ABSTRACT
Genetic information is translated into proteins by the ribosome. Structural studies of the ribosome and of its complexes with factors and inhibitors have provided invaluable information on the mechanism of protein synthesis. Ribosome inhibitors are among the most successful antimicrobial drugs and constitute more than half of all medicines used to treat infections. However, bacterial infections are becoming increasingly difficult to treat because the microbes have developed resistance to the most effective antibiotics, creating a major public health care threat. This has spurred a renewed interest in structure-function studies of protein synthesis inhibitors, and in few cases, compounds have been developed into potent therapeutic agents against drug-resistant pathogens. In this review, we describe the modes of action of many ribosome-targeting antibiotics, highlight the major resistance mechanisms developed by pathogenic bacteria, and discuss recent advances in structure-assisted design of new molecules.
Subject(s)
Anti-Bacterial Agents/pharmacology , Ribosomes/drug effects , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Binding Sites , Drug Design , Drug Resistance, Microbial , Humans , Models, Biological , Models, Molecular , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/pharmacology , Ribosomes/chemistry , Ribosomes/metabolism , Structure-Activity RelationshipABSTRACT
The central dogma of molecular biology, that DNA is transcribed into RNA and RNA translated into protein, was coined in the early days of modern biology. Back in the 1950s and 1960s, bacterial genetics first opened the way toward understanding life as the genetically encoded interaction of macromolecules. As molecular biology progressed and our knowledge of gene control deepened, it became increasingly clear that expression relied on many more levels of regulation. In the process of dissecting mechanisms of gene expression, specific small-molecule inhibitors played an important role and became valuable tools of investigation. Small molecules offer significant advantages over genetic tools, as they allow inhibiting a process at any desired time point, whereas mutating or altering the gene of an important regulator would likely result in a dead organism. With the advent of modern sequencing technology, it has become possible to monitor global cellular effects of small-molecule treatment and thereby overcome the limitations of classical biochemistry, which usually looks at a biological system in isolation. This review focuses on several molecules, especially natural products, that have played an important role in dissecting gene expression and have opened up new fields of investigation as well as clinical venues for disease treatment.
Subject(s)
Gene Expression Regulation/drug effects , Active Transport, Cell Nucleus/drug effects , Animals , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Histone Code/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Methyltransferases/antagonists & inhibitors , Humans , Models, Biological , Molecular Biology , Protein Biosynthesis/drug effects , RNA Splicing/drug effects , RNA Stability/drug effects , Transcription, Genetic/drug effectsABSTRACT
Translation is under tight spatial and temporal controls to ensure protein production in the right time and place in cells. Methods that allow real-time, high-resolution visualization of translation in live cells are essential for understanding the spatiotemporal dynamics of translation regulation. Based on multivalent fluorescence amplification of the nascent polypeptide signal, we develop a method to image translation on individual mRNA molecules in real time in live cells, allowing direct visualization of translation events at the translation sites. Using this approach, we monitor transient changes of translation dynamics in responses to environmental stresses, capture distinct mobilities of individual polysomes in different subcellular compartments, and detect 3' UTR-dependent local translation and active transport of polysomes in dendrites of primary neurons.
Subject(s)
Optical Imaging/methods , Protein Biosynthesis , RNA, Messenger/metabolism , Animals , Dendrites/metabolism , Humans , Polyribosomes/metabolism , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , RNA, Messenger/chemistryABSTRACT
Heat causes protein misfolding and aggregation and, in eukaryotic cells, triggers aggregation of proteins and RNA into stress granules. We have carried out extensive proteomic studies to quantify heat-triggered aggregation and subsequent disaggregation in budding yeast, identifying >170 endogenous proteins aggregating within minutes of heat shock in multiple subcellular compartments. We demonstrate that these aggregated proteins are not misfolded and destined for degradation. Stable-isotope labeling reveals that even severely aggregated endogenous proteins are disaggregated without degradation during recovery from shock, contrasting with the rapid degradation observed for many exogenous thermolabile proteins. Although aggregation likely inactivates many cellular proteins, in the case of a heterotrimeric aminoacyl-tRNA synthetase complex, the aggregated proteins remain active with unaltered fidelity. We propose that most heat-induced aggregation of mature proteins reflects the operation of an adaptive, autoregulatory process of functionally significant aggregate assembly and disassembly that aids cellular adaptation to thermal stress.
Subject(s)
Heat-Shock Response , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Cycloheximide/pharmacology , Cytoplasmic Granules/metabolism , Protein Aggregates , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolismABSTRACT
Most mitochondrial proteins are translated in the cytosol and imported into mitochondria. Mutations in the mitochondrial protein import machinery cause human pathologies. However, a lack of suitable tools to measure protein uptake across the mitochondrial proteome has prevented the identification of specific proteins affected by import perturbation. Here, we introduce mePRODmt, a pulsed-SILAC based proteomics approach that includes a booster signal to increase the sensitivity for mitochondrial proteins selectively, enabling global dynamic analysis of endogenous mitochondrial protein uptake in cells. We applied mePRODmt to determine protein uptake kinetics and examined how inhibitors of mitochondrial import machineries affect protein uptake. Monitoring changes in translation and uptake upon mitochondrial membrane depolarization revealed that protein uptake was extensively modulated by the import and translation machineries via activation of the integrated stress response. Strikingly, uptake changes were not uniform, with subsets of proteins being unaffected or decreased due to changes in translation or import capacity.
Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Biosynthesis , Proteome , Proteomics , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Electron Transport Complex I/metabolism , Female , HeLa Cells , Humans , Kinetics , Mitochondria/drug effects , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/metabolism , Protein Biosynthesis/drug effects , Protein Transport , Uncoupling Agents/pharmacologyABSTRACT
RelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel. Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a pyrophosphate moiety from ATP to the tRNA 3' CCA. The modification inhibits both tRNA aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated RSH RelA. Conversely, we show that some small alarmone hydrolase (SAH) RSH enzymes can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS. Collectively, we establish RSHs as RNA-modifying enzymes.
Subject(s)
Bacterial Toxins/metabolism , Guanosine Pentaphosphate/metabolism , Ligases/metabolism , RNA, Transfer/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/pharmacology , Gram-Positive Asporogenous Rods/chemistry , Gram-Positive Asporogenous Rods/metabolism , Guanosine Pentaphosphate/chemistry , Ligases/chemistry , Ligases/genetics , Phosphorylation/drug effects , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Protein Synthesis Inhibitors/pharmacology , Pyrophosphatases , Ribosomes/metabolismABSTRACT
Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells1. Here we use advances in cryo-electron tomography and sub-tomogram analysis2,3 to visualize the structural dynamics of translation inside the bacterium Mycoplasma pneumoniae. To interpret the functional states in detail, we first obtain a high-resolution in-cell average map of all translating ribosomes and build an atomic model for the M. pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves 13 ribosome states that differ in their conformation and composition. These recapitulate major states that were previously resolved in vitro, and reflect intermediates during active translation. On the basis of these states, we animate translation elongation inside native cells and show how antibiotics reshape the cellular translation landscapes. During translation elongation, ribosomes often assemble in defined three-dimensional arrangements to form polysomes4. By mapping the intracellular organization of translating ribosomes, we show that their association into polysomes involves a local coordination mechanism that is mediated by the ribosomal protein L9. We propose that an extended conformation of L9 within polysomes mitigates collisions to facilitate translation fidelity. Our work thus demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells.
Subject(s)
Cryoelectron Microscopy , Mycoplasma pneumoniae , Protein Biosynthesis , Ribosomal Proteins , Ribosomes , Anti-Bacterial Agents/pharmacology , Mycoplasma pneumoniae/cytology , Mycoplasma pneumoniae/drug effects , Mycoplasma pneumoniae/metabolism , Mycoplasma pneumoniae/ultrastructure , Peptide Chain Elongation, Translational/drug effects , Polyribosomes/drug effects , Polyribosomes/metabolism , Polyribosomes/ultrastructure , Protein Biosynthesis/drug effects , Ribosomal Proteins/metabolism , Ribosomal Proteins/ultrastructure , Ribosomes/drug effects , Ribosomes/metabolism , Ribosomes/ultrastructureABSTRACT
Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.
Subject(s)
5-Methylcytosine , Cytosine/analogs & derivatives , Glycolysis , Mitochondria , Neoplasm Metastasis , Oxidative Phosphorylation , RNA, Mitochondrial , 5-Methylcytosine/biosynthesis , 5-Methylcytosine/metabolism , CD36 Antigens , Cell Survival , Cytosine/metabolism , Disease Progression , Glycolysis/drug effects , Humans , Methylation/drug effects , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Oxidative Phosphorylation/drug effects , Protein Biosynthesis/drug effects , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Transfer, Met/genetics , RNA, Transfer, Met/metabolismABSTRACT
Dysregulation of cellular protein synthesis is linked to a variety of diseases. Mutations in EIF2S3, encoding the γ subunit of the heterotrimeric eukaryotic translation initiation factor eIF2, cause MEHMO syndrome, an X-linked intellectual disability disorder. Here, using patient-derived induced pluripotent stem cells, we show that a mutation at the C terminus of eIF2γ impairs CDC123 promotion of eIF2 complex formation and decreases the level of eIF2-GTP-Met-tRNAiMet ternary complexes. This reduction in eIF2 activity results in dysregulation of global and gene-specific protein synthesis and enhances cell death upon stress induction. Addition of the drug ISRIB, an activator of the eIF2 guanine nucleotide exchange factor, rescues the cell growth, translation, and neuronal differentiation defects associated with the EIF2S3 mutation, offering the possibility of therapeutic intervention for MEHMO syndrome.
Subject(s)
Acetamides/pharmacology , Cyclohexylamines/pharmacology , Epilepsy/genetics , Eukaryotic Initiation Factor-2/genetics , Genitalia/abnormalities , Hypogonadism/genetics , Mental Retardation, X-Linked/genetics , Microcephaly/genetics , Mutation , Obesity/genetics , Protein Biosynthesis/drug effects , Apoptosis , Cell Cycle Proteins/metabolism , Cell Differentiation/drug effects , Cell Line , Eukaryotic Initiation Factor-2/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Neurons/cytologyABSTRACT
Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation.
Subject(s)
Interferon-gamma/immunology , Macrophage Activation/immunology , Macrophages/immunology , Protein Biosynthesis/immunology , RNA, Messenger/immunology , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/immunology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Blotting, Western , Cells, Cultured , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/immunology , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Profiling , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Homeodomain Proteins/metabolism , Humans , Interferon-gamma/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophages/drug effects , Macrophages/metabolism , Mechanistic Target of Rapamycin Complex 1 , MicroRNAs/genetics , Microscopy, Fluorescence , Multiprotein Complexes/genetics , Multiprotein Complexes/immunology , Multiprotein Complexes/metabolism , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/metabolism , Transcription Factor HES-1ABSTRACT
The polypeptide exit tunnel is an important functional compartment of the ribosome where the newly synthesized proteins are surveyed. The tunnel is the target of clinically important macrolide antibiotics. Macrolides plug the tunnel and are believed to stop production of all proteins. Contrary to this view, we show that drug-bound ribosomes can synthesize a distinct subset of cellular polypeptides. The structure of a protein defines its ability to thread through the antibiotic-obstructed tunnel. Synthesis of certain polypeptides that initially bypass translational arrest can be stopped at later stages of elongation while translation of some proteins goes to completion. Our findings reveal that small-molecule effectors can accentuate the discriminatory properties of the ribosomal exit tunnel and that macrolide antibiotics reshape the cellular proteome rather than block global protein synthesis.
Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/metabolism , Macrolides/pharmacology , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Ribosomes/drug effects , Amino Acid Sequence , Molecular Sequence Data , Peptide Chain Elongation, Translational , Ribosomes/metabolismABSTRACT
Single-cell sequencing methods have enabled in-depth analysis of the diversity of cell types and cell states in a wide range of organisms. These tools focus predominantly on sequencing the genomes1, epigenomes2 and transcriptomes3 of single cells. However, despite recent progress in detecting proteins by mass spectrometry with single-cell resolution4, it remains a major challenge to measure translation in individual cells. Here, building on existing protocols5-7, we have substantially increased the sensitivity of these assays to enable ribosome profiling in single cells. Integrated with a machine learning approach, this technology achieves single-codon resolution. We validate this method by demonstrating that limitation for a particular amino acid causes ribosome pausing at a subset of the codons encoding the amino acid. Of note, this pausing is only observed in a sub-population of cells correlating to its cell cycle state. We further expand on this phenomenon in non-limiting conditions and detect pronounced GAA pausing during mitosis. Finally, we demonstrate the applicability of this technique to rare primary enteroendocrine cells. This technology provides a first step towards determining the contribution of the translational process to the remarkable diversity between seemingly identical cells.
Subject(s)
Cell Cycle/genetics , Codon/genetics , Protein Biosynthesis , RNA-Seq/methods , Ribosomes/metabolism , Single-Cell Analysis , Amino Acids/deficiency , Amino Acids/pharmacology , Animals , Cell Cycle/drug effects , Cell Line , Female , Humans , Machine Learning , Male , Mice , Peptide Chain Elongation, Translational , Peptide Chain Initiation, Translational , Peptide Chain Termination, Translational , Protein Biosynthesis/drug effects , Reproducibility of Results , Ribosomes/drug effectsABSTRACT
So far, gene therapies have relied on complex constructs that cannot be finely controlled1,2. Here we report a universal switch element that enables precise control of gene replacement or gene editing after exposure to a small molecule. The small-molecule inducers are currently in human use, are orally bioavailable when given to animals or humans and can reach both peripheral tissues and the brain. Moreover, the switch system, which we denote Xon, does not require the co-expression of any regulatory proteins. Using Xon, the translation of the desired elements for controlled gene replacement or gene editing machinery occurs after a single oral dose of the inducer, and the robustness of expression can be controlled by the drug dose, protein stability and redosing. The ability of Xon to provide temporal control of protein expression can be adapted for cell-biology applications and animal studies. Additionally, owing to the oral bioavailability and safety of the drugs used, the Xon switch system provides an unprecedented opportunity to refine and tailor the application of gene therapies in humans.
Subject(s)
Alternative Splicing/drug effects , Gene Editing/methods , Genetic Therapy/methods , Protein Biosynthesis/drug effects , Animals , Brain/drug effects , Brain/metabolism , CRISPR-Associated Protein 9/metabolism , Drug Delivery Systems/methods , Erythropoietin/biosynthesis , Erythropoietin/genetics , Erythropoietin/metabolism , Exons/genetics , Female , Frontotemporal Dementia/metabolism , HEK293 Cells , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Muscular Atrophy, Spinal/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Progranulins/biosynthesis , Progranulins/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/metabolismABSTRACT
Extensive tumour inflammation, which is reflected by high levels of infiltrating T cells and interferon-γ (IFNγ) signalling, improves the response of patients with melanoma to checkpoint immunotherapy1,2. Many tumours, however, escape by activating cellular pathways that lead to immunosuppression. One such mechanism is the production of tryptophan metabolites along the kynurenine pathway by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which is induced by IFNγ3-5. However, clinical trials using inhibition of IDO1 in combination with blockade of the PD1 pathway in patients with melanoma did not improve the efficacy of treatment compared to PD1 pathway blockade alone6,7, pointing to an incomplete understanding of the role of IDO1 and the consequent degradation of tryptophan in mRNA translation and cancer progression. Here we used ribosome profiling in melanoma cells to investigate the effects of prolonged IFNγ treatment on mRNA translation. Notably, we observed accumulations of ribosomes downstream of tryptophan codons, along with their expected stalling at the tryptophan codon. This suggested that ribosomes bypass tryptophan codons in the absence of tryptophan. A detailed examination of these tryptophan-associated accumulations of ribosomes-which we term 'W-bumps'-showed that they were characterized by ribosomal frameshifting events. Consistently, reporter assays combined with proteomic and immunopeptidomic analyses demonstrated the induction of ribosomal frameshifting, and the generation and presentation of aberrant trans-frame peptides at the cell surface after treatment with IFNγ. Priming of naive T cells from healthy donors with aberrant peptides induced peptide-specific T cells. Together, our results suggest that IDO1-mediated depletion of tryptophan, which is induced by IFNγ, has a role in the immune recognition of melanoma cells by contributing to diversification of the peptidome landscape.
Subject(s)
Antigen Presentation , Frameshift Mutation , Melanoma/immunology , Peptides/genetics , Peptides/immunology , Protein Biosynthesis/immunology , T-Lymphocytes/immunology , Cell Line , Codon/genetics , Frameshifting, Ribosomal/drug effects , Frameshifting, Ribosomal/genetics , Frameshifting, Ribosomal/immunology , Histocompatibility Antigens Class I/immunology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/immunology , Interferon-gamma/pharmacology , Melanoma/pathology , Peptides/chemistry , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Proteome , Ribosomes/drug effects , Ribosomes/metabolism , Tryptophan/deficiency , Tryptophan/genetics , Tryptophan/metabolismABSTRACT
Effective pharmacotherapy for major depressive disorder remains a major challenge, as more than 30% of patients are resistant to the first line of treatment (selective serotonin reuptake inhibitors)1. Sub-anaesthetic doses of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist2,3, provide rapid and long-lasting antidepressant effects in these patients4-6, but the molecular mechanism of these effects remains unclear7,8. Ketamine has been proposed to exert its antidepressant effects through its metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK)9. The antidepressant effects of ketamine and (2R,6R)-HNK in rodents require activation of the mTORC1 kinase10,11. mTORC1 controls various neuronal functions12, particularly through cap-dependent initiation of mRNA translation via the phosphorylation and inactivation of eukaryotic initiation factor 4E-binding proteins (4E-BPs)13. Here we show that 4E-BP1 and 4E-BP2 are key effectors of the antidepressant activity of ketamine and (2R,6R)-HNK, and that ketamine-induced hippocampal synaptic plasticity depends on 4E-BP2 and, to a lesser extent, 4E-BP1. It has been hypothesized that ketamine activates mTORC1-4E-BP signalling in pyramidal excitatory cells of the cortex8,14. To test this hypothesis, we studied the behavioural response to ketamine and (2R,6R)-HNK in mice lacking 4E-BPs in either excitatory or inhibitory neurons. The antidepressant activity of the drugs is mediated by 4E-BP2 in excitatory neurons, and 4E-BP1 and 4E-BP2 in inhibitory neurons. Notably, genetic deletion of 4E-BP2 in inhibitory neurons induced a reduction in baseline immobility in the forced swim test, mimicking an antidepressant effect. Deletion of 4E-BP2 specifically in inhibitory neurons also prevented the ketamine-induced increase in hippocampal excitatory neurotransmission, and this effect concurred with the inability of ketamine to induce a long-lasting decrease in inhibitory neurotransmission. Overall, our data show that 4E-BPs are central to the antidepressant activity of ketamine.
Subject(s)
Antidepressive Agents/pharmacology , Eukaryotic Initiation Factor-4E/metabolism , Ketamine/pharmacology , Neurons/drug effects , Neurons/metabolism , Protein Biosynthesis/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Depressive Disorder, Major/drug therapy , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Inhibitory Postsynaptic Potentials/drug effects , Interneurons/drug effects , Interneurons/metabolism , Ketamine/analogs & derivatives , Ketamine/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mutation , Neural Inhibition/drug effects , Neural Inhibition/genetics , Neurons/classification , Neurons/cytology , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Synaptic Transmission/drug effectsABSTRACT
A class of translation inhibitors, exemplified by the natural product rocaglamide A (RocA), isolated from Aglaia genus plants, exhibits antitumor activity by clamping eukaryotic translation initiation factor 4A (eIF4A) onto polypurine sequences in mRNAs. This unusual inhibitory mechanism raises the question of how the drug imposes sequence selectivity onto a general translation factor. Here, we determined the crystal structure of the human eIF4A1â ATP analogâ RocAâ polypurine RNA complex. RocA targets the "bi-molecular cavity" formed characteristically by eIF4A1 and a sharply bent pair of consecutive purines in the RNA. Natural amino acid substitutions found in Aglaia eIF4As changed the cavity shape, leading to RocA resistance. This study provides an example of an RNA-sequence-selective interfacial inhibitor fitting into the space shaped cooperatively by protein and RNA with specific sequences.
Subject(s)
Benzofurans/metabolism , Eukaryotic Initiation Factor-4A/metabolism , Protein Biosynthesis , Protein Synthesis Inhibitors/metabolism , RNA/metabolism , Ribosomes/metabolism , Adenylyl Imidodiphosphate/chemistry , Adenylyl Imidodiphosphate/metabolism , Aglaia/chemistry , Aglaia/genetics , Aglaia/metabolism , Amino Acid Substitution , Benzofurans/chemistry , Benzofurans/isolation & purification , Benzofurans/pharmacology , Binding Sites , Drug Resistance/genetics , Eukaryotic Initiation Factor-4A/chemistry , Eukaryotic Initiation Factor-4A/genetics , HEK293 Cells , Humans , Models, Molecular , Molecular Structure , Mutation , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Protein Interaction Domains and Motifs , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/isolation & purification , Protein Synthesis Inhibitors/pharmacology , RNA/chemistry , Ribosomes/chemistry , Ribosomes/drug effects , Ribosomes/genetics , Structure-Activity RelationshipABSTRACT
The use of lipid nanoparticles (LNP) to encapsulate and deliver mRNA has become an important therapeutic advance. In addition to vaccines, LNP-mRNA can be used in many other applications. For example, targeting the LNP with anti-CD5 antibodies (CD5/tLNP) can allow for efficient delivery of mRNA payloads to T cells to express protein. As the percentage of protein expressing T cells induced by an intravenous injection of CD5/tLNP is relatively low (4-20%), our goal was to find ways to increase mRNA-induced translation efficiency. We showed that T cell activation using an anti-CD3 antibody improved protein expression after CD5/tLNP transfection in vitro but not in vivo. T cell health and activation can be increased with cytokines, therefore, using mCherry mRNA as a reporter, we found that culturing either mouse or human T cells with the cytokine IL7 significantly improved protein expression of delivered mRNA in both CD4+ and CD8+ T cells in vitro. By pre-treating mice with systemic IL7 followed by tLNP administration, we observed significantly increased mCherry protein expression by T cells in vivo. Transcriptomic analysis of mouse T cells treated with IL7 in vitro revealed enhanced genomic pathways associated with protein translation. Improved translational ability was demonstrated by showing increased levels of protein expression after electroporation with mCherry mRNA in T cells cultured in the presence of IL7, but not with IL2 or IL15. These data show that IL7 selectively increases protein translation in T cells, and this property can be used to improve expression of tLNP-delivered mRNA in vivo.
Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Interleukin-7 , Liposomes , Nanoparticles , Protein Biosynthesis , RNA, Messenger , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Interleukin-7/pharmacology , Protein Biosynthesis/drug effects , RNA, Messenger/metabolism , Mice, Inbred C57BL , Cells, Cultured , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunologyABSTRACT
Intronic GGGGCC (G4C2) hexanucleotide repeat expansion within the human C9orf72 gene represents the most common cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of repeat-containing C9orf72 RNA results in the production of neurotoxic dipeptide-repeat proteins (DPRs). Here, we developed a high-throughput drug screen for the identification of positive and negative modulators of DPR levels. We found that HSP90 inhibitor geldanamycin and aldosterone antagonist spironolactone reduced DPR levels by promoting protein degradation via the proteasome and autophagy pathways respectively. Surprisingly, cAMP-elevating compounds boosting protein kinase A (PKA) activity increased DPR levels. Inhibition of PKA activity, by both pharmacological and genetic approaches, reduced DPR levels in cells and rescued pathological phenotypes in a Drosophila model of C9ALS/FTD. Moreover, knockdown of PKA-catalytic subunits correlated with reduced translation efficiency of DPRs, while the PKA inhibitor H89 reduced endogenous DPR levels in C9ALS/FTD patient-derived iPSC motor neurons. Together, our results suggest new and druggable pathways modulating DPR levels in C9ALS/FTD.
Subject(s)
C9orf72 Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Dipeptides/metabolism , Proteolysis , Small Molecule Libraries/pharmacology , Animals , Cell Line , Codon, Initiator/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Repeat Expansion/genetics , Disease Models, Animal , Drosophila/drug effects , Frontotemporal Dementia/pathology , HEK293 Cells , High-Throughput Screening Assays , Humans , Induced Pluripotent Stem Cells/pathology , Isoquinolines/pharmacology , Longevity/drug effects , Motor Neurons/drug effects , Motor Neurons/pathology , Protein Biosynthesis/drug effects , Proteolysis/drug effects , RNA Interference , Sulfonamides/pharmacologyABSTRACT
A fundamental challenge in developing treatments for autism spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of cases1-3. Subsets of risk genes can be grouped into functionally related pathways, most prominently those involving synaptic proteins, translational regulation, and chromatin modifications. To attempt to minimize this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4-6, which regulate aspects of social behaviour in mammals7. However, it is unclear whether genetic risk factors predispose individuals to autism as a result of modifications to oxytocinergic signalling. Here we report that an autism-associated mutation in the synaptic adhesion molecule Nlgn3 results in impaired oxytocin signalling in dopaminergic neurons and in altered behavioural responses to social novelty tests in mice. Notably, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3-knockout mice with a new, highly specific, brain-penetrant inhibitor of MAP kinase-interacting kinases resets the translation of mRNA and restores oxytocin signalling and social novelty responses. Thus, this work identifies a convergence between the genetic autism risk factor Nlgn3, regulation of translation, and oxytocinergic signalling. Focusing on such common core plasticity elements might provide a pragmatic approach to overcoming the heterogeneity of autism. Ultimately, this would enable mechanism-based stratification of patient populations to increase the success of therapeutic interventions.
Subject(s)
Autistic Disorder/metabolism , Autistic Disorder/psychology , Disease Models, Animal , Oxytocin/metabolism , Social Behavior , Animals , Cell Adhesion Molecules, Neuronal/deficiency , Cell Adhesion Molecules, Neuronal/genetics , Eukaryotic Initiation Factor-4E/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinases/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Protein Biosynthesis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Ventral Tegmental Area/cytology , Ventral Tegmental Area/drug effectsABSTRACT
A new coronavirus was recently discovered and named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infection with SARS-CoV-2 in humans causes coronavirus disease 2019 (COVID-19) and has been rapidly spreading around the globe1,2. SARS-CoV-2 shows some similarities to other coronaviruses; however, treatment options and an understanding of how SARS-CoV-2 infects cells are lacking. Here we identify the host cell pathways that are modulated by SARS-CoV-2 and show that inhibition of these pathways prevents viral replication in human cells. We established a human cell-culture model for infection with a clinical isolate of SARS-CoV-2. Using this cell-culture system, we determined the infection profile of SARS-CoV-2 by translatome3 and proteome proteomics at different times after infection. These analyses revealed that SARS-CoV-2 reshapes central cellular pathways such as translation, splicing, carbon metabolism, protein homeostasis (proteostasis) and nucleic acid metabolism. Small-molecule inhibitors that target these pathways prevented viral replication in cells. Our results reveal the cellular infection profile of SARS-CoV-2 and have enabled the identification of drugs that inhibit viral replication. We anticipate that our results will guide efforts to understand the molecular mechanisms that underlie the modulation of host cells after infection with SARS-CoV-2. Furthermore, our findings provide insights for the development of therapies for the treatment of COVID-19.