Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(12): e2316230121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483987

ABSTRACT

Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.


Subject(s)
Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Humans , TRPP Cation Channels/metabolism , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Cryoelectron Microscopy , Molecular Docking Simulation , Ion Channels
2.
Proc Natl Acad Sci U S A ; 121(4): e2317344121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241440

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of chronic kidney disease and the fourth leading cause of end-stage kidney disease, accounting for over 50% of prevalent cases requiring renal replacement therapy. There is a pressing need for improved therapy for ADPKD. Recent insights into the pathophysiology of ADPKD revealed that cyst cells undergo metabolic changes that up-regulate aerobic glycolysis in lieu of mitochondrial respiration for energy production, a process that ostensibly fuels their increased proliferation. The present work leverages this metabolic disruption as a way to selectively target cyst cells for apoptosis. This small-molecule therapeutic strategy utilizes 11beta-dichloro, a repurposed DNA-damaging anti-tumor agent that induces apoptosis by exacerbating mitochondrial oxidative stress. Here, we demonstrate that 11beta-dichloro is effective in delaying cyst growth and its associated inflammatory and fibrotic events, thus preserving kidney function in perinatal and adult mouse models of ADPKD. In both models, the cyst cells with homozygous inactivation of Pkd1 show enhanced oxidative stress following treatment with 11beta-dichloro and undergo apoptosis. Co-administration of the antioxidant vitamin E negated the therapeutic benefit of 11beta-dichloro in vivo, supporting the conclusion that oxidative stress is a key component of the mechanism of action. As a preclinical development primer, we also synthesized and tested an 11beta-dichloro derivative that cannot directly alkylate DNA, while retaining pro-oxidant features. This derivative nonetheless maintains excellent anti-cystic properties in vivo and emerges as the lead candidate for development.


Subject(s)
Cysts , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Mice , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Cell Proliferation , Polycystic Kidney Diseases/metabolism , Apoptosis , Oxidative Stress , Cysts/metabolism , DNA/metabolism , Kidney/metabolism , TRPP Cation Channels/genetics
3.
Genes Cells ; 29(7): 599-607, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782708

ABSTRACT

WT 9-12 is one of the cell lines commonly used for autosomal dominant polycystic kidney disease (ADPKD) studies. Previous studies had described the PKD gene mutations and polycystin expression in WT 9-12. Nonetheless, the mutations occurring in other ADPKD-associated genes have not been investigated. This study aims to revisit these mutations and protein profile of WT 9-12. Whole genome sequencing verified the presence of truncation mutation at amino acid 2556 (Q2556X) in PKD1 gene of WT 9-12. Besides, those variations with high impacts included single nucleotide polymorphisms (rs8054182, rs117006360, and rs12925771) and insertions and deletions (InDels) (rs145602984 and rs55980345) in PKD1L2; InDel (rs1296698195) in PKD1L3; and copy number variations in GANAB. Protein profiles generated from the total proteins of WT 9-12 and HK-2 cells were compared using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Polycystin-1 was absent in WT 9-12. The gene ontology enrichment and reactome pathway analyses revealed that the upregulated and downregulated proteins of WT 9-12 relative to HK-2 cell line leaded to signaling pathways related to immune response and amino acid metabolism, respectively. The ADPKD-related mutations and signaling pathways associated with differentially expressed proteins in WT 9-12 may help researchers in cell line selection for their studies.


Subject(s)
Mutation , Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Humans , Cell Line , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Polymorphism, Single Nucleotide , DNA Copy Number Variations
4.
J Am Soc Nephrol ; 35(4): 466-482, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38247039

ABSTRACT

SIGNIFICANCE STATEMENT: The renal immune infiltrate observed in autosomal polycystic kidney disease contributes to the evolution of the disease. Elucidating the cellular mechanisms underlying the inflammatory response could help devise new therapeutic strategies. Here, we provide evidence for a mechanistic link between the deficiency polycystin-1 and mitochondrial homeostasis and the activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of the interferon genes (STING) pathway. Our data identify cGAS as an important mediator of renal cystogenesis and suggest that its inhibition may be useful to slow down the disease progression. BACKGROUND: Immune cells significantly contribute to the progression of autosomal dominant polycystic kidney disease (ADPKD), the most common genetic disorder of the kidney caused by the dysregulation of the Pkd1 or Pkd2 genes. However, the mechanisms triggering the immune cells recruitment and activation are undefined. METHODS: Immortalized murine collecting duct cell lines were used to dissect the molecular mechanism of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activation in the context of genotoxic stress induced by Pkd1 ablation. We used conditional Pkd1 and knockout cGas-/- genetic mouse models to confirm the role of cGAS/stimulator of the interferon genes (STING) pathway activation on the course of renal cystogenesis. RESULTS: We show that Pkd1 -deficient renal tubular cells express high levels of cGAS, the main cellular sensor of cytosolic nucleic acid and a potent stimulator of proinflammatory cytokines. Loss of Pkd1 directly affects cGAS expression and nuclear translocation, as well as activation of the cGAS/STING pathway, which is reversed by cGAS knockdown or functional pharmacological inhibition. These events are tightly linked to the loss of mitochondrial structure integrity and genotoxic stress caused by Pkd1 depletion because they can be reverted by the potent antioxidant mitoquinone or by the re-expression of the polycystin-1 carboxyl terminal tail. The genetic inactivation of cGAS in a rapidly progressing ADPKD mouse model significantly reduces cystogenesis and preserves normal organ function. CONCLUSIONS: Our findings indicate that the activation of the cGAS/STING pathway contributes to ADPKD cystogenesis through the control of the immune response associated with the loss of Pkd1 and suggest that targeting this pathway may slow disease progression.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Mice , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Mice, Knockout , Disease Progression , Interferons/metabolism
5.
J Am Soc Nephrol ; 35(4): 398-409, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38254271

ABSTRACT

SIGNIFICANCE STATEMENT: Autosomal dominant polycystic kidney disease (ADPKD) is a devastating disorder caused by mutations in polycystin 1 ( PKD1 ) and polycystin 2 ( PKD2 ). Currently, the mechanism for renal cyst formation remains unclear. Here, we provide convincing and conclusive data in mice demonstrating that Pkd2 deletion in embryonic Aqp2 + progenitor cells (AP), but not in neonate or adult Aqp2 + cells, is sufficient to cause severe polycystic kidney disease (PKD) with progressive loss of intercalated cells and complete elimination of α -intercalated cells, accurately recapitulating a newly identified cellular phenotype of patients with ADPKD. Hence, Pkd2 is a new potential regulator critical for balanced AP differentiation into, proliferation, and/or maintenance of various cell types, particularly α -intercalated cells. The Pkd2 conditional knockout mice developed in this study are valuable tools for further studies on collecting duct development and early steps in cyst formation. The finding that Pkd2 loss triggers the loss of intercalated cells is a suitable topic for further mechanistic studies. BACKGROUND: Most cases of autosomal dominant polycystic kidney disease (ADPKD) are caused by mutations in PKD1 or PKD2. Currently, the mechanism for renal cyst formation remains unclear. Aqp2 + progenitor cells (AP) (re)generate ≥5 cell types, including principal cells and intercalated cells in the late distal convoluted tubules (DCT2), connecting tubules, and collecting ducts. METHODS: Here, we tested whether Pkd2 deletion in AP and their derivatives at different developmental stages is sufficient to induce PKD. Aqp2Cre Pkd2f/f ( Pkd2AC ) mice were generated to disrupt Pkd2 in embryonic AP. Aqp2ECE/+Pkd2f/f ( Pkd2ECE ) mice were tamoxifen-inducted at P1 or P60 to inactivate Pkd2 in neonate or adult AP and their derivatives, respectively. All induced mice were sacrificed at P300. Immunofluorescence staining was performed to categorize and quantify cyst-lining cell types. Four other PKD mouse models and patients with ADPKD were similarly analyzed. RESULTS: Pkd2 was highly expressed in all connecting tubules/collecting duct cell types and weakly in all other tubular segments. Pkd2AC mice had obvious cysts by P6 and developed severe PKD and died by P17. The kidneys had reduced intercalated cells and increased transitional cells. Transitional cells were negative for principal cell and intercalated cell markers examined. A complete loss of α -intercalated cells occurred by P12. Cysts extended from the distal renal segments to DCT1 and possibly to the loop of Henle, but not to the proximal tubules. The induced Pkd2ECE mice developed mild PKD. Cystic α -intercalated cells were found in the other PKD models. AQP2 + cells were found in cysts of only 13/27 ADPKD samples, which had the same cellular phenotype as Pkd2AC mice. CONCLUSIONS: Hence, Pkd2 deletion in embryonic AP, but unlikely in neonate or adult Aqp2 + cells (principal cells and AP), was sufficient to cause severe PKD with progressive elimination of α -intercalated cells, recapitulating a newly identified cellular phenotype of patients with ADPKD. We proposed that Pkd2 is critical for balanced AP differentiation into, proliferation, and/or maintenance of cystic intercalated cells, particularly α -intercalated cells.


Subject(s)
Aquaporin 2 , Polycystic Kidney, Autosomal Dominant , Adult , Animals , Humans , Mice , Aquaporin 2/deficiency , Aquaporin 2/genetics , Cysts , Kidney/metabolism , Mice, Knockout , Polycystic Kidney Diseases/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Renal Insufficiency, Chronic , Stem Cells/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
6.
Kidney Int ; 105(4): 661-663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519230

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) has long been considered a genetic renal disorder, but emerging evidence suggests that the immune microenvironment within the kidney plays a pivotal role in disease progression and severity. In recent years, the previously obscure cytokine interleukin-37 has proved a strong inhibitor of innate immunity in multiple disease models. However, its role in ADPKD has not received scrutiny. In a provocative study published in the current issue, Zylberberg et al. show that interleukin-37 activates interferon signaling in renal macrophages, which inhibits ADPKD initiation. This finding identifies interleukin-37 as a potential viable immunomodulatory therapy for ADPKD.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Kidney , Cytokines , Disease Progression , Interleukins
7.
Kidney Int ; 105(4): 731-743, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38158181

ABSTRACT

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a leading cause of kidney failure and is associated with substantial morbidity and mortality. Interstitial inflammation is attributed to the action of infiltrating macrophages and is a feature thought to aggravate disease progression. Here, we investigated the therapeutic potential of the anti-inflammatory IL37b cytokine as a treatment for ADPKD using genetic mouse models, demonstrating that transgenic expression of human IL37b reduced collecting duct cyst burden in both early and adult-onset ADPKD rodent models. Moreover, injection of recombinant human IL37b could also reduce cyst burden in early onset ADPKD mice, an observation not associated with increased macrophage number at early stages of cyst formation. Interestingly, transgenic IL37b expression also did not alter macrophage numbers in advanced disease. Whole kidney RNA-seq highlighted an IL37b-mediated upregulation of the interferon signaling pathway and single-cell RNA-seq established that these changes originate at least partly from kidney resident macrophages. We further found that blocking type I interferon signaling in mice expressing IL37b resulted in increased cyst number, confirming this as an important pathway by which IL37b exerts its beneficial effects. Thus, our studies show that IL37b promotes interferon signaling in kidney resident macrophages which suppresses cyst initiation, identifying this protein as a potential therapy for ADPKD.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Mice , Humans , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Inflammation/genetics , Inflammation/complications , Kidney/metabolism , Cysts/complications , Interleukins , Interferons
8.
Kidney Int ; 106(2): 258-272, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782200

ABSTRACT

Alteration of DNA methylation leads to diverse diseases, and the dynamic changes of DNA methylation (DNAm) on sets of CpG dinucleotides in mammalian genomes are termed "DNAm age" and "epigenetic clocks" that can predict chronological age. However, whether and how dysregulation of DNA methylation promotes cyst progression and epigenetic age acceleration in autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Here, we show that DNA methyltransferase 1 (DNMT1) is upregulated in cystic kidney epithelial cells and tissues and that knockout of Dnmt1 and targeting DNMT1 with hydralazine, a safe demethylating agent, delays cyst growth in Pkd1 mutant kidneys and extends life span of Pkd1 conditional knockout mice. With methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), DNMT1 chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing analysis, we identified two novel DNMT1 targets, PTPRM and PTPN22 (members of the protein tyrosine phosphatase family). PTPRM and PTPN22 function as mediators of DNMT1 and the phosphorylation and activation of PKD-associated signaling pathways, including ERK, mTOR and STAT3. With whole-genome bisulfide sequencing in kidneys of patients with ADPKD versus normal individuals, we found that the methylation of epigenetic clock-associated genes was dysregulated, supporting that epigenetic age is accelerated in the kidneys of patients with ADPKD. Furthermore, five epigenetic clock-associated genes, including Hsd17b14, Itpkb, Mbnl1, Rassf5 and Plk2, were identified. Thus, the diverse biological roles of these five genes suggest that their methylation status may not only predict epigenetic age acceleration but also contribute to disease progression in ADPKD.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Epigenesis, Genetic , Mice, Knockout , Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/enzymology , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Animals , Humans , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Mice , Signal Transduction , Disease Models, Animal , Male , Disease Progression , Kidney/pathology , Kidney/metabolism
9.
Ann Hum Genet ; 88(1): 76-85, 2024 01.
Article in English | MEDLINE | ID: mdl-37042117

ABSTRACT

INTRODUCTION: Massively parallel sequencing (MPS) techniques have made a major impact on the identification of the genetic basis of inherited kidney diseases such as the ciliopathy autosomal dominant polycystic kidney disease (ADPKD). Great care must be taken when analysing MPS data in isolation from accurate phenotypic information, as this can cause misdiagnosis. METHODS: Here, we describe a family trio, recruited to the Genomics England 100,000 Genomes Project, labelled as having cystic kidney disease, who were genetically unsolved following routine data analysis pipelines. We performed a bespoke reanalysis of Whole Genome Sequencing (WGS) data and coupled this with revised phenotypic data and targeted PCR and Sanger sequencing to provide a precise molecular genetic diagnosis. RESULTS: We detected a heterozygous PKD1 frameshift variant within the WGS data which segregated with the redefined ADPKD phenotypes. An additional heterozygous exon deletion in ALG8 was also found in affected and unaffected individuals, but its precise clinical significance remains unclear. CONCLUSION: This case illustrates that reanalysis of WGS data in unsolved cases of cystic kidney disease is valuable. Clinical phenotypes must be reassessed as these may have been incorrectly recorded and evolve over time. Undertaking additional studies including genotype-phenotype correlation in wider family members provides useful diagnostic information.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics , Phenotype , Kidney , Genomics , Molecular Biology , Mutation
10.
J Gene Med ; 26(2): e3674, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38404150

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic renal disease progressing to end-stage renal disease. There is a pressing need for the identification of early ADPKD biomarkers to enable timely intervention and the development of effective therapeutic approaches. Here, we profiled human urinary extracellular vesicles small RNAs by small RNA sequencing in patients with ADPKD and compared their differential expression considering healthy control individuals to identify dysregulated small RNAs and analyze downstream interaction to gain insight about molecular pathophysiology. METHODS: This is a cross-sectional study where urine samples were collected from a total of 23 PKD1-ADPKD patients and 28 healthy individuals. Urinary extracellular vesicles were purified, and small RNA was isolated and sequenced. Differentially expressed Small RNA were identified and functional enrichment analysis of the critical miRNAs was performed to identify driver genes and affected pathways. RESULTS: miR-320b, miR-320c, miR-146a-5p, miR-199b-3p, miR-671-5p, miR-1246, miR-8485, miR-3656, has_piR_020497, has_piR_020496 and has_piR_016271 were significantly upregulated in ADPKD patient urine extracellular vesicles and miRNA-29c was significantly downregulated. Five 'driver' target genes (FBRS, EDC3, FMNL3, CTNNBIP1 and KMT2A) were identified. CONCLUSIONS: The findings of the present study make significant contributions to the understanding of ADPKD pathogenesis and to the identification of novel biomarkers and potential drug targets aimed at slowing disease progression in ADPKD.


Subject(s)
Extracellular Vesicles , MicroRNAs , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Cross-Sectional Studies , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Formins
11.
Clin Chem ; 70(6): 841-854, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38527221

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by heterogeneous variants in the PKD1 and PKD2 genes. Genetic analysis of PKD1 has been challenging due to homology with 6 PKD1 pseudogenes and high GC content. METHODS: A single-tube multiplex long-range-PCR and long-read sequencing-based assay termed "comprehensive analysis of ADPKD" (CAPKD) was developed and evaluated in 170 unrelated patients by comparing to control methods including next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification. RESULTS: CAPKD achieved highly specific analysis of PKD1 with a residual noise ratio of 0.05% for the 6 pseudogenes combined. CAPKD identified PKD1 and PKD2 variants (ranging from variants of uncertain significance to pathogenic) in 160 out of the 170 patients, including 151 single-nucleotide variants (SNVs) and insertion-deletion variants (indels), 6 large deletions, and one large duplication. Compared to NGS, CAPKD additionally identified 2 PKD1 variants (c.78_96dup and c.10729_10732dup). Overall, CAPKD increased the rate of variant detection from 92.9% (158/170) to 94.1% (160/170), and the rate of diagnosis with pathogenic or likely pathogenic variants from 82.4% (140/170) to 83.5% (142/170). CAPKD also directly determined the cis-/trans-configurations in 11 samples with 2 or 3 SNVs/indels, and the breakpoints of 6 large deletions and one large duplication, including 2 breakpoints in the intron 21 AG-repeat of PKD1, which could only be correctly characterized by aligning to T2T-CHM13. CONCLUSIONS: CAPKD represents a comprehensive and specific assay toward full characterization of PKD1 and PKD2 variants, and improves the genetic diagnosis for ADPKD.


Subject(s)
High-Throughput Nucleotide Sequencing , Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/diagnosis , TRPP Cation Channels/genetics , Multiplex Polymerase Chain Reaction/methods , Female
12.
Am J Nephrol ; 55(3): 380-388, 2024.
Article in English | MEDLINE | ID: mdl-38194940

ABSTRACT

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disease characterized by the accumulation of fluid-filled cysts in the kidneys, leading to renal volume enlargement and progressive kidney function impairment. Disease severity, though, may vary due to allelic and genetic heterogeneity. This study aimed to determine genotype-phenotype correlations between PKD1 truncating and non-truncating mutations and kidney function decline in ADPKD patients. METHODS: We established a single-center retrospective cohort study in Kuwait where we followed every patient with a confirmed PKD1-ADPKD diagnosis clinically and genetically. Renal function tests were performed annually. We fitted generalized additive mixed effects models with random intercepts for each individual to analyze repeated measures of kidney function across mutation type. We then calculated survival time to kidney failure in a cox proportional hazards model. Models were adjusted for sex, age at visit, and birth year. RESULTS: The study included 22 truncating and 20 non-truncating (42 total) patients followed for an average of 6.6 years (range: 1-12 years). Those with PKD1 truncating mutations had a more rapid rate of eGFR decline (-4.7 mL/min/1.73 m2 per year; 95% CI: -5.0, -4.4) compared to patients with PKD1 non-truncating mutations (-3.5 mL/min/1.73 m2 per year; 95% CI: -4.0, -3.1) (p for interaction <0.001). Kaplan-Meier survival analysis of time to kidney failure showed that patients with PKD1 truncating mutations had a shorter renal survival time (median 51 years) compared to those with non-truncating mutations (median 56 years) (P for log-rank = 0.008). CONCLUSION: In longitudinal and survival analyses, patients with PKD1 truncating mutations showed a faster decline in kidney function compared to patients PKD1 non-truncating mutations. Early identification of patients with PKD1 truncating mutations can, at best, inform early clinical interventions or, at least, help suggest aggressive monitoring.


Subject(s)
Glomerular Filtration Rate , Mutation , Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/physiopathology , Female , Male , TRPP Cation Channels/genetics , Middle Aged , Adult , Retrospective Studies , Disease Progression , Genetic Association Studies , Kuwait/epidemiology
13.
Nephrol Dial Transplant ; 39(6): 956-966, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38224954

ABSTRACT

INTRODUCTION: Our main objective was to identify baseline prognostic factors predictive of rapid disease progression in a large unselected clinical autosomal dominant polycystic kidney disease (ADPKD) cohort. METHODS: A cross-sectional analysis was performed in 618 consecutive ADPKD patients assessed and followed-up for over a decade. A total of 123 patients (19.9%) had reached kidney failure by the study date. Data were available for the following: baseline eGFR (n = 501), genotype (n = 549), baseline ultrasound mean kidney length (MKL, n = 424) and height-adjusted baseline MKL (HtMKL, n = 377). Rapid disease progression was defined as an annualized eGFR decline (∆eGFR) of >2.5 mL/min/year by linear regression over 5 years (n = 158). Patients were further divided into slow, rapid and very rapid ∆eGFR classes for analysis. Genotyped patients were classified into several categories: PKD1 (T, truncating; or NT, non-truncating), PKD2, other genes (non-PKD1 or -PKD2), no mutation detected or variants of uncertain significance. RESULTS: A PKD1-T genotype had the strongest influence on the probability of reduced baseline kidney function by age. A multivariate logistic regression model identified PKD1-T genotype and HtMKL (>9.5 cm/m) as independent predictors for rapid disease progression. The combination of both factors increased the positive predictive value for rapid disease progression over age 40 years and of reaching kidney failure by age 60 years to 100%. Exploratory analysis in a subgroup with available total kidney volumes showed higher positive predictive value (100% vs 80%) and negative predictive value (42% vs 33%) in predicting rapid disease progression compared with the Mayo Imaging Classification (1C-E). CONCLUSION: Real-world longitudinal data confirm the importance of genotype and kidney length as independent variables determining ∆eGFR. Individuals with the highest risk of rapid disease progression can be positively selected for treatment based on this combination.


Subject(s)
Disease Progression , Genotype , Glomerular Filtration Rate , Kidney , Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Male , Female , Cross-Sectional Studies , Adult , Middle Aged , Kidney/pathology , Kidney/diagnostic imaging , Prognosis , Follow-Up Studies , TRPP Cation Channels/genetics , Body Height/genetics
14.
Kidney Blood Press Res ; 49(1): 9-19, 2024.
Article in English | MEDLINE | ID: mdl-38096797

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease with a prevalence of 1:400 to 1:1,000 in Caucasians. It is caused by mutations in the PKD1 gene located on chromosome 16p13.3 (in about 85% cases) as well as in the PKD2 gene on chromosome 4q13-23. In the Polish population, the disease is associated with PKD1 mutations in 84% of the ADPKD-affected families. PKD1 and PKD2 genes encode the proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The presence of kidney cysts is a characteristic feature in the ADPKD patients. But in the ADPKD patients, cardiovascular abnormalities, such as hypertension (HT) with higher systolic blood pressure (SBP) and diastolic blood pressure (DBP) values, higher left ventricular mass (LVM), intracranial (ICAN) and extracranial aneurysms, and cardiac valve defects, are significantly more common than in the general population. SUMMARY: According to the literature data, both higher LVM and vascular dysfunction already occur in children and young adults with normal renal function and without HT. Moreover, biventricular diastolic dysfunction, endothelial dysfunction, increased carotid intima-media thickness, and impaired coronary flow velocity reserve are present even in young patients with ADPKD who have normal HT and well-preserved renal function. In patients with ADPKD, hypertension has some specific features; in the youngest age group of children, the prevalence of hypertension is greater if their parents suffer from hypertension; in normotensive young ADPKD-diagnosed individuals, ambulant SBP and DBP values were significantly higher than in age- and gender-matched controls; hypertension appears at least 10 years earlier than spontaneous HT in general population. In adults, HT is often diagnosed before any substantial reduction in the GFR, and a lower nocturnal dip in BP in comparison to hypertensives in the general population. PKD1 and PKD2 gene products (PC1 and PC2 proteins) have been shown to assemble at the plasma membrane and to regulate calcium (Ca2+) entry. A defect in Ca2+ binding mediated by mutations in polycystin proteins is a hypothetical factor contributing to left ventricular mass increase. Altered intracellular Ca2+ handling contributes importantly to impaired contractility associated with heart failure. Impairment of intracellular Ca2+ homeostasis and mitochondrial function has been implicated in the development of LVH. KEY MESSAGES: It can be assumed that the cause of LVH in ADPKD patients is the natural course of this disease with developing HT and deteriorating kidney function, which may be influenced by the presence of PKD1- and PKD2-mutated gene products: PC1 and PC2 proteins.


Subject(s)
Hypertension , Polycystic Kidney, Autosomal Dominant , Child , Young Adult , Humans , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics , Calcium/metabolism , Carotid Intima-Media Thickness , Hypertension/complications
15.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474184

ABSTRACT

In autosomal dominant polycystic kidney disease (ADPKD) with germline mutations in a PKD1 or PKD2 gene, innumerable cysts develop from tubules, and renal function deteriorates. Second-hit somatic mutations and renal tubular epithelial (RTE) cell death are crucial features of cyst initiation and disease progression. Here, we use established RTE lines and primary ADPKD cells with disease-associated PKD1 mutations to investigate genomic instability and DNA damage responses. We found that ADPKD cells suffer severe chromosome breakage, aneuploidy, heightened susceptibility to DNA damage, and delayed checkpoint activation. Immunohistochemical analyses of human kidneys corroborated observations in cultured cells. DNA damage sensors (ATM/ATR) were activated but did not localize at nuclear sites of damaged DNA and did not properly activate downstream transducers (CHK1/CHK2). ADPKD cells also had the ability to transform, as they achieved high saturation density and formed colonies in soft agar. Our studies indicate that defective DNA damage repair pathways and the somatic mutagenesis they cause contribute fundamentally to the pathogenesis of ADPKD. Acquired mutations may alternatively confer proliferative advantages to the clonally expanded cell populations or lead to apoptosis. Further understanding of the molecular details of aberrant DNA damage responses in ADPKD is ongoing and holds promise for targeted therapies.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/metabolism , Mutation , Kidney/metabolism , Cysts/metabolism , Chromosomal Instability
16.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891834

ABSTRACT

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent hereditary disorder that affects the kidneys, characterized by the development of an excessive number of fluid-filled cysts of varying sizes in both kidneys. Along with the progression of ADPKD, these enlarged cysts displace normal kidney tissue, often accompanied by interstitial fibrosis and inflammation, and significantly impair renal function, leading to end-stage renal disease. Currently, the precise mechanisms underlying ADPKD remain elusive, and a definitive cure has yet to be discovered. This review delineates the epidemiology, pathological features, and clinical diagnostics of ADPKD or ADPKD-like disease across human populations, as well as companion animals and other domesticated species. A light has been shed on pivotal genes and biological pathways essential for preventing and managing ADPKD, which underscores the importance of cross-species research in addressing this complex condition. Treatment options are currently limited to Tolvaptan, dialysis, or surgical excision of large cysts. However, comparative studies of ADPKD across different species hold promise for unveiling novel insights and therapeutic strategies to combat this disease.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/therapy , Polycystic Kidney, Autosomal Dominant/pathology , Humans , Animals , Kidney/pathology , Kidney/metabolism , Disease Models, Animal
17.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474131

ABSTRACT

Mutations of PKD1 coding for polycystin-1 (PC1) account for most cases of autosomal-dominant polycystic kidney disease (ADPKD). The extracellular region of PC1 contains many evolutionarily conserved domains for ligand interactions. Among these are the leucine-rich repeats (LRRs) in the far N-terminus of PC1. Using zebrafish (Danio rerio) as an in vivo model system, we explored the role of LRRs in the function of PC1. Zebrafish expresses two human PKD1 paralogs, pkd1a and pkd1b. Knockdown of both genes in zebrafish by morpholino antisense oligonucleotides produced phenotypes of dorsal-axis curvature and pronephric cyst formation. We found that overexpression of LRRs suppressed both phenotypes in pkd1-morphant zebrafish. Purified recombinant LRR domain inhibited proliferation of HEK cells in culture and interacted with the heterotrimeric basement membrane protein laminin-511 (α5ß1γ1) in vitro. Mutations of amino acid residues in LRRs structurally predicted to bind laminin-511 disrupted LRR-laminin interaction in vitro and neutralized the ability of LRRs to inhibit cell proliferation and cystogenesis. Our data support the hypothesis that the extracellular region of PC1 plays a role in modulating PC1 interaction with the extracellular matrix and contributes to cystogenesis of PC1 deficiency.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Zebrafish/genetics , Leucine/metabolism , TRPP Cation Channels/metabolism , Polycystic Kidney Diseases/metabolism , Laminin/metabolism , Kidney/metabolism
18.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000280

ABSTRACT

Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.


Subject(s)
Energy Metabolism , Polycystic Kidney, Autosomal Dominant , Systems Biology , Humans , Systems Biology/methods , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Oxidative Phosphorylation , Gene Expression Regulation
19.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892431

ABSTRACT

Orexin-A is a neuropeptide product of the lateral hypothalamus that acts on two receptors, OX1R and OX2R. The orexinergic system is involved in feeding, sleep, and pressure regulation. Recently, orexin-A levels have been found to be negatively correlated with renal function. Here, we analyzed orexin-A levels as well as the incidence of SNPs in the hypocretin neuropeptide precursor (HCRT) and its receptors, HCRTR1 and HCRTR2, in 64 patients affected by autosomal dominant polycystic kidney disease (ADPKD) bearing truncating mutations in the PKD1 or PKD2 genes. Twenty-four healthy volunteers constituted the control group. Serum orexin-A was assessed by ELISA, while the SNPs were investigated through Sanger sequencing. Correlations with the main clinical features of PKD patients were assessed. PKD patients showed impaired renal function (mean eGFR 67.8 ± 34.53) and a statistically higher systolic blood pressure compared with the control group (p < 0.001). Additionally, orexin-A levels in PKD patients were statistically higher than those in healthy controls (477.07 ± 69.42 pg/mL vs. 321.49 ± 78.01 pg/mL; p < 0.001). Furthermore, orexin-A inversely correlated with blood pressure (p = 0.0085), while a direct correlation with eGFR in PKD patients was found. None of the analyzed SNPs showed any association with orexin-A levels in PKD. In conclusion, our data highlights the emerging role of orexin-A in renal physiology and its potential relevance to PKD. Further research is essential to elucidate the intricate mechanisms underlying orexin-A signaling in renal function and its therapeutic implications for PKD and associated cardiovascular complications.


Subject(s)
Orexin Receptors , Orexins , Polymorphism, Single Nucleotide , Humans , Orexins/metabolism , Orexins/genetics , Male , Female , Middle Aged , Orexin Receptors/metabolism , Orexin Receptors/genetics , Adult , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/blood , Case-Control Studies , Aged , Blood Pressure , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/blood
SELECTION OF CITATIONS
SEARCH DETAIL