Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 705.255
Filter
Add more filters

Publication year range
1.
Cell ; 187(8): 1853-1873.e15, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38574728

ABSTRACT

This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.


Subject(s)
Biomarkers , Gastrointestinal Microbiome , Neurodevelopmental Disorders , Child , Female , Humans , Infant , Pregnancy , Autism Spectrum Disorder/microbiology , Longitudinal Studies , Prospective Studies , Feces/microbiology , Mood Disorders/microbiology
2.
Cell ; 185(3): 563-575.e11, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35120664

ABSTRACT

Metastatic progression is the main cause of death in cancer patients, whereas the underlying genomic mechanisms driving metastasis remain largely unknown. Here, we assembled MSK-MET, a pan-cancer cohort of over 25,000 patients with metastatic diseases. By analyzing genomic and clinical data from this cohort, we identified associations between genomic alterations and patterns of metastatic dissemination across 50 tumor types. We found that chromosomal instability is strongly correlated with metastatic burden in some tumor types, including prostate adenocarcinoma, lung adenocarcinoma, and HR+/HER2+ breast ductal carcinoma, but not in others, including colorectal cancer and high-grade serous ovarian cancer, where copy-number alteration patterns may be established early in tumor development. We also identified somatic alterations associated with metastatic burden and specific target organs. Our data offer a valuable resource for the investigation of the biological basis for metastatic spread and highlight the complex role of chromosomal instability in cancer progression.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Cohort Studies , Female , Humans , Male , Organ Specificity/genetics , Prospective Studies
3.
Cell ; 184(9): 2487-2502.e13, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33857424

ABSTRACT

Precision oncology has made significant advances, mainly by targeting actionable mutations in cancer driver genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interactions to predict patient response to cancer therapy from the tumor transcriptome. SELECT is tested on a broad collection of 35 published targeted and immunotherapy clinical trials from 10 different cancer types. It is predictive of patients' response in 80% of these clinical trials and in the recent multi-arm WINTHER trial. The predictive signatures and the code are made publicly available for academic use, laying a basis for future prospective clinical studies.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/drug effects , Molecular Targeted Therapy , Neoplasms/drug therapy , Precision Medicine , Synthetic Lethal Mutations , Transcriptome/drug effects , Aged , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/immunology , Clinical Trials as Topic , Female , Follow-Up Studies , Humans , Immunotherapy , Male , Neoplasms/genetics , Neoplasms/pathology , Prognosis , Prospective Studies , Retrospective Studies , Survival Rate
4.
Cell ; 183(1): 228-243.e21, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32946810

ABSTRACT

Every day we make decisions critical for adaptation and survival. We repeat actions with known consequences. But we also draw on loosely related events to infer and imagine the outcome of entirely novel choices. These inferential decisions are thought to engage a number of brain regions; however, the underlying neuronal computation remains unknown. Here, we use a multi-day cross-species approach in humans and mice to report the functional anatomy and neuronal computation underlying inferential decisions. We show that during successful inference, the mammalian brain uses a hippocampal prospective code to forecast temporally structured learned associations. Moreover, during resting behavior, coactivation of hippocampal cells in sharp-wave/ripples represent inferred relationships that include reward, thereby "joining-the-dots" between events that have not been observed together but lead to profitable outcomes. Computing mnemonic links in this manner may provide an important mechanism to build a cognitive map that stretches beyond direct experience, thus supporting flexible behavior.


Subject(s)
Decision Making/physiology , Nerve Net/physiology , Thinking/physiology , Animals , Brain/physiology , Female , Hippocampus/metabolism , Hippocampus/physiology , Humans , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Models, Neurological , Neurons/metabolism , Neurons/physiology , Prospective Studies , Young Adult
5.
Cell ; 182(6): 1401-1418.e18, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32810439

ABSTRACT

Blood myeloid cells are known to be dysregulated in coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2. It is unknown whether the innate myeloid response differs with disease severity and whether markers of innate immunity discriminate high-risk patients. Thus, we performed high-dimensional flow cytometry and single-cell RNA sequencing of COVID-19 patient peripheral blood cells and detected disappearance of non-classical CD14LowCD16High monocytes, accumulation of HLA-DRLow classical monocytes (Human Leukocyte Antigen - DR isotype), and release of massive amounts of calprotectin (S100A8/S100A9) in severe cases. Immature CD10LowCD101-CXCR4+/- neutrophils with an immunosuppressive profile accumulated in the blood and lungs, suggesting emergency myelopoiesis. Finally, we show that calprotectin plasma level and a routine flow cytometry assay detecting decreased frequencies of non-classical monocytes could discriminate patients who develop a severe form of COVID-19, suggesting a predictive value that deserves prospective evaluation.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Flow Cytometry , Humans , Leukocyte L1 Antigen Complex , Monocytes , Myeloid Cells , Prospective Studies , SARS-CoV-2
6.
Cell ; 182(6): 1460-1473.e17, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32916129

ABSTRACT

The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease has been difficult due to apparent disconnects between animal and human studies and lack of an integrated multi-omics view of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases. VIDEO ABSTRACT.


Subject(s)
Gastrointestinal Microbiome/genetics , Gene Expression Regulation/genetics , Irritable Bowel Syndrome/metabolism , Metabolome , Purines/metabolism , Transcriptome/genetics , Animals , Bile Acids and Salts/metabolism , Biopsy , Butyrates/metabolism , Chromatography, Liquid , Cross-Sectional Studies , Epigenomics , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Gene Expression Regulation/physiology , Host Microbial Interactions/genetics , Humans , Hypoxanthine/metabolism , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/microbiology , Longitudinal Studies , Male , Metabolome/physiology , Mice , Observational Studies as Topic , Prospective Studies , Software , Tandem Mass Spectrometry , Transcriptome/physiology
7.
Nat Immunol ; 23(6): 940-946, 2022 06.
Article in English | MEDLINE | ID: mdl-35534723

ABSTRACT

As the effectiveness of a two-dose messenger RNA (mRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine regimen decreases with time, a third dose has been recommended. Here, we assessed immunogenicity, vaccine effectiveness and safety of the third BNT162b2 vaccine dose in a prospective cohort study of 12,413 healthcare workers (HCWs). Anti-RBD immunoglobulin G (IgG) levels were increased 1.7-fold after a third dose compared with following the second dose. Increased avidity from 61.1% (95% confidence interval (CI), 56.1-66.7) to 96.3% (95% CI, 94.2-98.5) resulted in a 6.1-fold increase in neutralization titer. Peri-infection humoral markers of 13 third-dose Delta variant of concern (VOC) breakthrough cases were lower compared with 52 matched controls. Vaccine effectiveness of the third dose relative to two doses was 85.6% (95% CI, 79.2-90.1). No serious adverse effects were reported. These results suggest that the third dose is superior to the second dose in both quantity and quality of IgG antibodies and safely boosts protection from infection.


Subject(s)
COVID-19 , Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Prospective Studies , SARS-CoV-2
8.
Nat Immunol ; 23(1): 23-32, 2022 01.
Article in English | MEDLINE | ID: mdl-34937933

ABSTRACT

Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates1-6. Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c+ natural killer (NK) cells and CD4+ T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38+PD1+CD4+ T effector (Teff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127+ granulocytes and CD38+CD8+ tissue-resident memory T cells (TRM). SARS-CoV-2-specific CD8+ T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Nasopharynx/immunology , Nose/cytology , Respiratory Mucosa/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/pathology , Granulocytes/immunology , HLA-DR Antigens/metabolism , Humans , Killer Cells, Natural/immunology , Memory T Cells/immunology , Monocytes/immunology , Nasopharynx/cytology , Nasopharynx/virology , Neutrophils/immunology , Nose/immunology , Nose/virology , Prospective Studies , Respiratory Mucosa/cytology , Respiratory Mucosa/virology
9.
Cell ; 177(4): 1035-1049.e19, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031003

ABSTRACT

We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Proteogenomics/methods , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes , Cell Proliferation/genetics , Colonic Neoplasms/metabolism , Genomics/methods , Glycolysis , Humans , Microsatellite Instability , Mutation , Phosphorylation , Prospective Studies , Proteomics/methods , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
10.
Nat Immunol ; 22(6): 769-780, 2021 06.
Article in English | MEDLINE | ID: mdl-34017122

ABSTRACT

Progression and persistence of malignancies are influenced by the local tumor microenvironment, and future eradication of currently incurable tumors will, in part, hinge on our understanding of malignant cell biology in the context of their nourishing surroundings. Here, we generated paired single-cell transcriptomic datasets of tumor cells and the bone marrow immune and stromal microenvironment in multiple myeloma. These analyses identified myeloma-specific inflammatory mesenchymal stromal cells, which spatially colocalized with tumor cells and immune cells and transcribed genes involved in tumor survival and immune modulation. Inflammatory stromal cell signatures were driven by stimulation with proinflammatory cytokines, and analyses of immune cell subsets suggested interferon-responsive effector T cell and CD8+ stem cell memory T cell populations as potential sources of stromal cell-activating cytokines. Tracking stromal inflammation in individuals over time revealed that successful antitumor induction therapy is unable to revert bone marrow inflammation, predicting a role for mesenchymal stromal cells in disease persistence.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mesenchymal Stem Cells/immunology , Multiple Myeloma/immunology , Neoplasm Recurrence, Local/immunology , Tumor Microenvironment/immunology , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bone Marrow/drug effects , Bone Marrow/immunology , Bone Marrow/pathology , Cell Line, Tumor , Disease Progression , Female , Gene Expression Regulation, Neoplastic/immunology , Humans , Male , Mesenchymal Stem Cells/pathology , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/prevention & control , Primary Cell Culture , Prospective Studies , RNA-Seq , Single-Cell Analysis , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
11.
Nat Immunol ; 22(7): 880-892, 2021 07.
Article in English | MEDLINE | ID: mdl-34099917

ABSTRACT

Multidimensional single-cell analyses of T cells have fueled the debate about whether there is extensive plasticity or 'mixed' priming of helper T cell subsets in vivo. Here, we developed an experimental framework to probe the idea that the site of priming in the systemic immune compartment is a determinant of helper T cell-induced immunopathology in remote organs. By site-specific in vivo labeling of antigen-specific T cells in inguinal (i) or gut draining mesenteric (m) lymph nodes, we show that i-T cells and m-T cells isolated from the inflamed central nervous system (CNS) in a model of multiple sclerosis (MS) are distinct. i-T cells were Cxcr6+, and m-T cells expressed P2rx7. Notably, m-T cells infiltrated white matter, while i-T cells were also recruited to gray matter. Therefore, we propose that the definition of helper T cell subsets by their site of priming may guide an advanced understanding of helper T cell biology in health and disease.


Subject(s)
Autoimmunity , Brain/immunology , Cell Lineage , Encephalomyelitis, Autoimmune, Experimental/immunology , Intestines/immunology , Skin/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adoptive Transfer , Animals , Autoimmunity/drug effects , Brain/drug effects , Brain/metabolism , Calcium Signaling , Cerebrospinal Fluid/immunology , Cerebrospinal Fluid/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fingolimod Hydrochloride/pharmacology , Gene Expression Profiling , Genes, T-Cell Receptor , HEK293 Cells , Humans , Immunosuppressive Agents/pharmacology , Intestines/drug effects , Intravital Microscopy , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Phenotype , Prospective Studies , RNA-Seq , Receptors, CXCR6/genetics , Receptors, CXCR6/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Single-Cell Analysis , Skin/drug effects , Skin/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/transplantation , Transcriptome
12.
Cell ; 173(7): 1566-1567, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29906442

ABSTRACT

Planarians are renowned for extraordinary regenerative abilities that are driven by stem cells maintained throughout their lives. In this issue of Cell, Zeng et al. report the prospective isolation of planarian pluripotent stem cells. Their work opens new directions for understanding how these remarkable cells are established, maintained, and activated.


Subject(s)
Planarians , Tetraspanins , Animals , Pluripotent Stem Cells , Prospective Studies , Regeneration
13.
Cell ; 173(3): 611-623.e17, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29656891

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Disease Progression , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mutation , 5' Untranslated Regions , Adult , Aged , Aged, 80 and over , Chromosomes, Human, Pair 3 , Chromosomes, Human, Pair 5 , Female , Gene Dosage , Genome, Human , Humans , Male , Middle Aged , Prospective Studies , Telomerase/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics
14.
Cell ; 173(4): 1003-1013.e15, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29681457

ABSTRACT

The majority of newly diagnosed prostate cancers are slow growing, with a long natural life history. Yet a subset can metastasize with lethal consequences. We reconstructed the phylogenies of 293 localized prostate tumors linked to clinical outcome data. Multiple subclones were detected in 59% of patients, and specific subclonal architectures associate with adverse clinicopathological features. Early tumor development is characterized by point mutations and deletions followed by later subclonal amplifications and changes in trinucleotide mutational signatures. Specific genes are selectively mutated prior to or following subclonal diversification, including MTOR, NKX3-1, and RB1. Patients with low-risk monoclonal tumors rarely relapse after primary therapy (7%), while those with high-risk polyclonal tumors frequently do (61%). The presence of multiple subclones in an index biopsy may be necessary, but not sufficient, for relapse of localized prostate cancer, suggesting that evolution-aware biomarkers should be studied in prospective studies of low-risk tumors suitable for active surveillance.


Subject(s)
Prostatic Neoplasms/pathology , Biomarkers, Tumor/blood , High-Throughput Nucleotide Sequencing , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Male , Neoplasm Grading , Neoplasm Recurrence, Local , Polymorphism, Single Nucleotide , Proportional Hazards Models , Prospective Studies , Prostatic Neoplasms/classification , Prostatic Neoplasms/genetics , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
15.
Cell ; 173(3): 595-610.e11, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29656894

ABSTRACT

The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Alleles , Biomarkers, Tumor , Chromosomes , Clonal Evolution , Disease Progression , Evolution, Molecular , Female , Genetic Heterogeneity , Genetic Variation , Humans , Longitudinal Studies , Male , Middle Aged , Models, Statistical , Mutation , Neoplasm Metastasis , Phenotype , Phylogeny , Prognosis , Prospective Studies , Sequence Analysis, DNA
16.
Cell ; 173(3): 581-594.e12, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29656895

ABSTRACT

Clear-cell renal cell carcinoma (ccRCC) exhibits a broad range of metastatic phenotypes that have not been systematically studied to date. Here, we analyzed 575 primary and 335 metastatic biopsies across 100 patients with metastatic ccRCC, including two cases sampledat post-mortem. Metastatic competence was afforded by chromosome complexity, and we identify 9p loss as a highly selected event driving metastasis and ccRCC-related mortality (p = 0.0014). Distinct patterns of metastatic dissemination were observed, including rapid progression to multiple tissue sites seeded by primary tumors of monoclonal structure. By contrast, we observed attenuated progression in cases characterized by high primary tumor heterogeneity, with metastatic competence acquired gradually and initial progression to solitary metastasis. Finally, we observed early divergence of primitive ancestral clones and protracted latency of up to two decades as a feature of pancreatic metastases.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mutation , Neoplasm Metastasis , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Biopsy , Chromosome Mapping , Chromosomes, Human, Pair 14 , Chromosomes, Human, Pair 9 , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Phenotype , Prospective Studies , Thrombosis , Treatment Outcome
17.
Physiol Rev ; 104(3): 881-929, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38206586

ABSTRACT

The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.


Subject(s)
Anterior Chamber , Humans , Prospective Studies
18.
Nat Immunol ; 20(10): 1311-1321, 2019 10.
Article in English | MEDLINE | ID: mdl-31527833

ABSTRACT

Whether screening the metabolic activity of immune cells facilitates discovery of molecular pathology remains unknown. Here we prospectively screened the extracellular acidification rate as a measure of glycolysis and the oxygen consumption rate as a measure of mitochondrial respiration in B cells from patients with primary antibody deficiency. The highest oxygen consumption rate values were detected in three study participants with persistent polyclonal B cell lymphocytosis (PPBL). Exome sequencing identified germline mutations in SDHA, which encodes succinate dehydrogenase subunit A, in all three patients with PPBL. SDHA gain-of-function led to an accumulation of fumarate in PPBL B cells, which engaged the KEAP1-Nrf2 system to drive the transcription of genes encoding inflammatory cytokines. In a single patient trial, blocking the activity of the cytokine interleukin-6 in vivo prevented systemic inflammation and ameliorated clinical disease. Overall, our study has identified pathological mitochondrial retrograde signaling as a disease modifier in primary antibody deficiency.


Subject(s)
B-Lymphocytes/immunology , Electron Transport Complex II/genetics , Inflammation/metabolism , Lymphocytosis/immunology , Mitochondria/metabolism , Mutation/genetics , Anti-Inflammatory Agents/pharmacology , Cell Respiration , Cells, Cultured , Fumarates/metabolism , Glycolysis , Humans , Inflammation/genetics , Interleukin-6/antagonists & inhibitors , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxygen Consumption , Prospective Studies , Signal Transduction , Exome Sequencing
19.
Nat Immunol ; 20(5): 637-651, 2019 05.
Article in English | MEDLINE | ID: mdl-30962590

ABSTRACT

Respiratory infections are common precursors to asthma exacerbations in children, but molecular immune responses that determine whether and how an infection causes an exacerbation are poorly understood. By using systems-scale network analysis, we identify repertoires of cellular transcriptional pathways that lead to and underlie distinct patterns of asthma exacerbation. Specifically, in both virus-associated and nonviral exacerbations, we demonstrate a set of core exacerbation modules, among which epithelial-associated SMAD3 signaling is upregulated and lymphocyte response pathways are downregulated early in exacerbation, followed by later upregulation of effector pathways including epidermal growth factor receptor signaling, extracellular matrix production, mucus hypersecretion, and eosinophil activation. We show an additional set of multiple inflammatory cell pathways involved in virus-associated exacerbations, in contrast to squamous cell pathways associated with nonviral exacerbations. Our work introduces an in vivo molecular platform to investigate, in a clinical setting, both the mechanisms of disease pathogenesis and therapeutic targets to modify exacerbations.


Subject(s)
Asthma/immunology , Gene Regulatory Networks/immunology , Transcriptome/immunology , Virus Diseases/immunology , Adolescent , Asthma/genetics , Asthma/virology , Case-Control Studies , Child , Common Cold/genetics , Common Cold/immunology , Common Cold/virology , Female , Humans , Longitudinal Studies , Male , Prospective Studies , Signal Transduction/genetics , Signal Transduction/immunology , Virus Diseases/genetics , Virus Diseases/virology
20.
CA Cancer J Clin ; 73(2): 164-197, 2023 03.
Article in English | MEDLINE | ID: mdl-36305841

ABSTRACT

The most common cancer caused by human papillomavirus (HPV) infection in the United States is oropharyngeal cancer (OPC), and its incidence has been rising since the turn of the century. Because of substantial long-term morbidities with chemoradiation and the favorable prognosis of HPV-positive OPC, identifying the optimal deintensification strategy for this group has been a keystone of academic head-and-neck surgery, radiation oncology, and medical oncology for over the past decade. However, the first generation of randomized chemotherapy deintensification trials failed to change the standard of care, triggering concern over the feasibility of de-escalation. National database studies estimate that up to one third of patients receive nonstandard de-escalated treatments, which have subspecialty-specific nuances. A synthesis of the multidisciplinary deintensification data and current treatment standards is important for the oncology community to reinforce best practices and ensure optimal patient outcomes. In this review, the authors present a summary and comparison of prospective HPV-positive OPC de-escalation trials. Chemotherapy attenuation compromises outcomes without reducing toxicity. Limited data comparing transoral robotic surgery (TORS) with radiation raise concern over toxicity and outcomes with TORS. There are promising data to support de-escalating adjuvant therapy after TORS, but consensus on treatment indications is needed. Encouraging radiation deintensification strategies have been reported (upfront dose reduction and induction chemotherapy-based patient selection), but level I evidence is years away. Ultimately, stage and HPV status may be insufficient to guide de-escalation. The future of deintensification may lie in incorporating intratreatment response assessments to harness the powers of personalized medicine and integrate real-time surveillance.


Subject(s)
Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Human Papillomavirus Viruses , Consensus , Prospective Studies , Oropharyngeal Neoplasms/surgery
SELECTION OF CITATIONS
SEARCH DETAIL