ABSTRACT
Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.
Subject(s)
Nerve Regeneration , Humans , Neoplasms/drug therapy , Nerve Regeneration/drug effects , Protein Isoforms/agonists , Signal Transduction/drug effects , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/drug effects , Cardiotonic Agents/pharmacology , Animals , Biocatalysis/drug effects , Protein Conformation/drug effects , Neurites/drug effects , Reperfusion Injury/prevention & control , Nerve Crush , Cell Proliferation/drug effectsABSTRACT
Transient receptor potential vanilloid (TRPV) channels are part of the TRP channel superfamily and named after the first identified member TRPV1, that is sensitive to the vanillylamide capsaicin. Their overall structure is similar to the structure of voltage gated potassium channels (Kv) built up as homotetramers from subunits with six transmembrane helices (S1-S6). Six TRPV channel subtypes (TRPV1-6) are known, that can be subdivided into the thermoTRPV (TRPV1-4) and the Ca2+-selective TRPV channels (TRPV5, TRPV6). Contrary to Kv channels, TRPV channels are not primary voltage gated. All six channels have distinct properties and react to several endogenous ligands as well as different gating stimuli such as heat, pH, mechanical stress, or osmotic changes. Their physiological functions are highly diverse and subtype as well as tissue specific. In many tissues they serve as sensors for different pain stimuli (heat, pressure, pH) and contribute to the homeostasis of electrolytes, the maintenance of barrier functions and the development of macrophages. Due to their fundamental role in manifold physiological and pathophysiological processes, TRPV channels are promising targets for drug development. However, drugs targeting specific TRPV channels, that are suitable for drug therapy, are rare. Moreover, selective and potent compounds for further research at TRPV channels are often lacking. In this review different aspects of the structure, the different gating stimuli, the expression pattern, the physiological and pathophysiological roles as well as the modulating mechanisms of synthetic, natural and endogenous ligands are summarized.
Subject(s)
Analgesics/pharmacology , Antineoplastic Agents/pharmacology , Immunologic Factors/pharmacology , Membrane Transport Modulators/pharmacology , TRPV Cation Channels/metabolism , Analgesics/chemistry , Analgesics/classification , Antineoplastic Agents/chemistry , Antineoplastic Agents/classification , Binding Sites , Brain/cytology , Brain/drug effects , Brain/metabolism , Humans , Immunologic Factors/chemistry , Immunologic Factors/classification , Ion Channel Gating/drug effects , Ligands , Lung/cytology , Lung/drug effects , Lung/metabolism , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/classification , Models, Molecular , Organ Specificity , Protein Binding , Protein Isoforms/agonists , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/classification , Protein Isoforms/metabolism , Protein Structure, Secondary , Spleen/cytology , Spleen/drug effects , Spleen/metabolism , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/classificationABSTRACT
The adipokine, leptin exerts inhibitory effect on both spontaneous and oxytocin-induced contractions in myometrium. However, the mechanisms involved in leptin-induced effect are not clear. In the present study, we studied the altered characteristics of uterine contractions in the presence of leptin and the possible mechanisms of its effect in late pregnant (18.5 day) mouse uterus. We conducted functional, biochemical and molecular biology studies to demonstrate the mechanism of leptin-induced response. Leptin exerted an inhibitory response (Emax 40.5 ± 3.99%) on basal uterine contractions. The extent of inhibition was less than that obtained with known uterine relaxants, salbutamol (Emax103 ± 8.66%) and BRL-37344 (Emax 84.79 ± 8.12%). Leptin-induced uterine response was inhibited by leptin receptor antagonist SHLA and JAK-STAT pathway inhibitor, AG-490. The relaxant response was also subdued by NO-cGMP-PK-G pathway blockers L-NAME, 1400W, ODQ and KT-5823. Further, leptin enhanced the levels of NO and cGMP in uterine tissues. Also, SHLA, AG-490 and a combination of 1400 W and L-NAME prevented leptin-induced increase in NO. Similar effect was observed on cGMP levels in presence of leptin and SHLA. However, leptin did not influence CaCl2-induced response in potassium-depolarized tissues. We also detected leptin receptor protein in late pregnant mouse uterus located in endometrial luminal epithelium and myometrial layers. Real-time PCR studies revealed significantly higher expression of short forms of the receptor (ObRa and ObRc) in comparison to the long form (ObRb). In conclusion, the results of the present study suggest that leptin inhibits mouse uterine contraction by stimulating short forms of the leptin receptors and activating NO pathway in a JAK-STAT-dependent manner.
Subject(s)
Cyclic GMP/metabolism , Leptin/pharmacology , Nitric Oxide/metabolism , Receptors, Leptin/metabolism , Uterine Contraction/drug effects , Uterus/drug effects , Albuterol/pharmacology , Animals , Dose-Response Relationship, Drug , Ethanolamines/pharmacology , Female , Gene Expression Regulation/drug effects , MAP Kinase Signaling System/drug effects , Male , Mice , Pregnancy , Protein Isoforms/agonists , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Leptin/agonists , Receptors, Leptin/genetics , Uterus/metabolism , Uterus/physiologyABSTRACT
Opioid dose escalation to effectively control pain is often linked to the current prescription opioid abuse epidemic. This creates social as well as medical imperatives to better understand the mechanistic underpinnings of opioid tolerance to develop interventions that minimize it, thereby maximizing the analgesic effectiveness of opioids. Profound opioid analgesic tolerance can be observed in the absence of mu-opioid receptor (MOR) downregulation, aggregate MOR G protein uncoupling, and MOR desensitization, in the absence of impaired G protein coupled receptor kinase phosphorylation, arrestin binding, or endocytosis. Thus, we have explored alternative biochemical sequelae that might better account for opioid analgesic tolerance. Our findings indicate that substantial plasticity among upstream and downstream components of opioid receptor signaling and the emergence of alternative signaling pathways are major contributors to opioid analgesic tolerance. An exemplar of this plasticity is our findings that chronic morphine upregulates the MOR variants MOR-1B2 and MOR-1C1 and phosphorylation of their C-terminal sites not present in MOR-1, events causally associated with the chronic morphine-induced shift in MOR G protein coupling from predominantly Gi/Go inhibitory to Gs-stimulatory adenylyl cyclase signaling. The unique feature(s) of these variants that underlies their susceptibility to adapting to chronic morphine by altering the nature of their G protein coupling reveals the richness and pliability of MOR signaling that is enabled by generating a wide diversity of MOR variants. Furthermore, given differential anatomical expression patterns of MOR variants, MOR splice variant-dependent adaptations to chronic morphine could enable mechanistic underpinnings of tolerance and dependence that are CNS region- and cell-specific.
Subject(s)
Analgesics, Opioid/administration & dosage , Drug Tolerance/physiology , Neuronal Plasticity/physiology , Protein Isoforms/genetics , Receptors, Opioid, mu/genetics , Signal Transduction/physiology , Analgesics, Opioid/metabolism , Animals , Humans , Morphine/administration & dosage , Neuronal Plasticity/drug effects , Phosphorylation/drug effects , Phosphorylation/physiology , Protein Isoforms/agonists , Protein Isoforms/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism , Signal Transduction/drug effectsABSTRACT
After being rather neglected as a research field in the past, carbonic anhydrase activators (CAAs) were undoubtedly demonstrated to be useful in diverse pharmaceutical and industrial applications. They also improved the knowledge of the requirements to selectively interact with a CA isoform over the others and confirmed the catalytic mechanism of this class of compounds. Amino acid and amine derivatives were the most explored in in vitro, in vivo and crystallographic studies as CAAs. Most of them were able to activate human or non-human CA isoforms in the nanomolar range, being proposed as therapeutic and industrial tools. Some isoforms are better activated by amino acids than amines derivatives and the stereochemistry may exert a role. Finally, non-human CAs have been very recently tested for activation studies, paving the way to innovative industrial and environmental applications.
Subject(s)
Carbonic Anhydrases/metabolism , Enzyme Activation/drug effects , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Amines/chemistry , Amines/pharmacology , Amino Acids/chemistry , Amino Acids/pharmacology , Animals , Humans , Models, Molecular , Protein Isoforms/agonists , Protein Isoforms/metabolismABSTRACT
Novel prostaglandin E2 receptor 4 (EP4) agonists featuring a pyridone core and an allylic alcohol ω-chain were discovered. These agonists were shown to be selective over EP1, EP2 and EP3. Analogs harboring a 4-carboxylic acid phenethyl α-chain displayed improved potency over those containing an n-heptanoic acid chain. Key SAR relationships were also identified.
Subject(s)
Propanols/chemistry , Pyridones/chemistry , Receptors, Prostaglandin E, EP4 Subtype/agonists , Humans , Propanols/metabolism , Protein Isoforms/agonists , Protein Isoforms/metabolism , Pyridones/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Structure-Activity RelationshipABSTRACT
Nonpeptide sst2 agonists can provide a new treatment option for patients with acromegaly, carcinoid tumors, and neuroendocrine tumors. Our medicinal chemistry efforts have led to the discovery of novel 3,4-dihydroquinazoline-4-carboxamides as sst2 agonists. This class of molecules exhibits excellent human sst2 potency and selectivity against sst1, sst3, sst4 and sst5 receptors. Leading compound 3-(3-chloro-5-methylphenyl)-6-(3-fluoro-2-hydroxyphenyl)-N,7-dimethyl-N-{[(2S)-pyrrolidin-2-yl]methyl}-3,4-dihydroquinazoline-4-carboxamide (28) showed no inhibition of major CYP450 enzymes (2C9, 2C19, 2D6 and 3A4) and weak inhibition of the hERG channel.
Subject(s)
Amides/chemistry , Receptors, Somatostatin/agonists , Amides/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Humans , Protein Isoforms/agonists , Protein Isoforms/metabolism , Receptors, Somatostatin/metabolism , Structure-Activity RelationshipABSTRACT
Cardiovascular diseases represent one of the most important health problems of developed countries. One of the main actors involved in the onset and development of cardiovascular diseases is the increased production of reactive oxygen species that, through lipid peroxidation, protein oxidation and DNA damage, induce oxidative stress and cell death. Basic and clinical research are ongoing to better understand the endogenous antioxidant mechanisms that counteract oxidative stress, which may allow to identify a possible therapeutic targeting/application in the field of stress-dependent cardiovascular pathologies. In this context, increasing attention is paid to the glutathione/glutathione-peroxidase and to the thioredoxin/thioredoxin-reductase systems, among the most potent endogenous antioxidative systems. These key enzymes, belonging to the selenoprotein family, have a well-established function in the regulation of the oxidative cell balance. The aim of the present review was to highlight the role of selenoproteins in cardiovascular diseases, introducing the emerging cardioprotective role of endoplasmic reticulum-resident members and in particular one of them, namely selenoprotein T or SELENOT. Accumulating evidence indicates that the dysfunction of different selenoproteins is involved in the susceptibility to oxidative stress and its associated cardiovascular alterations, such as congestive heart failure, coronary diseases, impaired cardiac structure and function. Some of them are under investigation as useful pathological biomarkers. In addition, SELENOT exhibited intriguing cardioprotective effects by reducing the cardiac ischemic damage, in terms of infarct size and performance. In conclusion, selenoproteins could represent valuable targets to treat and diagnose cardiovascular diseases secondary to oxidative stress, opening a new avenue in the field of related therapeutic strategies.
Subject(s)
Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/genetics , Endoplasmic Reticulum Stress/drug effects , Peptides/therapeutic use , Selenocysteine/metabolism , Selenoproteins/genetics , Animals , Antioxidants/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/therapy , Gene Expression Regulation , Glutathione Peroxidase/metabolism , Humans , Molecular Targeted Therapy/methods , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Protein Isoforms/agonists , Protein Isoforms/genetics , Protein Isoforms/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Selenoproteins/agonists , Selenoproteins/metabolism , Thioredoxin-Disulfide Reductase/metabolismABSTRACT
Cumulating evidences suggested an important role of sphingosine-1-phosphate (S1P) and its receptors in regulating endothelial barrier integrity. Our previous study revealed that the circulating S1P levels and renal expression of S1PRs correlated with disease activity and renal damage in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). This study investigated the role of S1P and its receptors in myeloperoxidase (MPO)-ANCA-positive IgG-mediated glomerular endothelial cell (GEnC) activation. The effect of S1P on morphological alteration of GEnCs in the presence of MPO-ANCA-positive IgG was observed. Permeability assay was performed to determine endothelial monolayer activation in quantity. Both membrane-bound and soluble ICAM-1 and VCAM-1 levels were measured. Furthermore, antagonists and/or agonists of various S1PRs were employed to determine the role of different S1PRs. S1P enhanced MPO-ANCA-positive IgG-induced disruption of tight junction and disorganization of cytoskeleton in GEnCs. S1P induced further increase in monolayer permeability of GEnC monolayers in the presence of MPO-ANCA-positive IgG. S1P enhanced MPO-ANCA-positive IgG-induced membrane-bound and soluble ICAM-1/VCAM-1 up-regulation of GEnCs. Soluble ICAM-1 levels in the supernatants of GEnCs stimulated by S1P and MPO-ANCA-positive IgG increased upon pre-incubation of S1PR1 antagonist, while pre-incubation of GEnCs with the S1PR1 agonist down-regulated sICAM-1 level. Blocking S1PR2-4 reduced sICAM-1 levels in the supernatants of GEnCs stimulated by S1P and MPO-ANCA-positive IgG. Pre-incubation with S1PR5 agonist could increase sICAM-1 level in the supernatants of GEnC stimulated by S1P and MPO-ANCA-positive IgG. S1P can enhance MPO-ANCA-positive IgG-mediated GEnC activation through S1PR2-5.
Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Antibodies, Antineutrophil Cytoplasmic/immunology , Endothelial Cells/drug effects , Kidney Glomerulus/drug effects , Lysophospholipids/pharmacology , Sphingosine/analogs & derivatives , Cells, Cultured , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/metabolism , Endothelial Cells/immunology , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Humans , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Kidney Glomerulus/cytology , Kidney Glomerulus/immunology , Peroxidase/immunology , Protein Isoforms/agonists , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Lysosphingolipid/agonists , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/metabolism , Sphingosine/pharmacology , Sphingosine-1-Phosphate ReceptorsABSTRACT
The bioactive lipid sphingosine-1-phosphate (S1P) regulates smooth muscle (SM) contractility predominantly via three G protein-coupled receptors. The S1P1 receptor is associated with nitric oxide (NO)-mediated SM relaxation, while S1P2 & S1P3 receptors are linked to SM contraction via activation of the Rho-kinase pathway. This study is to determine testosterone (T) modulating the expression and functional activity of S1P receptors in corpus cavernosum (CC). Adult male Sprague-Dawley rats were randomly divided into three groups: sham-operated controls, surgical castration and T supplemented group. Serum S1P levels were detected by high-performance liquid chromatography. The expression of S1P1-3 receptors and sphingosine kinases was detected by real-time RT-PCR. In vitro organ bath contractility and in vivo intracavernous pressure (ICP) measurement were also performed. T deprivation significantly decreased ICP rise. Meanwhile, surgical castration induced a significant increase in serum S1P level and the expression of S1P2-3 receptors by twofold (P < 0.05) but a decrease in the expression of S1P1 receptor. Castration also augmented exogenous phenylephrine (PE), S1P, S1P1,3 receptor agonist FTY720-P contractility and S1P2-specific antagonist JTE013 relaxation effect. T supplemented could restore the aforementioned changes. We provide novel data that castration increased serum S1P concentration and up-regulated the expression of S1P2-3 receptors in CC. Consistently, agonizing S1P receptors induced CCSM contraction and antagonizing mediated relaxation were augmented. This provides the first clear evidence that S1P system dysregulation may contribute to hypogonadism-related erectile dysfunction (ED), and S1P receptors may be expected as a potential target for treating ED.
Subject(s)
Lysophospholipids/metabolism , Penile Erection/drug effects , Protein Isoforms/genetics , Receptors, Lysosphingolipid/genetics , Sphingosine/analogs & derivatives , Testosterone/pharmacology , Animals , Gene Expression Regulation , Male , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Orchiectomy , Organ Culture Techniques , Organ Size , Organophosphates/pharmacology , Penile Erection/physiology , Penis/drug effects , Penis/metabolism , Phenylephrine/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Prostate/drug effects , Prostate/metabolism , Protein Isoforms/agonists , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Lysosphingolipid/agonists , Receptors, Lysosphingolipid/antagonists & inhibitors , Receptors, Lysosphingolipid/metabolism , Signal Transduction , Sphingosine/metabolism , Sphingosine/pharmacology , Sphingosine-1-Phosphate Receptors , Testis/surgery , Testosterone/metabolismABSTRACT
The short neuropeptide F (sNPF) neuropeptides, closely related to vertebrate neuropeptide Y (NPY), have been suggested to exert pleiotropic effects on many physiological processes in insects. In the silkworm (Bombyx mori) two orphan G protein-coupled receptors, Bombyx neuropeptide G protein-coupled receptor (BNGR) A10 and A11, have been identified as cognate receptors for sNPFs, but other sNPF receptors and their signaling mechanisms in B. mori remain unknown. Here, we cloned the full-length cDNA of the orphan receptor BNGR-A7 from the brain of B. mori larvae and identified it as a receptor for Bombyx sNPFs. Further characterization of signaling and internalization indicated that BNGR-A7, -A10, and -A11 are activated by direct interaction with synthetic Bombyx sNPF-1 and -3 peptides. This activation inhibited forskolin or adipokinetic hormone-induced adenylyl cyclase activity and intracellular Ca2+ mobilization via a Gi/o-dependent pathway. Upon activation by sNPFs, BNGR-A7, -A10, and -A11 evoked ERK1/2 phosphorylation and underwent internalization. On the basis of these findings, we designated the receptors BNGR-A7, -A10, and -A11 as Bommo-sNPFR-1, -2, and -3, respectively. Moreover, the results obtained with quantitative RT-PCR analysis revealed that the three Bombyx sNPF receptor subtypes exhibit differential spatial and temporal expression patterns, suggesting possible roles of sNPF signaling in the regulation of a wide range of biological processes. Our findings provide the first in-depth information on sNPF signaling for further elucidation of the roles of the Bombyx sNPF/sNPFR system in the regulation of physiological activities.
Subject(s)
Bombyx/metabolism , Calcium Signaling , Down-Regulation , Insect Proteins/agonists , Neuropeptides/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, Neuropeptide/agonists , Animals , GTP-Binding Protein alpha Subunits, Gi-Go/agonists , GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , MAP Kinase Signaling System , Neuropeptides/chemistry , Neuropeptides/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phosphorylation , Protein Isoforms/agonists , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Processing, Post-Translational , Protein Transport , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sf9 Cells , SpodopteraABSTRACT
Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes.
Subject(s)
Drosophila Proteins/agonists , Drosophila melanogaster/drug effects , Nerve Tissue Proteins/agonists , Olfactory Bulb/drug effects , Receptors, Odorant/agonists , Sensory Receptor Cells/drug effects , Wasps/metabolism , Alkaloids/pharmacology , Animals , Animals, Genetically Modified , Behavior, Animal/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/parasitology , Drosophila melanogaster/physiology , Female , Iridoids/pharmacology , Larva/drug effects , Larva/genetics , Larva/parasitology , Larva/physiology , Mutant Proteins/agonists , Mutant Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Odorants , Olfactory Bulb/metabolism , Oviposition , Protein Isoforms/agonists , Protein Isoforms/metabolism , Pyridines/pharmacology , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Sensory Receptor Cells/metabolism , Signal Transduction , Terpenes/pharmacologyABSTRACT
The Liver X receptors (LXRs) are members of the nuclear receptor family, that play fundamental roles in cholesterol transport, lipid metabolism and modulation of inflammatory responses. In recent years, the synthetic steroid N,N-dimethyl-3ß-hydroxycholenamide (DMHCA) arised as a promising LXR ligand. This compound was able to dissociate certain beneficial LXRs effects from those undesirable ones involved in triglyceride metabolism. Here, we synthetized a series of DMHCA analogues with different modifications in the steroidal nucleus involving the A/B ring fusion, that generate changes in the overall conformation of the steroid. The LXRα and LXRß activity of these analogues was evaluated by using a luciferase reporter assay in BHK21 cells. Compounds were tested in both the agonist and antagonist modes. Results indicated that the agonist/antagonist profile is dependent on the steroid configuration at the A/B ring junction. Notably, in contrast to DMHCA, the amide derived from lithocholic acid (2) with an A/B cis configuration and its 6,19-epoxy analogue 4 behaved as LXRα selective agonists, while the 2,19-epoxy analogues with an A/B trans configuration were antagonists of both isoforms. The binding mode of the analogues to both LXR isoforms was assessed by using 50â¯ns molecular dynamics (MD) simulations. Results revealed conformational differences between LXRα- and LXRß-ligand complexes, mainly in the hydrogen bonding network that involves the C-3 hydroxyl. Overall, these results indicate that the synthetized DMHCA analogues could be interesting candidates for a therapeutic modulation of the LXRs.
Subject(s)
Amides/chemistry , Cholanes/chemistry , Liver X Receptors/metabolism , Amides/chemical synthesis , Amides/metabolism , Animals , Binding Sites , Cell Line , Cholic Acids/chemical synthesis , Cholic Acids/chemistry , Cholic Acids/metabolism , Cricetinae , Humans , Liver X Receptors/agonists , Liver X Receptors/antagonists & inhibitors , Molecular Dynamics Simulation , Protein Isoforms/agonists , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Structure, TertiaryABSTRACT
Oviductal glycoprotein 1 (OVGP1), an oviductin, is involved in the maintenance of sperm viability and motility and contributes to sperm capacitation in the oviduct. In this study, the regulatory effects exerted by prostaglandin E2 (PGE2) and F2α (PGF2α) on OVGP1 expression via their corresponding receptors in bovine oviductal epithelial cells (BOECs) were investigated. BOECs were cultured in vitro, and their expression of receptors of PGE2 (PTGER1, PTGER2, PTGER3, and PTGER4) and PGF2α (PTGFR) was measured using RT-qPCR. Ca2+ concentration was determined with a fluorescence-based method and cAMP was quantified by enzyme-linked immunosorbent assays to verify activation of PTGER2 and PTGFR by their corresponding agonists in these cells. OVGP1 mRNA and protein expression was measured using RT-qPCR and western blotting, respectively, following PTGER2 and PTGFR agonist-induced activation. PTGER1, PTGER2, PTGER4, and PTGFR were found to be present in BOECs; however, PTGER3 expression was not detected. OVGP1 expression was significantly promoted by 10-6 M butaprost (a PTGER2 agonist) and decreased by 10-6 M fluprostenol (a PTGFR agonist). In addition, 3 µM H-89 (a PKA inhibitor) and 3 µM U0126 (an ERK inhibitor) effectively inhibited PGE2-induced upregulation of OVGP1, and 5 µM chelerythrine chloride (a PKC inhibitor) and 3 µM U0126 negated OVGP1 downregulation by PGF2α. In conclusion, this study demonstrates that OVGP1 expression in BOECs is enhanced by PGE2 via PTGER2-cAMP-PKA signaling, and reduced by PGF2α through the PTGFR-Ca2+-PKC pathway.
Subject(s)
Dinoprost/metabolism , Dinoprostone/metabolism , Gene Expression Regulation , Glycoproteins/metabolism , Oviducts/metabolism , Receptors, Prostaglandin E, EP2 Subtype/agonists , Receptors, Prostaglandin/agonists , Abattoirs , Alprostadil/analogs & derivatives , Alprostadil/pharmacology , Animals , Calcium Signaling/drug effects , Cattle , Cells, Cultured , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Gene Expression Regulation/drug effects , Glycoproteins/agonists , Glycoproteins/antagonists & inhibitors , Glycoproteins/genetics , Oviducts/cytology , Oviducts/drug effects , Prostaglandins F, Synthetic/pharmacology , Protein Isoforms/agonists , Protein Isoforms/metabolism , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/chemistry , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolismABSTRACT
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Subject(s)
Allostasis , Mitochondria, Heart/metabolism , Models, Biological , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Potassium Channels/metabolism , Animals , Cardiotonic Agents/pharmacology , Humans , Ion Channel Gating/drug effects , Ischemic Preconditioning, Myocardial , KATP Channels/agonists , KATP Channels/antagonists & inhibitors , KATP Channels/genetics , KATP Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/agonists , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Membrane Transport Modulators/pharmacology , Mitochondria, Heart/drug effects , Myocardial Ischemia/therapy , Myocardial Reperfusion Injury/prevention & control , Potassium Channel Blockers/pharmacology , Potassium Channels/agonists , Potassium Channels/chemistry , Potassium Channels/genetics , Potassium Channels, Sodium-Activated , Protein Isoforms/agonists , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Terminology as TopicABSTRACT
The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors.
Subject(s)
Cyclic AMP/physiology , GTP-Binding Protein alpha Subunits, Gs/metabolism , Models, Molecular , Receptors, Parathyroid Hormone/metabolism , Second Messenger Systems , Animals , Cell Membrane/enzymology , Cell Membrane/metabolism , Endosomes/enzymology , Endosomes/metabolism , GTP-Binding Protein alpha Subunits, Gs/chemistry , Humans , International Agencies , Ligands , Pharmacology/trends , Pharmacology, Clinical/trends , Protein Isoforms/agonists , Protein Isoforms/chemistry , Protein Isoforms/classification , Protein Isoforms/metabolism , Receptors, Parathyroid Hormone/agonists , Receptors, Parathyroid Hormone/chemistry , Receptors, Parathyroid Hormone/classification , Societies, Scientific , Terminology as TopicABSTRACT
The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.
Subject(s)
Cell Adhesion Molecules/metabolism , Cyclic AMP/physiology , Models, Molecular , Receptors, G-Protein-Coupled/metabolism , Second Messenger Systems , Animals , Cell Adhesion , Cell Adhesion Molecules/chemistry , Cell Membrane/enzymology , Cell Membrane/metabolism , Cell Movement , Humans , International Agencies , Ligands , Pharmacology/trends , Pharmacology, Clinical/trends , Protein Isoforms/agonists , Protein Isoforms/chemistry , Protein Isoforms/classification , Protein Isoforms/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/classification , Signal Transduction , Societies, Scientific , Terminology as TopicABSTRACT
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and ß-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Subject(s)
Cyclic AMP/physiology , Models, Molecular , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Relaxin/metabolism , Second Messenger Systems , Allosteric Regulation , Animals , Cell Membrane/enzymology , Cell Membrane/metabolism , Humans , International Agencies , Ligands , Pharmacology/trends , Pharmacology, Clinical/trends , Protein Isoforms/agonists , Protein Isoforms/chemistry , Protein Isoforms/classification , Protein Isoforms/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/classification , Receptors, Peptide/agonists , Receptors, Peptide/chemistry , Receptors, Peptide/classification , Relaxin/agonists , Relaxin/analogs & derivatives , Relaxin/antagonists & inhibitors , Societies, Scientific , Terminology as TopicABSTRACT
Peroxisome proliferator-activated receptors (PPARs) are a well-known pharmacological target for the treatment of multiple diseases, including diabetes mellitus, dyslipidemia, cardiovascular diseases and even primary biliary cholangitis, gout, cancer, Alzheimer's disease and ulcerative colitis. The three PPAR isoforms (α, ß/δ and γ) have emerged as integrators of glucose and lipid metabolic signaling networks. Typically, PPARα is activated by fibrates, which are commonly used therapeutic agents in the treatment of dyslipidemia. The pharmacological activators of PPARγ include thiazolidinediones (TZDs), which are insulin sensitizers used in the treatment of type 2 diabetes mellitus (T2DM), despite some drawbacks. In this review, we summarize 84 types of PPAR synthetic ligands introduced to date for the treatment of metabolic and other diseases and provide a comprehensive analysis of the current applications and problems of these ligands in clinical drug discovery and development.
Subject(s)
Drug Discovery , Metabolic Diseases/drug therapy , Molecular Targeted Therapy , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/chemistry , Animals , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Humans , Hypolipidemic Agents/therapeutic use , Ligands , Mice , Molecular Conformation , Peroxisome Proliferator-Activated Receptors/metabolism , Protein Isoforms/agonists , Protein Isoforms/chemistry , Protein Isoforms/metabolism , RatsABSTRACT
Health during aging can be improved by genetic, dietary and pharmacological interventions. Many of these increase resistance to various stressors, including xenobiotics. Up-regulation of xenobiotic detoxification genes is a transcriptomic signature shared by long-lived nematodes, flies and mice, suggesting that protection of cells from toxicity of xenobiotics may contribute to longevity. Expression of genes involved in xenobiotic detoxification is controlled by evolutionarily conserved transcriptional regulators. Three closely related subgroups of nuclear hormone receptors (NHRs) have a major role, and these include DAF-12 and NHR-8 in C. elegans, DHR96 in Drosophila and FXR, LXRs, PXR, CAR and VDR in mammals. In the invertebrates, these NHRs have been experimentally demonstrated to play a role in extension of lifespan by genetic and environmental interventions. NHRs represent critical hubs in that they regulate detoxification enzymes with broad substrate specificities, metabolizing both endo- and xeno-biotics. They also modulate homeostasis of steroid hormones and other endogenous cholesterol derivatives and lipid metabolism, and these roles, as well as xenobiotic detoxification, may contribute to the effects of NHRs on lifespan and health during aging, an issue that is being increasingly addressed in C. elegans and Drosophila. Disentangling the contribution of these processes to longevity will require more precise understanding of the molecular mechanisms by which each is effected, including identification of ligands and co-regulators of NHRs, patterns of tissue-specificity and mechanisms of interaction between tissues. The roles of vertebrate NHRs in determination of health during aging and lifespan have yet to be investigated.