neurons in the lateral division of the central nucleus (CeL), where PACAP-positive presynaptic terminals were predominantly found within the amygdala. In our experiments on rat brain slices, exogenous application of PACAP did not affect either resting membrane potential or membrane excitability of CeL neurons. PACAP enhanced, however, excitatory synaptic transmission in projections from the basolateral nucleus (BLA) to the CeL, while inhibitory transmission in the same pathway was unaffected. PACAP-induced potentiation of glutamatergic synaptic responses persisted after the washout of PACAP and was blocked by the VPAC1 receptor antagonist, suggesting that VPAC1 receptors might mediate synaptic effects of PACAP in the CeL. Moreover, potentiation of synaptic transmission by PACAP was dependent on postsynaptic activation of protein kinase A and calcium/calmodulin-dependent protein kinase II, as well as synaptic targeting of GluR1 subunit-containing AMPA receptors. Thus, PACAP may upregulate excitatory neurotransmission in the BLA-CeL pathway postsynaptically, consistent with the known roles of PACAP in control of fear-related behaviors.


Subject(s)
Amygdala/physiology , Excitatory Postsynaptic Potentials/physiology , Gene Expression Regulation , Nerve Net/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Animals , Female , Male , Pituitary Adenylate Cyclase-Activating Polypeptide/biosynthesis , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Rats , Rats, Sprague-Dawley
15.
Biol Reprod ; 88(2): 35, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23197164

ABSTRACT

The pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are mainly under the control of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates male and female gonadal function. GnRH is released in a pulsatile manner from the hypothalamus, and the frequency of GnRH pulses determines the dominance of output of LH and FSH from pituitary gonadotrophs. That is, more rapid pulses of GnRH preferentially increase synthesis and secretion of LH, whereas FSH is preferentially stimulated by slower GnRH pulses. The detailed mechanisms underlying this phenomenon remain unknown. Pituitary adenylate cyclase-activating polypeptide (PACAP) was originally identified as a hypothalamic activator of cAMP production in pituitary cells. PACAP is produced within the pituitary gonadotroph as well as in the central nervous system. PACAP stimulates gonadotropin alpha-, LHbeta-, and FSHbeta-subunits as well as receptors for GnRH in the pituitary gonadotropin-secreting cells. In addition, its own receptor, PACAP type I receptor (PAC1R), is also regulated by PACAP in gonadotrophs. GnRH stimulates expression of PACAP as well as PAC1R, and lower frequencies of GnRH pulses preferentially increase PACAP and PAC1R expression in gonadotrophs. Increasing concentrations of PACAP further increase the levels of gonadotropin subunit and that increasing amounts of PAC1R in gonadotrophs potentiates the effects of PACAP or GnRH on gonadotropin subunit expression. In addition, we have observed that GnRH-increased FSHbeta-subunit expression was prevented in the presence of PAC1R antagonist. These observations suggest the involvement of locally produced PACAP and its PAC1R in the differential regulation of specific gonadotropin subunit expression by pulsatile GnRH stimulation. Here, we review the possible involvement of PACAP and its PAC1R in gonadotropin control on the basis of our observations with gonadotroph cell lines.


Subject(s)
Follicle Stimulating Hormone, beta Subunit/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Luteinizing Hormone, beta Subunit/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Pituitary Gland/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Animals , Cell Line , Follicle Stimulating Hormone, beta Subunit/genetics , Follistatin/physiology , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Gonadotrophs/cytology , Gonadotrophs/drug effects , Gonadotrophs/metabolism , Luteinizing Hormone, beta Subunit/genetics , Mice , Models, Animal , Pituitary Gland/cytology , Pituitary Gland/drug effects
16.
Am J Physiol Regul Integr Comp Physiol ; 304(12): R1070-84, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23594614

ABSTRACT

Consistent with a critical role in respiratory and autonomic stress responses, the carotid bodies are strongly excited by pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide implicated in stress responses throughout the sympathetic nervous system. PACAP excites isolated carotid body glomus cells via activation of PAC1 receptors, with one study suggesting PAC1-induced excitation is due entirely to protein kinase A (PKA)-mediated inhibition of TASK channels. However, in other systems, PAC1 is known to be coupled to multiple intracellular signaling pathways, including PKA, phospholipase C (PLC), phospholipase D (PLD), and protein kinase C (PKC), that trigger multiple downstream effectors including increased Ca²âº mobilization, inhibition of various K⁺ channels, and activation of nonselective cation channels. This study tests if non-PKA/TASK channel signaling helps mediate the stimulatory effects of PACAP on the carotid body. Using an ex vivo arterially perfused rat carotid body preparation, we show that PACAP-38 stimulates carotid sinus nerve activity in a biphasic manner (peak response, falling to plateau). PKA blocker H-89 only reduced the plateau response (~41%), whereas the TASK-1-like K⁺ channel blocker/transient receptor potential vanilloid 1 channel agonist anandamide only inhibited the peak response (~48%), suggesting involvement of additional pathways. The PLD blocker CAY10594 significantly inhibited both peak and plateau responses. The PLC blocker U73122 decimated both peak and plateau responses. Brefeldin A, a blocker of Epac (cAMP-activated guanine exchange factor, reported to link Gs-coupled receptors with PLC/PLD), also reduced both phases of the response, as did blocking signaling downstream of PLC/PLD with the PKC inhibitors chelerythrine chloride and GF109203X. Suggesting the involvement of non-TASK ion channels in the effects of PACAP, the A-type K⁺ channel blocker 4-aminopyridine, and the putative transient receptor potential channel (TRPC)/T-type calcium channel blocker SKF96365 each significantly inhibited the peak and steady-state responses. These data suggest the stimulatory effect of PACAP-38 on carotid body sensory activity is mediated through multiple signaling pathways: the PLC-PKC pathways predominates, with TRPC and/or T-type channel activation and Kv channel inactivation; only partial involvement is attributable to PKA and PLD activation.


Subject(s)
Carotid Body/physiology , Neurons, Afferent/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Respiratory Physiological Phenomena , Signal Transduction/physiology , Stress, Physiological/physiology , Sympathetic Nervous System/physiology , Animals , Arachidonic Acids/pharmacology , Carotid Body/drug effects , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/drug effects , Endocannabinoids/pharmacology , Enzyme Inhibitors/pharmacology , Estrenes/pharmacology , Male , Models, Animal , Nerve Tissue Proteins , Neurons, Afferent/drug effects , Phosphodiesterase Inhibitors/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Polyunsaturated Alkamides/pharmacology , Potassium Channels, Tandem Pore Domain/drug effects , Potassium Channels, Tandem Pore Domain/physiology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/drug effects , Pyrrolidinones/pharmacology , Rats , Rats, Sprague-Dawley , Respiratory Physiological Phenomena/drug effects , Signal Transduction/drug effects , Sympathetic Nervous System/drug effects
17.
Handb Exp Pharmacol ; 218: 477-511, 2013.
Article in English | MEDLINE | ID: mdl-24092352

ABSTRACT

Pulmonary hypertension (PH) is a debilitating disease with a dismal prognosis. Recent advances in therapy (e.g. prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase 5 inhibitors), whilst significantly improving survival, simply delay the inexorable progression of the disease. An array of endogenous vasoconstrictors and vasodilators coordinates to maintain pulmonary vascular homeostasis and morphological integrity, and an imbalance in the expression and function of these mediators precipitates PH and related lung diseases. The vasodilator peptides, including natriuretic peptides, vasoactive intestinal peptide, calcitonin gene-related peptide and adrenomedullin, trigger the production of cyclic nucleotides (e.g. cGMP and cAMP) in many pulmonary cell types, which in tandem exert a multifaceted protection against the pathogenesis of PH, encompassing vasodilatation, inhibition of vascular smooth muscle proliferation, anti-inflammatory and anti-fibrotic effects and salutary actions on the right ventricle. This coordinated beneficial activity underpins a contemporary perception that to advance treatment of PH it is necessary to offset multiple disease mechanisms (i.e. the pulmonary vasoconstriction, pulmonary vascular remodelling, right ventricular dysfunction). Thus, there is considerable potential for harnessing the favourable activity of peptide mediators to offer a novel, efficacious therapeutic approach in PH.


Subject(s)
Hypertension, Pulmonary/etiology , Peptides/physiology , Adrenomedullin/physiology , Animals , Calcitonin Gene-Related Peptide/physiology , Endothelin-1/physiology , Humans , Hypertension, Pulmonary/drug therapy , Natriuretic Peptides/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Vasoactive Intestinal Peptide/physiology
18.
Proc Natl Acad Sci U S A ; 106(6): 2012-7, 2009 Feb 10.
Article in English | MEDLINE | ID: mdl-19190179

ABSTRACT

Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a widely expressed neuropeptide originally discovered in the hypothalamus. It closely resembles vasoactive intestinal peptide (VIP), a neuropeptide well known to inhibit macrophage activity, promote Th2-type responses, and enhance regulatory T cell (Treg) production. Recent studies have shown that administration of PACAP, like VIP, can attenuate dramatically the clinical and pathological features of murine models of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis. However, specific roles (if any) of endogenous VIP and PACAP in the protection against autoimmune diseases have not been explored. Here, we subjected PACAP-deficient mice to myelin oligodendrocyte glycoprotein (MOG(35-55))-induced EAE. MOG immunization of PACAP-deficient mice triggered heightened clinical and pathological manifestations of EAE compared to wild-type mice. The increased sensitivity was accompanied by enhanced mRNA expression of proinflammatory cytokines (TNFalpha, IL-6, IFN-gamma, IL-12p35, IL-23p19, and IL-17), chemokines (MCP-1/CCL2, MIP-1alpha/CCL3, and RANTES/CCL5), and chemotactic factor receptors (CCR1, CCR2, and CCR5), but downregulation of the anti-inflammatory cytokines (IL-4, IL-10, and TGF-beta) in the spinal cord. Moreover, the abundance of CD4(+)CD25(+)FoxP3(+) Tregs in lymph nodes and levels of FoxP3 mRNA in the spinal cord were also diminished. The reduction in Tregs was associated with increased proliferation and decreased TGF-beta secretion in lymph node cultures stimulated with MOG. These results demonstrate that endogenous PACAP provides protection in EAE and identify PACAP as an intrinsic regulator of Treg abundance after inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/etiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , T-Lymphocytes, Regulatory/pathology , Animals , Autoimmune Diseases/etiology , Cytokines/genetics , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Gene Expression Regulation/immunology , Lymph Nodes/immunology , Lymphocyte Count , Mice , Mice, Knockout , Myelin Proteins , Myelin-Associated Glycoprotein , Myelin-Oligodendrocyte Glycoprotein , Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency , Receptors, CCR/genetics , Spinal Cord/metabolism , Vasoactive Intestinal Peptide/physiology
19.
Pharmacol Rev ; 61(3): 283-357, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19805477

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Animals , Humans , Pituitary Adenylate Cyclase-Activating Polypeptide/chemistry , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/chemistry
20.
Int J Mol Sci ; 13(7): 8430-8448, 2012.
Article in English | MEDLINE | ID: mdl-22942712

ABSTRACT

Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system.


Subject(s)
Brain Injuries/drug therapy , Neuroprotective Agents/therapeutic use , Peripheral Nerve Injuries/drug therapy , Pituitary Adenylate Cyclase-Activating Polypeptide/therapeutic use , Spinal Cord Injuries/drug therapy , Animals , Brain Injuries/metabolism , Brain Injuries/physiopathology , Humans , Nerve Regeneration , Neuroprotective Agents/pharmacology , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/physiopathology , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL