Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 532
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(12): e2316230121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483987

ABSTRACT

Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.


Subject(s)
Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Humans , TRPP Cation Channels/metabolism , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Cryoelectron Microscopy , Molecular Docking Simulation , Ion Channels
2.
Proc Natl Acad Sci U S A ; 121(4): e2317344121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241440

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of chronic kidney disease and the fourth leading cause of end-stage kidney disease, accounting for over 50% of prevalent cases requiring renal replacement therapy. There is a pressing need for improved therapy for ADPKD. Recent insights into the pathophysiology of ADPKD revealed that cyst cells undergo metabolic changes that up-regulate aerobic glycolysis in lieu of mitochondrial respiration for energy production, a process that ostensibly fuels their increased proliferation. The present work leverages this metabolic disruption as a way to selectively target cyst cells for apoptosis. This small-molecule therapeutic strategy utilizes 11beta-dichloro, a repurposed DNA-damaging anti-tumor agent that induces apoptosis by exacerbating mitochondrial oxidative stress. Here, we demonstrate that 11beta-dichloro is effective in delaying cyst growth and its associated inflammatory and fibrotic events, thus preserving kidney function in perinatal and adult mouse models of ADPKD. In both models, the cyst cells with homozygous inactivation of Pkd1 show enhanced oxidative stress following treatment with 11beta-dichloro and undergo apoptosis. Co-administration of the antioxidant vitamin E negated the therapeutic benefit of 11beta-dichloro in vivo, supporting the conclusion that oxidative stress is a key component of the mechanism of action. As a preclinical development primer, we also synthesized and tested an 11beta-dichloro derivative that cannot directly alkylate DNA, while retaining pro-oxidant features. This derivative nonetheless maintains excellent anti-cystic properties in vivo and emerges as the lead candidate for development.


Subject(s)
Cysts , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Mice , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Cell Proliferation , Polycystic Kidney Diseases/metabolism , Apoptosis , Oxidative Stress , Cysts/metabolism , DNA/metabolism , Kidney/metabolism , TRPP Cation Channels/genetics
3.
Proc Natl Acad Sci U S A ; 119(30): e2121267119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867829

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) affects more than 500,000 individuals in the United States alone. In most cases, ADPKD is caused by a loss-of-function mutation in the PKD1 gene, which encodes polycystin-1 (PC1). Previous studies reported that PC1 interacts with atypical protein kinase C (aPKC). Here we show that PC1 binds to the ζ isoform of aPKC (PKCζ) and identify two PKCζ phosphorylation sites on PC1's C-terminal tail. PKCζ expression is down-regulated in patients with ADPKD and orthologous and nonorthologous PKD mouse models. We find that the US Food and Drug Administration-approved drug FTY720 restores PKCζ expression in in vitro and in vivo models of polycystic kidney disease (PKD) and this correlates with ameliorated disease progression in multiple PKD mouse models. Importantly, we show that FTY720 treatment is less effective in PKCζ null versions of these PKD mouse models, elucidating a PKCζ-specific mechanism of action that includes inhibiting STAT3 activity and cyst-lining cell proliferation. Taken together, our results reveal that PKCζ down-regulation is a hallmark of PKD and that its stabilization by FTY720 may represent a therapeutic approach to the treat the disease.


Subject(s)
Fingolimod Hydrochloride , Polycystic Kidney, Autosomal Dominant , Protein Kinase C , Animals , Disease Models, Animal , Disease Progression , Enzyme Activation , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Humans , Mice , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/enzymology , Protein Kinase C/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
4.
Kidney Int ; 105(4): 661-663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519230

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) has long been considered a genetic renal disorder, but emerging evidence suggests that the immune microenvironment within the kidney plays a pivotal role in disease progression and severity. In recent years, the previously obscure cytokine interleukin-37 has proved a strong inhibitor of innate immunity in multiple disease models. However, its role in ADPKD has not received scrutiny. In a provocative study published in the current issue, Zylberberg et al. show that interleukin-37 activates interferon signaling in renal macrophages, which inhibits ADPKD initiation. This finding identifies interleukin-37 as a potential viable immunomodulatory therapy for ADPKD.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Kidney , Cytokines , Disease Progression , Interleukins
5.
Kidney Int ; 105(4): 731-743, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38158181

ABSTRACT

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a leading cause of kidney failure and is associated with substantial morbidity and mortality. Interstitial inflammation is attributed to the action of infiltrating macrophages and is a feature thought to aggravate disease progression. Here, we investigated the therapeutic potential of the anti-inflammatory IL37b cytokine as a treatment for ADPKD using genetic mouse models, demonstrating that transgenic expression of human IL37b reduced collecting duct cyst burden in both early and adult-onset ADPKD rodent models. Moreover, injection of recombinant human IL37b could also reduce cyst burden in early onset ADPKD mice, an observation not associated with increased macrophage number at early stages of cyst formation. Interestingly, transgenic IL37b expression also did not alter macrophage numbers in advanced disease. Whole kidney RNA-seq highlighted an IL37b-mediated upregulation of the interferon signaling pathway and single-cell RNA-seq established that these changes originate at least partly from kidney resident macrophages. We further found that blocking type I interferon signaling in mice expressing IL37b resulted in increased cyst number, confirming this as an important pathway by which IL37b exerts its beneficial effects. Thus, our studies show that IL37b promotes interferon signaling in kidney resident macrophages which suppresses cyst initiation, identifying this protein as a potential therapy for ADPKD.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Mice , Humans , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Inflammation/genetics , Inflammation/complications , Kidney/metabolism , Cysts/complications , Interleukins , Interferons
6.
Hum Mol Genet ; 31(10): 1560-1573, 2022 05 19.
Article in English | MEDLINE | ID: mdl-34957500

ABSTRACT

Metabolic reprogramming is a potential treatment strategy for autosomal dominant polycystic kidney disease (ADPKD). Metformin has been shown to inhibit the early stages of cyst formation in animal models. However, metformin can lead to lactic acidosis in diabetic patients with advanced chronic kidney disease, and its efficacy in ADPKD is still not fully understood. Here, we investigated the effect of metformin in an established hypomorphic mouse model of PKD that presents stable and heritable knockdown of Pkd1. The Pkd1 miRNA transgenic mice of both genders were randomized to receive metformin or saline injections. Metformin was administrated through daily intraperitoneal injection from postnatal day 35 for 4 weeks. Unexpectedly, metformin treatment at a concentration of 150 mg/kg increased disease severity, including kidney-to-body weight ratio, cystic index and plasma BUN levels, and was associated with increased renal tubular cell proliferation and plasma lactate levels. Functional enrichment analysis for cDNA microarrays from kidney samples revealed significant enrichment of several pro-proliferative pathways including ß-catenin, hypoxia-inducible factor-1α, protein kinase Cα and Notch signaling pathways in the metformin-treated mutant mice. The plasma metformin concentrations were still within the recommended therapeutic range for type 2 diabetic patients. Short-term metformin treatment in a second Pkd1 hypomorphic model (Pkd1RC/RC) was however neutral. These results demonstrate that metformin may exacerbate late-stage cyst growth associated with the activation of lactate-related signaling pathways in Pkd1 deficiency. Our findings indicate that using metformin in the later stage of ADPKD might accelerate disease progression and call for the cautious use of metformin in these patients.


Subject(s)
Cysts , Metformin , Polycystic Kidney, Autosomal Dominant , Animals , Cysts/metabolism , Disease Models, Animal , Female , Kidney/metabolism , Lactic Acid/metabolism , Male , Metformin/metabolism , Metformin/pharmacology , Mice , Mice, Transgenic , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
7.
Eur J Clin Invest ; 54(4): e14147, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38071418

ABSTRACT

BACKGROUND: Polycystic liver disease (PLD) is a common extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD). Bile acids may play a role in PLD pathogenesis. We performed a post-hoc exploratory analysis of bile acids in ADPKD patients, who had participated in a trial on the effect of a somatostatin analogue. Our hypothesis was that serum bile acid levels increase in PLD, and that lanreotide, which reduces liver growth, may also reduce bile acid levels. Furthermore, in PLD, urinary excretion of bile acids might contribute to renal disease. METHODS: With liquid chromatography-mass spectrometry, 11 bile acids in serum and 6 in urine were quantified in 105 PLD ADPKD patients and 52 age-, sex-, mutation- and eGFR-matched non-PLD ADPKD patients. Sampling was done at baseline and after 120 weeks of either lanreotide or standard care. RESULTS: Baseline serum levels of taurine- and glycine-conjugated bile acids were higher in patients with larger livers. In PLD patients, multiple bile acids decreased upon treatment with lanreotide but remained stable in untreated subjects. Changes over time did not correlate with changes in liver volume. Urine bile acid levels did not change and did not correlate with renal disease progression. CONCLUSION: In ADPKD patients with PLD, baseline serum bile acids were associated with liver volume. Lanreotide reduced bile acid levels and has previously been shown to reduce liver volume. However, in this study, the decrease in bile acids was not associated with the change in liver volume.


Subject(s)
Cysts , Liver Diseases , Peptides, Cyclic , Polycystic Kidney, Autosomal Dominant , Somatostatin/analogs & derivatives , Humans , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/pathology , Liver/pathology , Liver Diseases/drug therapy , Liver Diseases/complications , Somatostatin/therapeutic use , Somatostatin/pharmacology , Bile Acids and Salts
8.
Biomacromolecules ; 25(5): 2749-2761, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38652072

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a complex disorder characterized by uncontrolled renal cyst growth, leading to kidney function decline. The multifaceted nature of ADPKD suggests that single-pathway interventions using individual small molecule drugs may not be optimally effective. As such, a strategy encompassing combination therapy that addresses multiple ADPKD-associated signaling pathways could offer synergistic therapeutic results. However, severe off-targeting side effects of small molecule drugs pose a major hurdle to their clinical transition. To address this, we identified four drug candidates from ADPKD clinical trials, bardoxolone methyl (Bar), octreotide (Oct), salsalate (Sal), and pravastatin (Pra), and incorporated them into peptide amphiphile micelles containing the RGD peptide (GRGDSP), which binds to the basolateral surface of renal tubules via integrin receptors on the extracellular matrix. We hypothesized that encapsulating drug combinations into RGD micelles would enable targeting to the basolateral side of renal tubules, which is the site of disease, via renal secretion, leading to superior therapeutic benefits compared to free drugs. To test this, we first evaluated the synergistic effect of drug combinations using the 20% inhibitory concentration for each drug (IC20) on renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice. Next, we synthesized and characterized the RGD micelles encapsulated with drug combinations and measured their in vitro therapeutic effects via a 3D PKD growth model. Upon both IV and IP injections in vivo, RGD micelles showed a significantly higher accumulation in the kidneys compared to NT micelles, and the renal access of RGD micelles was significantly reduced after the inhibition of renal secretion. Specifically, both Bar+Oct and Bar+Sal in the RGD micelle treatment showed enhanced therapeutic efficacy in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) with a significantly lower KW/BW ratio and cyst index as compared to PBS and free drug-treated controls, while other combinations did not show a significant difference. Hence, we demonstrate that renal targeting through basolateral targeting micelles enhances the therapeutic potential of combination therapy in genetic kidney disease.


Subject(s)
Drug Delivery Systems , Micelles , Animals , Mice , Drug Delivery Systems/methods , Humans , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/pathology , Oligopeptides/chemistry , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/pathology
9.
Biol Cell ; 115(1): e2200037, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36165233

ABSTRACT

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is characterised by progressive cysts formation and renal enlargement that in most of cases leads to end stage of renal disease (ESRD). This pathology is caused by mutations of either PKD1 or PKD2 genes that encode for polycystin-1 (PC1) and polycystin-2 (PC2), respectively. These proteins function as receptor-channel complex able to regulate calcium homeostasis. PKD1/2 loss of function impairs different signalling pathways including cAMP and mTOR that are considered therapeutic targets for this disease. In fact, Tolvaptan, a vasopressin-2 antagonist that reduces cAMP levels, is the only drug approved for ADPKD treatment. Nevertheless, some ADPKD patients developed side effects in response to Tolvaptan including liver damage. Conversely, mTOR inhibitors that induced disease regression in ADPKD animal models failed the clinical trials. RESULTS: Here, we show that the inhibition of mTOR causes the activation of autophagy in ADPKD cells that could reduce therapy effectiveness by drug degradation through the autophagic vesicles. Consistently, the combined treatment with rapamycin and chloroquine, an autophagy inhibitor, potentiates the decrease of cell proliferation induced by rapamycin. To overcome the dangerous activation of autophagy by mTOR inhibition, we targeted MDM2 (a downstream effector of mTOR signalling) that is involved in TP53 degradation by using RG7112, a small-molecule MDM2 inhibitor used for the treatment of haematologic malignancies. The inhibition of MDM2 by RG7112 prevents TP53 degradation and increases p21 expression leading to the decrease of cell proliferation and the activation of apoptosis. CONCLUSION: The targeting of MDM2 by RG7112 might represent a new therapeutic option for the treatment of ADPKD.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , TRPP Cation Channels/pharmacology , Tolvaptan/pharmacology , Tolvaptan/therapeutic use , Cell Proliferation , Cell Line , TOR Serine-Threonine Kinases/metabolism , Sirolimus/pharmacology , Apoptosis
10.
Kidney Blood Press Res ; 49(1): 60-68, 2024.
Article in English | MEDLINE | ID: mdl-38167222

ABSTRACT

INTRODUCTION: It has been reported that rapamycin inhibited inflammation in renal interstitial diseases. We therefore hypothesized that rapamycin could attenuate inflammation in polycystic kidney disease (PKD). METHODS: Han:SPRD rats were treated with rapamycin by daily gavage from 4 weeks to 12 weeks of age at the dosage of 0.5 mg/kg/day (low dose) or 1 mg/kg/day (high dose). WT9-12 human PKD cells were treated with various concentrations of rapamycin. RESULTS: Two-kidney/total body weight ratio and cystic index in Cy/+ kidneys were significantly reduced with the treatment of low-dose rapamycin and further reduced by the treatment with high-dose rapamycin. However, the renal function of Cy/+ rats was equally improved by the treatment with either low-dose or high-dose rapamycin. The renal cell proliferation was significantly decreased in Cy/+ kidneys with the treatment of low-dose rapamycin and was further decreased with the treatment of high-dose rapamycin as examined by Ki67 staining. The phosphorylation of S6K in cystic kidneys was decreased by low-dose rapamycin and further decreased by high-dose rapamycin. Both low-dose and high-dose rapamycin treatment decreased macrophage infiltration and the expression of complement factor B (CFB), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-α) to a similar level. The expression of CFB, MCP-1, and TNF-α and phosphorylation of S6K were inhibited in WT9-12 cells treated with 10 nm rapamycin at 24 h and 48 h, respectively. Moreover, the phosphorylation of Akt was not increased by 1 nm and 10 nm of rapamycin and enhanced by 1 µm rapamycin treatment. Interestingly, WT9-12 cell proliferation could be inhibited by 1 µm rapamycin. CONCLUSION: Low dose of rapamycin could inhibit inflammation and protect renal function in PKD. Inflammation is more sensitive than cell proliferation in response to rapamycin treatment in PKD.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Rats , Humans , Animals , Sirolimus/pharmacology , Sirolimus/therapeutic use , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/metabolism , Tumor Necrosis Factor-alpha , Polycystic Kidney Diseases/pathology , Kidney/pathology , Inflammation/pathology , Cell Proliferation , Disease Models, Animal
11.
Pediatr Nephrol ; 39(5): 1481-1490, 2024 May.
Article in English | MEDLINE | ID: mdl-38091246

ABSTRACT

BACKGROUND: Tolvaptan preserves kidney function in adults with autosomal dominant polycystic kidney disease (ADPKD) at elevated risk of rapid progression. A trial (NCT02964273) evaluated tolvaptan safety and pharmacodynamics in children (5-17 years). However, progression risk was not part of study eligibility criteria due to lack of validated criteria for risk assessment in children. As risk estimation is important to guide clinical management, baseline characteristics of the study participants were retrospectively evaluated to determine whether risk of rapid disease progression in pediatric ADPKD can be assessed and to identify parameters relevant for risk estimation. METHODS: Four academic pediatric nephrologists reviewed baseline data and rated participant risk from 1 (lowest) to 5 (highest) based on clinical judgement and the literature. Three primary reviewers independently scored all cases, with each case reviewed by two primary reviewers. For cases with discordant ratings (≥ 2-point difference), the fourth reviewer provided a secondary rating blinded to the primary evaluations. Study participants with discordant ratings and/or for whom data were lacking were later discussed to clarify parameters relevant to risk estimation. RESULTS: Of 90 evaluable subjects, primary reviews of 69 (77%) were concordant. The proportion considered at risk of rapid progression (final mean rating ≥ 3.5) by age group was: 15-17 years, 27/34 (79%); 12- < 15, 9/32 (28%); 4- < 12, 8/24 (33%). The panelists agreed on characteristics important for risk determination: age, kidney imaging, kidney function, blood pressure, urine protein, and genetics. CONCLUSIONS: High ratings concordance and agreement among reviewers on relevant clinical characteristics support the feasibility of pediatric risk assessment.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Tolvaptan , Adolescent , Child , Humans , Antidiuretic Hormone Receptor Antagonists/adverse effects , Disease Progression , Glomerular Filtration Rate , Kidney , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/drug therapy , Retrospective Studies , Tolvaptan/adverse effects
12.
BMC Nephrol ; 25(1): 206, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918734

ABSTRACT

BACKGROUND: Tubular biomarkers, which reflect tubular dysfunction or injury, are associated with incident chronic kidney disease and kidney function decline. Several tubular biomarkers have also been implicated in the progression of autosomal dominant polycystic kidney disease (ADPKD). We evaluated changes in multiple tubular biomarkers in four groups of patients with ADPKD who participated in one of two clinical trials (metformin therapy and diet-induced weight loss), based on evidence suggesting that such interventions could reduce tubule injury. METHODS: 66 participants (26 M/40 F) with ADPKD and an estimated glomerular filtration rate (eGFR) ≥ 30 ml/min/1.73m2 who participated in either a metformin clinical trial (n = 22 metformin; n = 23 placebo) or dietary weight loss study (n = 10 daily caloric restriction [DCR]; n = 11 intermittent fasting [IMF]) were included in assessments of urinary tubular biomarkers (kidney injury molecule-1 [KIM-1], fatty-acid binding protein [FABP], interleukin-18 [IL-18], monocyte chemoattractant protein-1 [MCP-1], neutrophil gelatinase-associated lipocalin [NGAL], clusterin, and human cartilage glycoprotein-40 [YKL-40]; normalized to urine creatinine), at baseline and 12 months. The association of baseline tubular biomarkers with both baseline and change in height-adjusted total kidney volume (HtTKV; percent change from baseline to 12 months) and estimated glomerular filtration rate (eGFR; absolute change at 12 months vs. baseline), with covariate adjustment, was also assessed using multiple linear regression. RESULTS: Mean ± s.d. age was 48 ± 8 years, eGFR was 71 ± 16 ml/min/1.73m2, and baseline BMI was 30.5 ± 5.9 kg/m2. None of the tubular biomarkers changed with any intervention as compared to placebo. Additionally, baseline tubular biomarkers were not associated with either baseline or change in eGFR or HtTKV over 12 months, after adjustments for demographics, group assignment, and clinical characteristics. CONCLUSIONS: Tubular biomarkers did not change with dietary-induced weight loss or metformin, nor did they associate with kidney disease progression, in this cohort of patients with ADPKD.


Subject(s)
Biomarkers , Caloric Restriction , Glomerular Filtration Rate , Kidney Tubules , Metformin , Polycystic Kidney, Autosomal Dominant , Humans , Metformin/therapeutic use , Polycystic Kidney, Autosomal Dominant/urine , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/diet therapy , Male , Female , Biomarkers/urine , Middle Aged , Kidney Tubules/pathology , Kidney Tubules/drug effects , Adult , Lipocalin-2/urine , Chemokine CCL2/urine , Fatty Acid-Binding Proteins/urine , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/analysis , Chitinase-3-Like Protein 1/urine , Hypoglycemic Agents/therapeutic use
13.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732256

ABSTRACT

Autosomal polycystic kidney disease (ADPKD) is the most common genetic form of kidney failure, reflecting unmet needs in management. Prescription of the only approved treatment (tolvaptan) is limited to persons with rapidly progressing ADPKD. Rapid progression may be diagnosed by assessing glomerular filtration rate (GFR) decline, usually estimated (eGFR) from equations based on serum creatinine (eGFRcr) or cystatin-C (eGFRcys). We have assessed the concordance between eGFR decline and identification of rapid progression (rapid eGFR loss), and measured GFR (mGFR) declines (rapid mGFR loss) using iohexol clearance in 140 adults with ADPKD with ≥3 mGFR and eGFRcr assessments, of which 97 also had eGFRcys assessments. The agreement between mGFR and eGFR decline was poor: mean concordance correlation coefficients (CCCs) between the method declines were low (0.661, range 0.628 to 0.713), and Bland and Altman limits of agreement between eGFR and mGFR declines were wide. CCC was lower for eGFRcys. From a practical point of view, creatinine-based formulas failed to detect rapid mGFR loss (-3 mL/min/y or faster) in around 37% of the cases. Moreover, formulas falsely indicated around 40% of the cases with moderate or stable decline as rapid progressors. The reliability of formulas in detecting real mGFR decline was lower in the non-rapid-progressors group with respect to that in rapid-progressor patients. The performance of eGFRcys and eGFRcr-cys equations was even worse. In conclusion, eGFR decline may misrepresent mGFR decline in ADPKD in a significant percentage of patients, potentially misclassifying them as progressors or non-progressors and impacting decisions of initiation of tolvaptan therapy.


Subject(s)
Creatinine , Disease Progression , Glomerular Filtration Rate , Polycystic Kidney, Autosomal Dominant , Humans , Female , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/physiopathology , Male , Middle Aged , Adult , Creatinine/blood , Cystatin C/blood , Aged , Tolvaptan/therapeutic use , Clinical Decision-Making
14.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396765

ABSTRACT

Tolvaptan, an oral vasopressin V2 receptor antagonist, reduces renal volume expansion and loss of renal function in patients with autosomal dominant polycystic kidney disease (ADPKD). Data for predictive factors indicating patients more likely to benefit from long-term tolvaptan are lacking. Data were retrospectively collected from 55 patients on tolvaptan for 6 years. Changes in renal function, progression of renal dysfunction (estimated glomerular filtration rate [eGFR], 1-year change in eGFR [ΔeGFR/year]), and renal volume (total kidney volume [TKV], percentage 1-year change in TKV [ΔTKV%/year]) were evaluated at 3-years pre-tolvaptan, at baseline, and at 6 years. In 76.4% of patients, ΔeGFR/year improved at 6 years. The average 6-year ΔeGFR/year (range) minus baseline ΔeGFR/year: 3.024 (-8.77-20.58 mL/min/1.73 m2). The increase in TKV was reduced for the first 3 years. A higher BMI was associated with less of an improvement in ΔeGFR (p = 0.027), and family history was associated with more of an improvement in ΔeGFR (p = 0.044). Hypernatremia was generally mild; 3 patients had moderate-to-severe hyponatremia due to prolonged, excessive water intake in response to water diuresis-a side effect of tolvaptan. Family history of ADPKD and baseline BMI were contributing factors for ΔeGFR/year improvement on tolvaptan. Hyponatremia should be monitored with long-term tolvaptan administration.


Subject(s)
Hyponatremia , Polycystic Kidney, Autosomal Dominant , Humans , Tolvaptan/therapeutic use , Tolvaptan/pharmacology , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/complications , Antidiuretic Hormone Receptor Antagonists/adverse effects , Retrospective Studies , Benzazepines/adverse effects , Kidney , Glomerular Filtration Rate
15.
Semin Cell Dev Biol ; 110: 139-148, 2021 02.
Article in English | MEDLINE | ID: mdl-32475690

ABSTRACT

Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cilia/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Recessive/genetics , Receptors, Cell Surface/genetics , TRPP Cation Channels/genetics , Adaptor Proteins, Signal Transducing/deficiency , Adult , Basal Bodies/drug effects , Basal Bodies/metabolism , Basal Bodies/pathology , Child , Cilia/drug effects , Cilia/pathology , Drugs, Chinese Herbal/pharmacology , Flavonoids/pharmacology , Gene Expression , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Mutation , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Recessive/drug therapy , Polycystic Kidney, Autosomal Recessive/metabolism , Polycystic Kidney, Autosomal Recessive/pathology , Receptors, Cell Surface/deficiency , Signal Transduction , TRPP Cation Channels/deficiency
16.
Am J Physiol Renal Physiol ; 325(6): F857-F869, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37823195

ABSTRACT

Renal cyst progression in autosomal dominant polycystic kidney disease (ADPKD) is highly dependent on agents circulating in blood. We have previously shown, using different in vitro models, that one of these agents is the hormone ouabain. By binding to Na+-K+-ATPase (NKA), ouabain triggers a cascade of signal transduction events that enhance ADPKD cyst progression by stimulating cell proliferation, fluid secretion, and dedifferentiation of the renal tubular epithelial cells. Here, we determined the effects of ouabain in vivo. We show that daily administration of ouabain to Pkd1RC/RC ADPKD mice for 1-5 mo, at physiological levels, augmented kidney cyst area and number compared with saline-injected controls. Also, ouabain favored renal fibrosis; however, renal function was not significantly altered as determined by blood urea nitrogen levels. Ouabain did not have a sex preferential effect, with male and female mice being affected equally. By contrast, ouabain had no significant effect on wild-type mice. In addition, the actions of ouabain on Pkd1RC/RC mice were exacerbated when another mutation that increased the affinity of NKA for ouabain was introduced to the mice (Pkd1RC/RCNKAα1OS/OS mice). Altogether, this work highlights the role of ouabain as a procystogenic factor in the development of ADPKD in vivo, that the ouabain affinity site on NKA is critical for this effect, and that circulating ouabain is an epigenetic factor that worsens the ADPKD phenotype.NEW & NOTEWORTHY This work shows that the hormone ouabain enhances the progression of autosomal dominant polycystic kidney disease (ADPKD) in vivo. Ouabain augments the size and number of renal cysts, the kidney weight to body weight ratio, and kidney fibrosis in an ADPKD mouse model. The Na+-K+-ATPase affinity for ouabain plays a critical role in these effects. In addition, these outcomes are independent of the sex of the mice.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Male , Female , Mice , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Ouabain/pharmacology , Adenosine Triphosphatases , Cysts/metabolism , Hormones/metabolism , Hormones/pharmacology , Kidney/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Disease Models, Animal
17.
Kidney Int ; 103(1): 144-155, 2023 01.
Article in English | MEDLINE | ID: mdl-36273656

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) involves the development and persistent growth of fluid filled kidney cysts. In a recent study, we showed that ADPKD kidney cyst epithelial cells can stimulate the proliferation and differentiation of peri-cystic myofibroblasts. Although dense myofibroblast populations are often found surrounding kidney cysts, their role in cyst enlargement or fibrosis in ADPKD is unclear. To clarify this, we examined the effect of myofibroblast depletion in the Pkd1RC/RC (RC/RC) mouse model of ADPKD. RC/RC;αSMAtk mice that use the ganciclovir-thymidine kinase system to selectively deplete α-smooth muscle actin expressing myofibroblasts were generated. Ganciclovir treatment for four weeks depleted myofibroblasts, reduced kidney fibrosis and preserved kidney function in these mice. Importantly, myofibroblast depletion significantly reduced cyst growth and cyst epithelial cell proliferation in RC/RC;αSMAtk mouse kidneys. Similar ganciclovir treatment did not alter cyst growth or fibrosis in wild-type or RC/RC littermates. In vitro, co-culture with myofibroblasts from the kidneys of patients with ADPKD increased 3D microcyst growth of human ADPKD cyst epithelial cells. Treatment with conditioned culture media from ADPKD kidney myofibroblasts increased microcyst growth and cell proliferation of ADPKD cyst epithelial cells. Further examination of ADPKD myofibroblast conditioned media showed high levels of protease inhibitors including PAI1, TIMP1 and 2, NGAL and TFPI-2, and treatment with recombinant PAI1 and TIMP1 increased ADPKD cyst epithelial cell proliferation in vitro. Thus, our findings show that myofibroblasts directly promote cyst epithelial cell proliferation, cyst growth and fibrosis in ADPKD kidneys, and their targeting could be a novel therapeutic strategy to treat PKD.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Humans , Mice , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Myofibroblasts , Cells, Cultured , Kidney/pathology , Cell Proliferation , Fibrosis , Cysts/drug therapy , Cysts/pathology , Epithelial Cells/pathology
18.
Kidney Int ; 103(5): 917-929, 2023 05.
Article in English | MEDLINE | ID: mdl-36804411

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) mainly results from mutations in the PKD1 gene, which encodes polycystin 1. It is the most common inherited kidney disease and is characterized by a progressive bilateral increase in cyst number and size, often leading to kidney failure. The cellular energy sensor and regulator adenosine monophosphate stimulated protein kinase (AMPK) has been implicated as a promising new therapeutic target. To address this hypothesis, we determined the effects of a potent and selective clinical stage direct allosteric AMPK activator, PXL770, in canine and patient-derived 3D cyst models and an orthologous mouse model of ADPKD. PXL770 induced AMPK activation and dose-dependently reduced cyst growth in principal-like Madin-Darby Canine Kidney cells stimulated with forskolin and kidney epithelial cells derived from patients with ADPKD stimulated with desmopressin. In an inducible, kidney epithelium-specific Pkd1 knockout mouse model, PXL770 produced kidney AMPK pathway engagement, prevented the onset of kidney failure (reducing blood urea by 47%), decreased cystic index by 26% and lowered the kidney weight to body weight ratio by 35% compared to untreated control Pkd1 knockout mice. These effects were accompanied by a reduction of markers of cell proliferation (-48%), macrophage infiltration (-53%) and tissue fibrosis (-37%). Thus, our results show the potential of direct allosteric AMPK activation in the treatment of ADPKD and support the further development of PXL770 for this indication.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Renal Insufficiency , Mice , Animals , Dogs , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Adenosine Monophosphate/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Kidney/metabolism , Mice, Knockout , Renal Insufficiency/metabolism , Disease Progression , Cysts/drug therapy , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
19.
Mol Med ; 29(1): 67, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217845

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent monogenic human diseases. It is mostly caused by pathogenic variants in PKD1 or PKD2 genes that encode interacting transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2). Among many pathogenic processes described in ADPKD, those associated with cAMP signaling, inflammation, and metabolic reprogramming appear to regulate the disease manifestations. Tolvaptan, a vasopressin receptor-2 antagonist that regulates cAMP pathway, is the only FDA-approved ADPKD therapeutic. Tolvaptan reduces renal cyst growth and kidney function loss, but it is not tolerated by many patients and is associated with idiosyncratic liver toxicity. Therefore, additional therapeutic options for ADPKD treatment are needed. METHODS: As drug repurposing of FDA-approved drug candidates can significantly decrease the time and cost associated with traditional drug discovery, we used the computational approach signature reversion to detect inversely related drug response gene expression signatures from the Library of Integrated Network-Based Cellular Signatures (LINCS) database and identified compounds predicted to reverse disease-associated transcriptomic signatures in three publicly available Pkd2 kidney transcriptomic data sets of mouse ADPKD models. We focused on a pre-cystic model for signature reversion, as it was less impacted by confounding secondary disease mechanisms in ADPKD, and then compared the resulting candidates' target differential expression in the two cystic mouse models. We further prioritized these drug candidates based on their known mechanism of action, FDA status, targets, and by functional enrichment analysis. RESULTS: With this in-silico approach, we prioritized 29 unique drug targets differentially expressed in Pkd2 ADPKD cystic models and 16 prioritized drug repurposing candidates that target them, including bromocriptine and mirtazapine, which can be further tested in-vitro and in-vivo. CONCLUSION: Collectively, these results indicate drug targets and repurposing candidates that may effectively treat pre-cystic as well as cystic ADPKD.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Humans , Mice , Drug Repositioning , Gene Expression , Kidney/metabolism , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/complications , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Tolvaptan/pharmacology , Tolvaptan/therapeutic use , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
20.
Nephrol Dial Transplant ; 38(7): 1623-1635, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36423335

ABSTRACT

BACKGROUND: Ketogenic dietary interventions (KDI) have been shown to be effective in animal models of polycystic kidney disease (PKD), but data from clinical trials are lacking. METHODS: Ten autosomal dominant PKD (ADPKD) patients with rapid disease progression were enrolled at visit V1 and initially maintained a carbohydrate-rich diet. At V2, patients entered one of the two KDI arms: a 3-day water fast (WF) or a 14-day ketogenic diet (KD). At V3, they resumed their normal diet for 3-6 weeks until V4. At each visit, magnetic resonance imaging kidney and liver volumetry was performed. Ketone bodies were evaluated to assess metabolic efficacy and questionnaires were used to determine feasibility. RESULTS: All participants [KD n = 5, WF n = 5; age 39.8 ± 11.6 years; estimated glomerular filtration rate 82 ± 23.5 mL/min/1.73 m2; total kidney volume (TKV) 2224 ± 1156 mL] were classified as Mayo Class 1C-1E. Acetone levels in breath and beta-hydroxybutyrate (BHB) blood levels increased in both study arms (V1 to V2 average acetone: 2.7 ± 1.2 p.p.m., V2 to V3: 22.8 ± 11.9 p.p.m., P = .0006; V1 to V2 average BHB: 0.22 ± 0.08 mmol/L, V2 to V3: 1.88 ± 0.93 mmol/L, P = .0008). Nine of 10 patients reached a ketogenic state and 9/10 evaluated KDIs as feasible. TKV did not change during this trial. However, we found a significant impact on total liver volume (ΔTLV V2 to V3: -7.7%, P = .01), mediated by changes in its non-cystic fraction. CONCLUSIONS: RESET-PKD demonstrates that short-term KDIs potently induce ketogenesis and are feasible for ADPKD patients in daily life. While TLV quickly changed upon the onset of ketogenesis, changes in TKV may require longer-term interventions.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , 3-Hydroxybutyric Acid/therapeutic use , Acetone/therapeutic use , Disease Progression , Glomerular Filtration Rate , Kidney/pathology , Pilot Projects , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL