Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.052
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 386(13): 1244-1253, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35353962

ABSTRACT

BACKGROUND: In most of the Americas, the recommended treatment to prevent relapse of Plasmodium vivax malaria is primaquine at a total dose of 3.5 mg per kilogram of body weight, despite evidence of only moderate efficacy. METHODS: In this trial conducted in Brazil, we evaluated three primaquine regimens to prevent relapse of P. vivax malaria in children at least 5 years of age and in adults with microscopy-confirmed P. vivax monoinfection. All the patients received directly observed chloroquine for 3 days (total dose, 25 mg per kilogram). Group 1 received a total primaquine dose of 3.5 mg per kilogram (0.5 mg per kilogram per day) over 7 days with unobserved administration; group 2 received the same regimen as group 1 but with observed administration; and group 3 received a total primaquine dose of 7.0 mg per kilogram over 14 days (also 0.5 mg per kilogram per day) with observed administration. We monitored the patients for 168 days. RESULTS: We enrolled 63 patients in group 1, 96 in group 2, and 95 in group 3. The median age of the patients was 22.4 years (range, 5.4 to 79.8). By day 28, three P. vivax recurrences were observed: 2 in group 1 and 1 in group 2. By day 168, a total of 70 recurrences had occurred: 24 in group 1, 34 in group 2, and 12 in group 3. No serious adverse events were noted. On day 168, the percentage of patients without recurrence was 58% (95% confidence interval [CI], 44 to 70) in group 1, 59% (95% CI, 47 to 69) in group 2, and 86% (95% CI, 76 to 92) in group 3. Survival analysis showed a difference in the day 168 recurrence-free percentage of 27 percentage points (97.5% CI, 10 to 44; P<0.001) between group 1 and group 3 and a difference of 27 percentage points (97.5% CI, 12 to 42; P<0.001) between group 2 and group 3. CONCLUSIONS: The administration of primaquine at a total dose of 7.0 mg per kilogram had higher efficacy in preventing relapse of P. vivax malaria than a total dose of 3.5 mg per kilogram through day 168. (Supported by the U.S. Agency for International Development; ClinicalTrials.gov number, NCT03610399.).


Subject(s)
Antimalarials , Chloroquine , Malaria, Vivax , Primaquine , Adolescent , Adult , Aged , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/therapeutic use , Brazil , Child , Child, Preschool , Chloroquine/administration & dosage , Chloroquine/adverse effects , Chloroquine/therapeutic use , Directly Observed Therapy , Dose-Response Relationship, Drug , Drug Administration Schedule , Humans , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Middle Aged , Primaquine/administration & dosage , Primaquine/adverse effects , Primaquine/therapeutic use , Recurrence , Secondary Prevention , Young Adult
2.
Circ Res ; 132(9): e116-e133, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36927079

ABSTRACT

BACKGROUND: Small-conductance Ca2+-activated K+ (SK)-channel inhibitors have antiarrhythmic effects in animal models of atrial fibrillation (AF), presenting a potential novel antiarrhythmic option. However, the regulation of SK-channels in human atrial cardiomyocytes and its modification in patients with AF are poorly understood and were the object of this study. METHODS: Apamin-sensitive SK-channel current (ISK) and action potentials were recorded in human right-atrial cardiomyocytes from sinus rhythm control (Ctl) patients or patients with (long-standing persistent) chronic AF (cAF). RESULTS: ISK was significantly higher, and apamin caused larger action potential prolongation in cAF- versus Ctl-cardiomyocytes. Sensitivity analyses in an in silico human atrial cardiomyocyte model identified IK1 and ISK as major regulators of repolarization. Increased ISK in cAF was not associated with increases in mRNA/protein levels of SK-channel subunits in either right- or left-atrial tissue homogenates or right-atrial cardiomyocytes, but the abundance of SK2 at the sarcolemma was larger in cAF versus Ctl in both tissue-slices and cardiomyocytes. Latrunculin-A and primaquine (anterograde and retrograde protein-trafficking inhibitors) eliminated the differences in SK2 membrane levels and ISK between Ctl- and cAF-cardiomyocytes. In addition, the phosphatase-inhibitor okadaic acid reduced ISK amplitude and abolished the difference between Ctl- and cAF-cardiomyocytes, indicating that reduced calmodulin-Thr80 phosphorylation due to increased protein phosphatase-2A levels in the SK-channel complex likely contribute to the greater ISK in cAF-cardiomyocytes. Finally, rapid electrical activation (5 Hz, 10 minutes) of Ctl-cardiomyocytes promoted SK2 membrane-localization, increased ISK and reduced action potential duration, effects greatly attenuated by apamin. Latrunculin-A or primaquine prevented the 5-Hz-induced ISK-upregulation. CONCLUSIONS: ISK is upregulated in patients with cAF due to enhanced channel function, mediated by phosphatase-2A-dependent calmodulin-Thr80 dephosphorylation and tachycardia-dependent enhanced trafficking and targeting of SK-channel subunits to the sarcolemma. The observed AF-associated increases in ISK, which promote reentry-stabilizing action potential duration shortening, suggest an important role for SK-channels in AF auto-promotion and provide a rationale for pursuing the antiarrhythmic effects of SK-channel inhibition in humans.


Subject(s)
Atrial Fibrillation , Animals , Humans , Atrial Fibrillation/metabolism , Apamin/metabolism , Apamin/pharmacology , Primaquine/metabolism , Primaquine/pharmacology , Calmodulin/metabolism , Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Anti-Arrhythmia Agents/therapeutic use , Action Potentials/physiology , Small-Conductance Calcium-Activated Potassium Channels/metabolism
3.
PLoS Med ; 21(1): e1004255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38194420

ABSTRACT

BACKGROUND: Malaria transmission modelling has demonstrated the potential impact of semiquantitative glucose-6-phosphate dehydrogenase (G6PD) testing and treatment with single-dose tafenoquine for Plasmodium vivax radical cure but has not investigated the associated costs. This study evaluated the cost-effectiveness of P. vivax treatment with tafenoquine after G6PD testing using a transmission model. METHODS AND FINDINGS: We explored the cost-effectiveness of using tafenoquine after G6PD screening as compared to usual practice (7-day low-dose primaquine (0.5 mg/kg/day) without G6PD screening) in Brazil using a 10-year time horizon with 5% discounting considering 4 scenarios: (1) tafenoquine for adults only assuming 66.7% primaquine treatment adherence; (2) tafenoquine for adults and children aged >2 years assuming 66.7% primaquine adherence; (3) tafenoquine for adults only assuming 90% primaquine adherence; and (4) tafenoquine for adults only assuming 30% primaquine adherence. The incremental cost-effectiveness ratios (ICERs) were estimated by dividing the incremental costs by the disability-adjusted life years (DALYs) averted. These were compared to a willingness to pay (WTP) threshold of US$7,800 for Brazil, and one-way and probabilistic sensitivity analyses were performed. All 4 scenarios were cost-effective in the base case analysis using this WTP threshold with ICERs ranging from US$154 to US$1,836. One-way sensitivity analyses showed that the results were most sensitive to severity and mortality due to vivax malaria, the lifetime and number of semiquantitative G6PD analysers needed, cost per malaria episode and per G6PD test strips, and life expectancy. All scenarios had a 100% likelihood of being cost-effective at the WTP threshold. The main limitations of this study are due to parameter uncertainty around our cost estimates for low transmission settings, the costs of G6PD screening, and the severity of vivax malaria. CONCLUSIONS: In our modelling study that incorporated impact on transmission, tafenoquine prescribed after a semiquantitative G6PD testing was highly likely to be cost-effective in Brazil. These results demonstrate the potential health and economic importance of ensuring safe and effective radical cure.


Subject(s)
Malaria, Vivax , Primaquine , Adult , Child , Humans , Primaquine/adverse effects , Malaria, Vivax/diagnosis , Malaria, Vivax/drug therapy , Brazil , Cost-Effectiveness Analysis , Glucosephosphate Dehydrogenase
4.
Antimicrob Agents Chemother ; 68(5): e0091523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517190

ABSTRACT

Primaquine is the mainstream antimalarial drug to prevent Plasmodium vivax relapses. However, this drug can induce hemolysis in patients with glucose-6-phosphate dehydrogenase deficiency. Nanostructure formulations of primaquine loaded with D-galactose were used as a strategy to target the drug to the liver and decrease the hemolytic risks. Nanoemulsion (NE-Pq) and nanochitosan (NQ-Pq) formulations of primaquine diphosphate containing D-galactose were prepared and characterized by their physicochemistry properties. Pharmacokinetic and biodistribution studies were conducted using Swiss Webster mice. A single dose of 10 mg/kg of each nanoformulation or free primaquine solution was administered by gavage to the animals, which were killed at 0.5, 1, 2, 4, 8, and 24 hours. Blood samples and tissues were collected, processed, and analyzed by high-performance liquid chromatography. The nanoformulation showed sizes around 200 nm (NE-Pq) and 400 nm (NQ-Pq) and physicochemical stability for over 30 days. Free primaquine solution achieved higher primaquine Cmax in the liver than NE-Pq or NQ-Pq at 0.5 hours. However, the half-life and mean residence time (MRT) of primaquine in the liver were three times higher with the NQ-Pq formulation than with free primaquine, and the volume distribution was four times higher. Conversely, primaquine's half-life, MRT, and volume distribution in the plasma were lower for NQ-Pq than for free primaquine. NE-Pq, on the other hand, accumulated more in the lungs but not in the liver. Galactose-coated primaquine nanochitosan formulation showed increased drug targeting to the liver compared to free primaquine and may represent a promising strategy for a more efficient and safer radical cure for vivax malaria.


Subject(s)
Antimalarials , Chitosan , Galactose , Liver , Primaquine , Primaquine/pharmacokinetics , Primaquine/chemistry , Animals , Mice , Liver/metabolism , Liver/drug effects , Galactose/chemistry , Chitosan/chemistry , Antimalarials/pharmacokinetics , Nanoparticles/chemistry , Tissue Distribution , Nanostructures/chemistry , Male
5.
Antimicrob Agents Chemother ; 68(4): e0120423, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38411047

ABSTRACT

Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Vivax/drug therapy , Malaria, Falciparum/drug therapy , NADPH-Ferrihemoprotein Reductase , Chloroquine/pharmacology , Cytochrome P-450 CYP2D6/genetics , Artemisinins/pharmacology , Primaquine/pharmacology , Primaquine/therapeutic use , Malaria/drug therapy , Plasmodium falciparum , Plasmodium vivax/genetics
6.
Lancet ; 402(10417): 2101-2110, 2023 12 02.
Article in English | MEDLINE | ID: mdl-37979594

ABSTRACT

BACKGROUND: In areas co-endemic for Plasmodium vivax and Plasmodium falciparum there is an increased risk of P vivax parasitaemia following P falciparum malaria. Radical cure is currently only recommended for patients presenting with P vivax malaria. Expanding the indication for radical cure to patients presenting with P falciparum malaria could reduce their risk of subsequent P vivax parasitaemia. METHODS: We did a multicentre, open-label, superiority randomised controlled trial in five health clinics in Bangladesh, Indonesia, and Ethiopia. In Bangladesh and Indonesia, patients were excluded if they were younger than 1 year, whereas in Ethiopia patients were excluded if they were younger than 18 years. Patients with uncomplicated P falciparum monoinfection who had fever or a history of fever in the 48 h preceding clinic visit were eligible for enrolment and were required to have a glucose-6-dehydrogenase (G6PD) activity of 70% or greater. Patients received blood schizontocidal treatment (artemether-lumefantrine in Ethiopia and Bangladesh and dihydroartemisinin-piperaquine in Indonesia) and were randomly assigned (1:1) to receive either high-dose short-course oral primaquine (intervention arm; total dose 7 mg/kg over 7 days) or standard care (standard care arm; single dose oral primaquine of 0·25 mg/kg). Random assignment was done by an independent statistician in blocks of eight by use of sealed envelopes. All randomly assigned and eligible patients were included in the primary and safety analyses. The per-protocol analysis excluded those who did not complete treatment or had substantial protocol violations. The primary endpoint was the incidence risk of P vivax parasitaemia on day 63. This trial is registered at ClinicalTrials.gov, NCT03916003. FINDINGS: Between Aug 18, 2019, and March 14, 2022, a total of 500 patients were enrolled and randomly assigned, and 495 eligible patients were included in the intention-to-treat analysis (246 intervention and 249 control). The incidence risk of P vivax parasitaemia at day 63 was 11·0% (95% CI 7·5-15·9) in the standard care arm compared with 2·5% (1·0-5·9) in the intervention arm (hazard ratio 0·20, 95% CI 0·08-0·51; p=0·0009). The effect size differed with blood schizontocidal treatment and site. Routine symptom reporting on day 2 and day 7 were similar between groups. In the first 42 days, there were a total of four primaquine-related adverse events reported in the standard care arm and 26 in the intervention arm; 132 (92%) of all 143 adverse events were mild. There were two serious adverse events in the intervention arm, which were considered unrelated to the study drug. None of the patients developed severe anaemia (defined as haemoglobin <5 g/dL). INTERPRETATION: In patients with a G6PD activity of 70% or greater, high-dose short-course primaquine was safe and relatively well tolerated and reduced the risk of subsequent P vivax parasitaemia within 63 days by five fold. Universal radical cure therefore potentially offers substantial clinical, public health, and operational benefits, but these benefits will vary with endemic setting. FUNDING: Australian Academy of Science Regional Collaborations Program, Bill & Melinda Gates Foundation, and National Health and Medical Research Council.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Primaquine/adverse effects , Antimalarials/adverse effects , Plasmodium vivax , Artemether/pharmacology , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Australia , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Malaria/drug therapy , Plasmodium falciparum , Parasitemia/drug therapy , Parasitemia/epidemiology
7.
Malar J ; 23(1): 159, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773528

ABSTRACT

BACKGROUND: Primaquine (PQ) is the prototype 8-aminoquinoline drug, a class which targets gametocytes and hypnozoites. The World Health Organization (WHO) recommends adding a single low dose of primaquine to the standard artemisinin-based combination therapy (ACT) in order to block malaria transmission in regions with low malaria transmission. However, the haemolytic toxicity is a major adverse outcome of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient subjects. This study aimed to characterize the pharmacokinetic properties of primaquine and its major metabolites in G6PD-deficient subjects. METHODS: A single low-dose of primaquine (0.4-0.5 mg/kg) was administered in twenty-eight African males. Venous and capillary plasma were sampled up to 24 h after the drug administration. Haemoglobin levels were observed up to 28 days after drug administration. Only PQ, carboxy-primaquine (CPQ), and primaquine carbamoyl-glucuronide (PQCG) were present in plasma samples and measured using liquid chromatography mass spectrometry. Drug and metabolites' pharmacokinetic properties were investigated using nonlinear mixed-effects modelling. RESULTS: Population pharmacokinetic properties of PQ, CPQ, and PQCG can be described by one-compartment disposition kinetics with a transit-absorption model. Body weight was implemented as an allometric function on the clearance and volume parameters for all compounds. None of the covariates significantly affected the pharmacokinetic parameters. No significant correlations were detected between the exposures of the measured compounds and the change in haemoglobin or methaemoglobin levels. There was no significant haemoglobin drop in the G6PD-deficient patients after administration of a single low dose of PQ. CONCLUSIONS: A single low-dose of PQ was haematologically safe in this population of G6PD-normal and G6PD-deficient African males without malaria. Trial registration NCT02535767.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Primaquine , Adolescent , Adult , Humans , Male , Middle Aged , Young Adult , Antimalarials/pharmacokinetics , Antimalarials/blood , Antimalarials/administration & dosage , Primaquine/pharmacokinetics , Primaquine/blood , Primaquine/administration & dosage
8.
Malar J ; 23(1): 176, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840151

ABSTRACT

BACKGROUND: With only one 15 mg primaquine tablet registered by a stringent regulatory authority and marketed, more quality-assured primaquine is needed to meet the demands of malaria elimination. METHODS: A classic, two sequence, crossover study, with a 10-day wash out period, of 15 mg of IPCA-produced test primaquine tablets and 15 mg of Sanofi reference primaquine tablets was conducted. Healthy volunteers, aged 18-45 years, without glucose-6-phosphate dehydrogenase deficiency, a baseline haemoglobin ≥ 11 g/dL, creatinine clearance ≥ 70 mL/min/1.73 ms, and body mass index of 18.5-30 kg/m2 were randomized to either test or reference primaquine, administered on an empty stomach with 240 mL of water. Plasma primaquine and carboxyprimaquine concentrations were measured at baseline, then 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.333, 2.667, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 8.0, 10.0, 12.0, 16.0, 24.0, 36.0, 48.0 and 72.0 h by liquid chromatography coupled to tandem mass spectrometry. Primaquine pharmacokinetic profiles were evaluated by non-compartmental analysis and bioequivalence concluded if the 90% confidence intervals (CI) of geometric mean (GM) ratios of test vs. reference formulation for the peak concentrations (Cmax) and area under the drug concentration-time (AUC0-t) were within 80.00 to 125.00%. RESULTS: 47 of 50 volunteers, median age 33 years, completed both dosing rounds and were included in the bioequivalence analysis. For primaquine, GM Cmax values for test and reference formulations were 62.12 vs. 59.63 ng/mL, resulting in a GM ratio (90% CI) of 104.17% (96.92-111.96%); the corresponding GM AUC0-t values were 596.56 vs. 564.09 ngxh/mL, for a GM ratio of 105.76% (99.76-112.08%). Intra-subject coefficient of variation was 20.99% for Cmax and 16.83% for AUC0-t. Median clearances and volumes of distribution were similar between the test and reference products: 24.6 vs. 25.2 L/h, 189.4 vs. 191.0 L, whilst the median half-lives were the same, 5.2 h. CONCLUSION: IPCA primaquine was bioequivalent to the Sanofi primaquine. This opens the door to prequalification, registration in malaria endemic countries, and programmatic use for malaria elimination. Trial registration The trial registration reference is ISRCTN 54640699.


Subject(s)
Antimalarials , Cross-Over Studies , Primaquine , Therapeutic Equivalency , Primaquine/pharmacokinetics , Primaquine/administration & dosage , Humans , Antimalarials/pharmacokinetics , Antimalarials/administration & dosage , Adult , Young Adult , Male , Female , Adolescent , Middle Aged , Malaria/drug therapy , Malaria/prevention & control , Healthy Volunteers , Tablets
9.
Malar J ; 23(1): 106, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632607

ABSTRACT

BACKGROUND: To gain a deeper understanding of protective immunity against relapsing malaria, this study examined sporozoite-specific T cell responses induced by a chemoprophylaxis with sporozoite (CPS) immunization in a relapsing Plasmodium cynomolgi rhesus macaque model. METHODS: The animals received three CPS immunizations with P. cynomolgi sporozoites, administered by mosquito bite, while under two anti-malarial drug regimens. Group 1 (n = 6) received artesunate/chloroquine (AS/CQ) followed by a radical cure with CQ plus primaquine (PQ). Group 2 (n = 6) received atovaquone-proguanil (AP) followed by PQ. After the final immunization, the animals were challenged with intravenous injection of 104 P. cynomolgi sporozoites, the dose that induced reliable infection and relapse rate. These animals, along with control animals (n = 6), were monitored for primary infection and subsequent relapses. Immunogenicity blood draws were done after each of the three CPS session, before and after the challenge, with liver, spleen and bone marrow sampling and analysis done after the challenge. RESULTS: Group 2 animals demonstrated superior protection, with two achieving protection and two experiencing partial protection, while only one animal in group 1 had partial protection. These animals displayed high sporozoite-specific IFN-γ T cell responses in the liver, spleen, and bone marrow after the challenge with one protected animal having the highest frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. Partially protected animals also demonstrated a relatively high frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. It is important to highlight that the second animal in group 2, which experienced protection, exhibited deficient sporozoite-specific T cell responses in the liver while displaying average to high T cell responses in the spleen and bone marrow. CONCLUSIONS: This research supports the notion that local liver T cell immunity plays a crucial role in defending against liver-stage infection. Nevertheless, there is an instance where protection occurs independently of T cell responses in the liver, suggesting the involvement of the liver's innate immunity. The relapsing P. cynomolgi rhesus macaque model holds promise for informing the development of vaccines against relapsing P. vivax.


Subject(s)
Atovaquone , Malaria Vaccines , Plasmodium cynomolgi , Proguanil , Animals , Primaquine/therapeutic use , Sporozoites , Macaca mulatta , Immunization , Chemoprevention , CD8-Positive T-Lymphocytes , Drug Combinations
10.
Malar J ; 23(1): 145, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741094

ABSTRACT

A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥ 16 years. Despite this, questions have arisen on the optimal dose of tafenoquine. Before the availability of tafenoquine, a 3-day course of chloroquine in combination with the 8-aminoquinoline primaquine was the only effective radical cure for vivax malaria. The World Health Organization (WHO)-recommended standard regimen is 14 days of primaquine 0.25 mg/kg/day or 7 days of primaquine 0.5 mg/kg/day in most regions, or 14 days of primaquine 0.5 mg/kg/day in East Asia and Oceania, however the long treatment courses of 7 or 14 days may result in poor adherence and, therefore, low treatment efficacy. A single dose of tafenoquine 300 mg in combination with a 3-day course of chloroquine is an important advancement for the radical cure of vivax malaria in patients without glucose-6-phosphate dehydrogenase (G6PD) deficiency, as the use of a single-dose treatment will improve adherence. Selection of a single 300 mg dose of tafenoquine for the radical cure of P. vivax malaria was based on collective efficacy and safety data from 33 studies involving more than 4000 trial participants who received tafenoquine, including over 800 subjects who received the 300 mg single dose. The safety profile of single-dose tafenoquine 300 mg is similar to that of standard-dosage primaquine 0.25 mg/kg/day for 14 days. Both primaquine and tafenoquine can cause acute haemolytic anaemia in individuals with G6PD deficiency; severe haemolysis can lead to anaemia, kidney damage, and, in some cases, death. Therefore, relapse prevention using an 8-aminoquinoline must be balanced with the need to avoid clinical haemolysis associated with G6PD deficiency. To minimize this risk, the WHO recommends G6PD testing for all individuals before the administration of curative doses of 8-aminoquinolines. In this article, the authors review key efficacy and safety data from the pivotal trials of tafenoquine and argue that the currently approved dose represents a favourable benefit-risk profile.


Subject(s)
Aminoquinolines , Antimalarials , Malaria, Vivax , Malaria, Vivax/drug therapy , Aminoquinolines/administration & dosage , Aminoquinolines/adverse effects , Aminoquinolines/therapeutic use , Humans , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Antimalarials/adverse effects , Primaquine/administration & dosage , Primaquine/therapeutic use , Primaquine/adverse effects , Risk Assessment , Treatment Outcome , Drug Therapy, Combination , Plasmodium vivax/drug effects , Chloroquine/therapeutic use , Chloroquine/adverse effects , Chloroquine/administration & dosage
11.
Malar J ; 23(1): 56, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395925

ABSTRACT

BACKGROUND: Cambodia aims to eliminate all forms of malaria by 2025. In 2020, 90% of all malaria cases were Plasmodium vivax. Thus, preventing P. vivax and relapse malaria is a top priority for elimination. 14-day primaquine, a World Health Organization-recommended radical cure treatment regimen, specifically targets dormant hypnozoites in the liver to prevent relapse. Cambodia introduced P. vivax radical cure with primaquine after glucose-6-phosphate dehydrogenase (G6PD) qualitative testing in 2019. This paper presents Cambodia's radical cure Phase I implementation results and assesses the safety, effectiveness, and feasibility of the programme prior to nationwide scale up. METHODS: Phase I implementation was carried out in 88 select health facilities (HFs) across four provinces. Males over 20kgs with confirmed P. vivax or mixed (P. vivax and Plasmodium falciparum) infections were enrolled. A descriptive analysis evaluated the following: successful referral to health facilities, G6PD testing results, and self-reported 14-day treatment adherence. P. vivax incidence was compared before and after radical cure rollout and a controlled interrupted time series analysis compared the estimated relapse rate between implementation and non-implementation provinces before and after radical cure. RESULTS: In the 4 provinces from November 2019 to December 2020, 3,239 P. vivax/mixed infections were reported, 1,282 patients underwent G6PD deficiency testing, and 959 patients received radical cure, achieving 29.6% radical cure coverage among all P. vivax/mixed cases and 98.8% coverage among G6PD normal patients. Among those who initiated radical cure, 747 patients (78%) completed treatment. Six patients reported side effects. In implementation provinces, an average 31.8 relapse cases per month were estimated signaling a 90% (286 cases) reduction in relapse compared to what would be expected if radical cure was not implemented. CONCLUSIONS: Plasmodium vivax radical cure is a crucial tool for malaria elimination in Cambodia. The high coverage of radical cure initiation and adherence among G6PD normal patients demonstrated the high feasibility of providing radical cure at point of care in Cambodia. Incomplete referral from community to HFs and limited capacity of HF staff to conduct G6PD testing in high burden areas led to lower coverage of G6PD testing. Phase I implementation informed approaches to improve referral completion and patient adherence during the nationwide expansion of radical cure in 2021.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Malaria , Male , Humans , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Primaquine/therapeutic use , Antimalarials/therapeutic use , Glucosephosphate Dehydrogenase , Cambodia/epidemiology , Malaria/drug therapy , Plasmodium vivax , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/drug therapy , Recurrence
12.
Malar J ; 23(1): 140, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725027

ABSTRACT

BACKGROUND: Plasmodium vivax relapses due to dormant liver hypnozoites can be prevented with primaquine. However, the dose must be adjusted in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. In French Guiana, assessment of G6PD activity is typically delayed until day (D)14 to avoid the risk if misclassification. This study assessed the kinetics of G6PD activity throughout P. vivax infection to inform the timing of treatment. METHODS: For this retrospective monocentric study, data on G6PD activity between D1 and D28 after treatment initiation with chloroquine or artemisinin-based combination therapy were collected for patients followed at Cayenne Hospital, French Guiana, between January 2018 and December 2020. Patients were divided into three groups based on the number of available G6PD activity assessments: (i) at least two measurements during the P. vivax malaria infection; (ii) two measurements: one during the current infection and one previously; (iii) only one measurement during the malaria infection. RESULTS: In total, 210 patients were included (80, 20 and 110 in groups 1, 2 and 3, respectively). Data from group 1 showed that G6PD activity remained stable in each patient over time (D1, D3, D7, D14, D21, D28). None of the patients with normal G6PD activity during the initial phase (D1-D3) of the malaria episode (n = 44) was categorized as G6PD-deficient at D14. Patients with G6PD activity < 80% at D1 or D3 showed normal activity at D14. Sex and reticulocyte count were statistically associated with G6PD activity variation. In the whole sample (n = 210), no patient had severe G6PD deficiency (< 10%) and only three between 10 and 30%, giving a G6PD deficiency prevalence of 1.4%. Among the 100 patients from group 1 and 2, 30 patients (26.5%) were lost to follow-up before primaquine initiation. CONCLUSIONS: In patients treated for P. vivax infection, G6PD activity did not vary over time. Therefore, G6PD activity on D1 instead of D14 could be used for primaquine dose-adjustment. This could allow earlier radical treatment with primaquine, that could have a public health impact by decreasing early recurrences and patients lost to follow-up before primaquine initiation. This hypothesis needs to be confirmed in larger prospective studies.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase , Malaria, Vivax , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Chloroquine/therapeutic use , French Guiana/epidemiology , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/complications , Kinetics , Malaria, Vivax/drug therapy , Plasmodium vivax/drug effects , Plasmodium vivax/physiology , Primaquine/therapeutic use , Retrospective Studies , Aged, 80 and over
13.
Bioorg Med Chem ; 104: 117714, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38582046

ABSTRACT

4,9-diaminoacridines with reported antiplasmodial activity were coupled to different trans-cinnamic acids, delivering a new series of conjugates inspired by the covalent bitherapy concept. The new compounds were more potent than primaquine against hepatic stages of Plasmodium berghei, although this was accompanied by cytotoxic effects on Huh-7 hepatocytes. Relevantly, the conjugates displayed nanomolar activities against blood stage P. falciparum parasites, with no evidence of hemolytic effects below 100 µM. Moreover, the new compounds were at least 25-fold more potent than primaquine against P. falciparum gametocytes. Thus, the new antiplasmodial hits disclosed herein emerge as valuable templates for the development of multi-stage antiplasmodial drug candidates.


Subject(s)
Antimalarials , Cinnamates , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Primaquine/pharmacology , Disclosure , Plasmodium falciparum , Malaria, Falciparum/drug therapy , Plasmodium berghei
14.
Antimicrob Agents Chemother ; 67(4): e0146522, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36856421

ABSTRACT

Safe and effective malaria transmission-blocking chemotherapeutics would allow a community-level approach to malaria control and eradication efforts by targeting the mosquito sexual stage of the parasite life cycle. However, only a single drug, primaquine, is currently approved for use in reducing transmission, and drug toxicity limits its widespread implementation. To address this limitation in antimalarial chemotherapeutics, we used a recently developed transgenic Plasmodium berghei line, Ookluc, to perform a series of high-throughput in vitro screens for compounds that inhibit parasite fertilization, the initial step of parasite development within the mosquito. Screens of antimalarial compounds, approved drug collections, and drug-like molecule libraries identified 185 compounds that inhibit parasite maturation to the zygote form. Seven compounds were further characterized to block gametocyte activation or to be cytotoxic to formed zygotes. These were further validated in mosquito membrane-feeding assays using Plasmodium falciparum and P. vivax. This work demonstrates that high-throughput screens using the Ookluc line can identify compounds that are active against the two most relevant human Plasmodium species and provides a list of compounds that can be explored for the development of new antimalarials to block transmission.


Subject(s)
Antimalarials , Culicidae , Malaria, Falciparum , Malaria, Vivax , Malaria , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium berghei , High-Throughput Screening Assays , Malaria/prevention & control , Primaquine/therapeutic use , Plasmodium falciparum , Malaria, Vivax/drug therapy , Malaria, Falciparum/drug therapy
15.
Antimicrob Agents Chemother ; 67(12): e0101423, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37971260

ABSTRACT

Plasmodium vivax infections and relapses remain a major health problem for malaria-endemic countries, deployed military personnel, and travelers. Presumptive anti-relapse therapy and radical cure using the 8-aminoquinoline drugs primaquine and tafenoquine are necessary to prevent relapses. Although it has been demonstrated that the efficacy of primaquine is associated with Cytochrome P450 2D6 (CYP2D6) activity, there is insufficient data on the role of CYP2D6 in the anti-relapse efficacy of tafenoquine. We investigated the relationship between CYP2D6 activity status and tafenoquine efficacy in preventing P. vivax relapses retrospectively using plasma samples collected from Australian Defence Force personnel deployed to Papua New Guinea and Timor-Leste who participated in clinical trials of tafenoquine during 1999-2001. The CYP2D6 gene was amplified from plasma samples and fully sequenced from 92 participant samples, comprised of relapse (n = 31) and non-relapse (n = 61) samples, revealing 14 different alleles. CYP2D6 phenotypes deduced from combinations of CYP2D6 alleles predicted that among 92 participants 67, 15, and 10 were normal, intermediate, and poor metabolizers, respectively. The deduced CYP2D6 phenotype did not correlate with the corresponding participant's plasma tafenoquine concentrations that were determined in the early 2000s by high-performance liquid chromatography or liquid chromatography-mass spectrometry. Furthermore, the deduced CYP2D6 phenotype did not associate with P. vivax relapse outcomes. Our results indicate that CYP2D6 does not affect plasma tafenoquine concentrations and the efficacy of tafenoquine in preventing P. vivax relapses in the assessed Australian Defence Force personnel.


Subject(s)
Antimalarials , Malaria, Vivax , Humans , Primaquine/therapeutic use , Plasmodium vivax/genetics , Antimalarials/therapeutic use , Cytochrome P-450 CYP2D6/genetics , Retrospective Studies , Australia , Aminoquinolines/therapeutic use , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Recurrence
16.
BMC Med ; 21(1): 397, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37858129

ABSTRACT

BACKGROUND: Single low-dose primaquine (SLDPQ) effectively blocks the transmission of Plasmodium falciparum malaria, but anxiety remains regarding its haemolytic potential in patients with glucose-6-phopshate dehydrogenase (G6PD) deficiency. We, therefore, examined the independent effects of several factors on haemoglobin (Hb) dynamics in falciparum-infected children with a particular interest in SLDPQ and G6PD status. METHODS: This randomised, double-blind, placebo-controlled, safety trial was conducted in Congolese and Ugandan children aged 6 months-11 years with acute uncomplicated P. falciparum and day (D) 0 Hbs ≥ 6 g/dL who were treated with age-dosed SLDPQ/placebo and weight-dosed artemether lumefantrine (AL) or dihydroartemisinin piperaquine (DHAPP). Genotyping defined G6PD (G6PD c.202T allele), haemoglobin S (HbS), and α-thalassaemia status. Multivariable linear and logistic regression assessed factor independence for continuous Hb parameters and Hb recovery (D42 Hb > D0 Hb), respectively. RESULTS: One thousand one hundred thirty-seven children, whose median age was 5 years, were randomised to receive: AL + SLDPQ (n = 286), AL + placebo (286), DHAPP + SLDPQ (283), and DHAPP + placebo (282). By G6PD status, 284 were G6PD deficient (239 hemizygous males, 45 homozygous females), 119 were heterozygous females, 418 and 299 were normal males and females, respectively, and 17 were of unknown status. The mean D0 Hb was 10.6 (SD 1.6) g/dL and was lower in younger children with longer illnesses, lower mid-upper arm circumferences, splenomegaly, and α-thalassaemia trait, who were either G6PDd or heterozygous females. The initial fractional fall in Hb was greater in younger children with higher D0 Hbs and D0 parasitaemias and longer illnesses but less in sickle cell trait. Older G6PDd children with lower starting Hbs and greater factional falls were more likely to achieve Hb recovery, whilst lower D42 Hb concentrations were associated with younger G6PD normal children with lower fractional falls, sickle cell disease, α-thalassaemia silent carrier and trait, and late treatment failures. Ten blood transfusions were given in the first week (5 SLDPQ, 5 placebo). CONCLUSIONS: In these falciparum-infected African children, posttreatment Hb changes were unaffected by SLDPQ, and G6PDd patients had favourable posttreatment Hb changes and a higher probability of Hb recovery. These reassuring findings support SLDPQ deployment without G6PD screening in Africa. TRIAL REGISTRATION: The trial is registered at ISRCTN 11594437.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Falciparum , alpha-Thalassemia , Male , Female , Humans , Child , Child, Preschool , Primaquine , Antimalarials/adverse effects , alpha-Thalassemia/drug therapy , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemether/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/chemically induced , Hemoglobins/analysis , Plasmodium falciparum
17.
Bioconjug Chem ; 34(6): 1105-1113, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37232456

ABSTRACT

Malaria continues to impose a global health burden. Drug-resistant parasites have emerged to each introduced small-molecule therapy, highlighting the need for novel treatment approaches for the future eradication of malaria. Herein, targeted drug delivery with peptide-drug conjugates (PDCs) was investigated as an alternative antimalarial therapy, inspired by the success of emerging antibody-drug conjugates utilized in cancer treatment. A synthetic peptide derived from an innate human defense molecule was conjugated to the antimalarial drug primaquine (PQ) to produce PDCs with low micromolar potency toward Plasmodium falciparum in vitro. A suite of PDCs with different design features was developed to identify optimal conjugation site and investigate linker length, hydrophilicity, and cleavability. Conjugation within a flexible spacer region of the peptide, with a cleavable linker to liberate the PQ cargo, was important to retain activity of the peptide and drug.


Subject(s)
Antimalarials , Cell-Penetrating Peptides , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Cell-Penetrating Peptides/pharmacology , Pharmaceutical Preparations , Primaquine/chemistry , Primaquine/therapeutic use , Malaria/drug therapy , Malaria/parasitology , Plasmodium falciparum , Malaria, Falciparum/drug therapy
18.
Malar J ; 22(1): 77, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36872344

ABSTRACT

BACKGROUND: Some anti-malarial drugs often cause haemolytic anaemia in glucose-6-phosphate-dehydrogenase deficiency (G6PDd) patients. This study aims to analyse the association of G6PDd and anaemia in malaria patients receiving anti-malarial drugs. METHODS: A literature search was performed in major database portals. All studies searched using keywords with Medical Subject Headings (MeSH) were included, without date or language restriction. Pooled mean difference of haemoglobin and risk ratio of anaemia were analysed using RevMan. RESULTS: Sixteen studies comprising 3474 malaria patients that included 398 (11.5%) with G6PDd were found. Mean difference of haemoglobin in G6PDd/G6PD normal (G6PDn) patients was - 0.16 g/dL (95% CI - 0.48, 0.15; I2 5%, p = 0.39), regardless of the type of malaria and dose of drugs. In particular with primaquine (PQ), mean difference of haemoglobin in G6PDd/G6PDn patients with dose < 0.5 mg/kg/day was - 0.04 (95% CI - 0.35, 0.27; I2 0%, p = 0.69). The risk ratio of developing anaemia in G6PDd patients was 1.02 (95% CI 0.75, 1.38; I2 0%, p = 0.79). CONCLUSION: Single or daily standard doses of PQ (0.25 mg/kg/day) and weekly PQ (0.75 mg/kg/week) did not increase the risk of anaemia in G6PDd patients.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Humans , Glucosephosphate Dehydrogenase , Primaquine , Hemoglobins
19.
Malar J ; 22(1): 162, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37210520

ABSTRACT

BACKGROUND: Reducing the risk of recurrent Plasmodium vivax malaria is critical for malaria control and elimination. Primaquine (PQ) is the only widely available drug against P. vivax dormant liver stages, but is recommended as a 14-day regimen, which can undermine adherence to a complete course of treatment. METHODS: This is a mixed-methods study to assess socio-cultural factors influencing adherence to a 14-day PQ regimen in a 3-arm, treatment effectiveness trial in Papua, Indonesia. The qualitative strand, consisting of interviews and participant observation was triangulated with a quantitative strand in which trial participants were surveyed using a questionnaire. RESULTS: Trial participants differentiated between two types of malaria: tersiana and tropika, equivalent to P. vivax and Plasmodium falciparum infection, respectively. The perceived severity of both types was similar with 44.0% (267/607) perceiving tersiana vs. 45.1% (274/607) perceiving tropika as more severe. There was no perceived differentiation whether malaria episodes were due to a new infection or relapse; and 71.3% (433/607) acknowledged the possibility of recurrence. Participants were familiar with malaria symptoms and delaying health facility visit by 1-2 days was perceived to increase the likelihood of a positive test. Prior to health facility visits, symptoms were treated with leftover drugs kept at home (40.4%; 245/607) or bought over the counter (17.0%; 103/607). Malaria was considered to be cured with 'blue drugs' (referring to dihydroartemisinin-piperaquine). Conversely, 'brown drugs,' referring to PQ, were not considered malaria medication and instead were perceived as supplements. Adherence to malaria treatment was 71.2% (131/184), in the supervised arm, 56.9% (91/160) in the unsupervised arm and 62.4% (164/263) in the control arm; p = 0.019. Adherence was 47.5% (47/99) among highland Papuans, 51.7% (76/147) among lowland Papuans, and 72.9% (263/361) among non-Papuans; p < 0.001. CONCLUSION: Adherence to malaria treatment was a socio-culturally embedded process during which patients (re-)evaluated the characteristics of the medicines in relation to the course of the illness, their past experiences with illness, and the perceived benefits of the treatment. Structural barriers that hinder the process of patient adherence are crucial to consider in the development and rollout of effective malaria treatment policies.


Subject(s)
Antimalarials , Malaria, Vivax , Malaria , Humans , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Antimalarials/therapeutic use , Antimalarials/pharmacology , Indonesia , Plasmodium vivax , Primaquine/therapeutic use , Primaquine/pharmacology , Malaria/drug therapy
20.
Malar J ; 22(1): 17, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36635642

ABSTRACT

BACKGROUND: Mass drug administration (MDA) with primaquine (PQ) is being considered for accelerating Plasmodium vivax elimination in remaining active foci. This study aimed to determine the acceptability of MDA with PQ in malaria endemic villages in a malarious setting in the South of Thailand undergoing MDA with PQ. METHODS: A cross-sectional mixed-methods approach was conducted in seven malaria endemic villages where MDA with PQ was implemented. The data were collected from community villagers and health workers using structured questionnaires, in-depth interviews, and focus group discussions. Descriptive statistics and logistic regression models were used for quantitative data analysis. Thematic analysis was applied for qualitative data. RESULTS: Among a total of 469 participants from the MDA villages, 293 participants were eligible for MDA with PQ and 79.86% (234) completed 14-days of PQ. The logistic regressions indicated that males (adjusted odds ratio: 2.52 [95% confidence interval: 1.33-4.81]) and those who are farmers (2.57 [1.12-5.90]) were most likely to participate in the MDA. Among 293 participants in the post-MDA study, 74.06% had originally agreed to participate in the MDA with PQ while 25.94% had originally reported not wanting to participate in the MDA. Of those who originally reported being willing to participate in the MDA, 71.23% followed through with participation in the first or second round. Conversely, 93.24% of those who originally reported not being willing to participate in the MDA did in fact participate in the MDA. Factors contributing to higher odds of agreeing to participate and following through with participation included being male (1.98 [1.06-3.69]) and correctly responding that malaria is preventable (2.32 [1.01-5.35]) with some differences by village. Five key themes emerged from the qualitative analyses: concern about side effects from taking PQ; disbelief that malaria could be eliminated in this setting; low overall concern about malaria infections; misunderstandings about malaria; and a general need to tailor public health efforts for this unique context. CONCLUSION: While the reported likelihood of participating in MDA was high in this setting, actual follow-through was relatively moderate, partially because of eligibility (roughly 71% of those in the follow-up survey who originally agreed to participate actually followed through with participation). One of the largest concerns among study participants was PQ-related side effects-and these concerns likely heavily influenced participant adherence to the MDA. The results of this study can be used to tailor future MDAs, or other public health interventions, in this and potentially other similar settings.


Subject(s)
Antimalarials , Drug-Related Side Effects and Adverse Reactions , Malaria, Vivax , Malaria , Humans , Male , Female , Primaquine/therapeutic use , Primaquine/pharmacology , Antimalarials/therapeutic use , Antimalarials/pharmacology , Plasmodium vivax , Mass Drug Administration , Thailand , Cross-Sectional Studies , Malaria/drug therapy , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL