Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters

Country/Region as subject
Publication year range
1.
RNA ; 30(10): 1328-1344, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38981655

ABSTRACT

T-box riboswitches are widespread bacterial regulatory noncoding RNAs that directly interact with tRNAs and switch conformations to regulate the transcription or translation of genes related to amino acid metabolism. Recent studies in Bacilli have revealed the core mechanisms of T-boxes that enable multivalent, specific recognition of both the identity and aminoacylation status of the tRNA substrates. However, in-depth knowledge on a vast number of T-boxes in other bacterial species remains scarce, although a remarkable structural diversity, particularly among pathogens, is apparent. In the present study, analysis of T-boxes that control the transcription of glycyl-tRNA synthetases from four prominent human pathogens revealed significant structural idiosyncrasies. Nonetheless, these diverse T-boxes maintain functional T-box:tRNAGly interactions both in vitro and in vivo. Probing analysis not only validated recent structural observations, but also expanded our knowledge on the substantial diversities among T-boxes and suggest interesting distinctions from the canonical Bacilli T-boxes. Surprisingly, some glycyl T-boxes seem to redirect the T-box trajectory in the absence of recognizable K-turns or contain Stem II modules that are generally absent in glycyl T-boxes. These results consolidate the notion of a lineage-specific diversification and elaboration of the T-box mechanism and corroborate the potential of T-boxes as promising species-specific RNA targets for next-generation antibacterial compounds.


Subject(s)
Nucleic Acid Conformation , RNA, Bacterial , Riboswitch , Riboswitch/genetics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/chemistry , Gene Expression Regulation, Bacterial , Glycine-tRNA Ligase/genetics , Glycine-tRNA Ligase/metabolism , Glycine-tRNA Ligase/chemistry , RNA, Transfer, Gly/metabolism , RNA, Transfer, Gly/genetics , RNA, Transfer, Gly/chemistry , Base Sequence , Bacteria/genetics , Bacteria/metabolism , Humans , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Transfer/chemistry
2.
RNA ; 30(6): 680-694, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38429100

ABSTRACT

Genome-derived microRNAs (miRNAs or miRs) govern posttranscriptional gene regulation and play important roles in various cellular processes and disease progression. While chemo-engineered miRNA mimics or biosimilars made in vitro are widely available and used, miRNA agents produced in vivo are emerging to closely recapitulate natural miRNA species for research. Our recent work has demonstrated the success of high-yield, in vivo production of recombinant miRNAs by using human tRNA (htRNA) fused precursor miRNA (pre-miR) carriers. In this study, we aim to compare the production of bioengineered RNA (BioRNA) molecules with glycyl versus leucyl htRNA fused hsa-pre-miR-34a carriers, namely, BioRNAGly and BioRNALeu, respectively, and perform the initial functional assessment. We designed, cloned, overexpressed, and purified a total of 48 new BioRNA/miRNAs, and overall expression levels, final yields, and purities were revealed to be comparable between BioRNAGly and BioRNALeu molecules. Meanwhile, the two versions of BioRNA/miRNAs showed similar activities to inhibit non-small cell lung cancer cell viability. Interestingly, functional analyses using model BioRNA/miR-7-5p demonstrated that BioRNAGly/miR-7-5p exhibited greater efficiency to regulate a known target gene expression (EGFR) than BioRNALeu/miR-7-5p, consistent with miR-7-5p levels released in cells. Moreover, BioRNAGly/miR-7-5p showed comparable or slightly greater activities to modulate MRP1 and VDAC1 expression, compared with miRCURY LNA miR-7-5p mimic. Computational modeling illustrated overall comparable 3D structures for exemplary BioRNA/miRNAs with noticeable differences in htRNA species and payload miRNAs. These findings support the utility of hybrid htRNA/hsa-pre-miR-34a as reliable carriers for RNA molecular bioengineering, and the resultant BioRNAs serve as functional biologic RNAs for research and development.


Subject(s)
Antineoplastic Agents , Bioengineering , MicroRNAs , RNA, Transfer, Gly , RNA, Transfer, Leu , RNA, Transfer, Gly/chemistry , RNA, Transfer, Gly/genetics , RNA, Transfer, Gly/isolation & purification , RNA, Transfer, Gly/pharmacology , RNA, Transfer, Leu/chemistry , RNA, Transfer, Leu/genetics , RNA, Transfer, Leu/isolation & purification , RNA, Transfer, Leu/pharmacology , MicroRNAs/chemistry , MicroRNAs/genetics , MicroRNAs/isolation & purification , MicroRNAs/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Antineoplastic Agents/pharmacology , Gene Expression/drug effects , Computer Simulation , Cell Line, Tumor
3.
Nucleic Acids Res ; 52(3): 1374-1386, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38050960

ABSTRACT

tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.


Subject(s)
Escherichia coli , Mycoplasma mycoides , RNA, Bacterial , RNA, Transfer, Gly , Anticodon/genetics , Base Sequence , Codon/genetics , Escherichia coli/genetics , Glycine/genetics , RNA, Transfer/genetics , RNA, Transfer, Gly/genetics , Mycoplasma mycoides/genetics , Mycoplasma mycoides/metabolism , RNA, Bacterial/genetics
4.
Nucleic Acids Res ; 49(17): 10106-10119, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34390350

ABSTRACT

AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding ß-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and ß-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain ß-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.


Subject(s)
Catalytic Domain/genetics , Escherichia coli/genetics , Glycine-tRNA Ligase/genetics , RNA, Transfer, Gly/chemistry , Adenosine Triphosphate/metabolism , Crystallography, X-Ray , Glycine/chemistry , Models, Molecular , RNA, Transfer, Gly/genetics
5.
Nucleic Acids Res ; 49(17): 10007-10017, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34403468

ABSTRACT

Toxic gain-of-function mutations in aminoacyl-tRNA synthetases cause a degeneration of peripheral motor and sensory axons, known as Charcot-Marie-Tooth (CMT) disease. While these mutations do not disrupt overall aminoacylation activity, they interfere with translation via an unknown mechanism. Here, we dissect the mechanism of function of CMT mutant glycyl-tRNA synthetase (CMT-GARS), using high-resolution ribosome profiling and reporter assays. We find that CMT-GARS mutants deplete the pool of glycyl-tRNAGly available for translation and inhibit the first stage of elongation, the accommodation of glycyl-tRNA into the ribosomal A-site, which causes ribosomes to pause at glycine codons. Moreover, ribosome pausing activates a secondary repression mechanism at the level of translation initiation, by inducing the phosphorylation of the alpha subunit of eIF2 and the integrated stress response. Thus, CMT-GARS mutant triggers translational repression via two interconnected mechanisms, affecting both elongation and initiation of translation.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Glycine-tRNA Ligase/genetics , Peptide Chain Elongation, Translational/genetics , Peptide Chain Initiation, Translational/genetics , Ribosomes/metabolism , Cell Line , Eukaryotic Initiation Factor-2/metabolism , Gain of Function Mutation/genetics , Gene Expression/genetics , Glycine/genetics , HEK293 Cells , Humans , Phosphorylation , Protein Biosynthesis/genetics , RNA, Transfer, Gly/genetics
6.
Nucleic Acids Res ; 49(22): 13045-13061, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34871455

ABSTRACT

Dnmt2, a member of the DNA methyltransferase superfamily, catalyzes the formation of 5-methylcytosine at position 38 in the anticodon loop of tRNAs. Dnmt2 regulates many cellular biological processes, especially the production of tRNA-derived fragments and intergenerational transmission of paternal metabolic disorders to offspring. Moreover, Dnmt2 is closely related to human cancers. The tRNA substrates of mammalian Dnmt2s are mainly detected using bisulfite sequencing; however, we lack supporting biochemical data concerning their substrate specificity or recognition mechanism. Here, we deciphered the tRNA substrates of human DNMT2 (hDNMT2) as tRNAAsp(GUC), tRNAGly(GCC) and tRNAVal(AAC). Intriguingly, for tRNAAsp(GUC) and tRNAGly(GCC), G34 is the discriminator element; whereas for tRNAVal(AAC), the inosine modification at position 34 (I34), which is formed by the ADAT2/3 complex, is the prerequisite for hDNMT2 recognition. We showed that the C32U33(G/I)34N35 (C/U)36A37C38 motif in the anticodon loop, U11:A24 in the D stem, and the correct size of the variable loop are required for Dnmt2 recognition of substrate tRNAs. Furthermore, mammalian Dnmt2s possess a conserved tRNA recognition mechanism.


Subject(s)
5-Methylcytosine/metabolism , Anticodon/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , RNA, Transfer/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Anticodon/genetics , Base Sequence , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferases/genetics , HEK293 Cells , HeLa Cells , Humans , Inosine/metabolism , Mice , Models, Molecular , NIH 3T3 Cells , Nucleic Acid Conformation , Protein Binding , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer, Asp/chemistry , RNA, Transfer, Asp/genetics , RNA, Transfer, Asp/metabolism , RNA, Transfer, Gly/chemistry , RNA, Transfer, Gly/genetics , RNA, Transfer, Gly/metabolism , RNA, Transfer, Val/chemistry , RNA, Transfer, Val/genetics , RNA, Transfer, Val/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Substrate Specificity
7.
Nucleic Acids Res ; 45(13): 8079-8090, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28531275

ABSTRACT

A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes.


Subject(s)
RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Transfer, Gly/chemistry , RNA, Transfer, Gly/metabolism , Riboswitch/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Base Sequence , Models, Molecular , Nucleic Acid Conformation , RNA, Bacterial/genetics , RNA, Transfer, Gly/genetics , Scattering, Small Angle , X-Ray Diffraction
8.
Int J Mol Sci ; 20(16)2019 Aug 11.
Article in English | MEDLINE | ID: mdl-31405256

ABSTRACT

Decoding of the 61 sense codons of the genetic code requires a variable number of tRNAs that establish codon-anticodon interactions. Thanks to the wobble base pairing at the third codon position, less than 61 different tRNA isoacceptors are needed to decode the whole set of codons. On the tRNA, a subtle distribution of nucleoside modifications shapes the anticodon loop structure and participates to accurate decoding and reading frame maintenance. Interestingly, although the 61 anticodons should exist in tRNAs, a strict absence of some tRNAs decoders is found in several codon families. For instance, in Eukaryotes, G34-containing tRNAs translating 3-, 4- and 6-codon boxes are absent. This includes tRNA specific for Ala, Arg, Ile, Leu, Pro, Ser, Thr, and Val. tRNAGly is the only exception for which in the three kingdoms, a G34-containing tRNA exists to decode C3 and U3-ending codons. To understand why G34-tRNAGly exists, we analysed at the genome wide level the codon distribution in codon +1 relative to the four GGN Gly codons. When considering codon GGU, a bias was found towards an unusual high usage of codons starting with a G whatever the amino acid at +1 codon. It is expected that GGU codons are decoded by G34-containing tRNAGly, decoding also GGC codons. Translation studies revealed that the presence of a G at the first position of the downstream codon reduces the +1 frameshift by stabilizing the G34•U3 wobble interaction. This result partially explains why G34-containing tRNAGly exists in Eukaryotes whereas all the other G34-containing tRNAs for multiple codon boxes are absent.


Subject(s)
Codon/genetics , Protein Biosynthesis , RNA, Transfer, Gly/genetics , Animals , Base Sequence , Frameshifting, Ribosomal , Genetic Code , Glycine/genetics , Humans , Rabbits
9.
J Biol Chem ; 290(38): 23336-47, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26229106

ABSTRACT

Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the "Specifier Sequence," in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNA(Gly) anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3' of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system.


Subject(s)
Anticodon/chemistry , Bacillus subtilis/chemistry , Codon/chemistry , RNA, Bacterial/chemistry , RNA, Transfer, Gly/chemistry , Riboswitch/physiology , Anticodon/genetics , Anticodon/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/biosynthesis , Codon/genetics , Codon/metabolism , Protein Biosynthesis/physiology , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Transfer, Gly/genetics , RNA, Transfer, Gly/metabolism
10.
Mol Cell Biochem ; 408(1-2): 171-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26134044

ABSTRACT

Mitochondrial diabetes originates mainly from mutations located in maternally transmitted, mitochondrial tRNA-coding genes. In a genetic screening program of type 2 diabetes conducted with a Chinese Han population, we found one family with suggestive maternally transmitted diabetes. The proband's mitochondrial genome was analyzed using DNA sequencing. Total 42 known nucleoside changes and 1 novel variant were identified, and the entire mitochondrial DNA sequence was assigned to haplogroup M11b. Phylogenetic analysis showed that a homoplasmic mutation, 10003T>C transition, occurred at the highly conserved site in the gene encoding tRNA(Gly). Using a transmitochondrial cybrid cell line harboring this mutation, we observed that the steady-state level of tRNA(Gly) significantly affected and the amount of tRNA(Gly) decreased by 97%, production of reactive oxygen species was enhanced, and mitochondrial membrane potential, mtDNA copy number and cellular oxygen consumption rate were remarkably decreased compared with wild-type cybrid cells. The homoplasmic 10003T>C mutation in the mitochondrial tRNA(Gly) gene suggested to be as a pathogenesis-related mutation which might contribute to the maternal inherited diabetes in the Han Chinese family.


Subject(s)
Asian People/genetics , Diabetes Mellitus, Type 2/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mutation , RNA, Transfer, Gly/genetics , Aged , Asian People/ethnology , China/ethnology , Diabetes Mellitus, Type 2/ethnology , Female , Genetic Predisposition to Disease , Genome, Mitochondrial , Haplotypes , Humans , Male , Membrane Potential, Mitochondrial , Middle Aged , Oxygen Consumption , Pedigree , Phylogeny , Reactive Oxygen Species/metabolism
11.
J Cell Physiol ; 229(9): 1121-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24676899

ABSTRACT

There is a critical need for techniques that directly monitor protein synthesis within cells isolated from normal and diseased tissue. Fibrotic disease, for which there is no drug treatment, is characterized by the overexpression of collagens. Here, we use a bioinformatics approach to identify a pair of glycine and proline isoacceptor tRNAs as being specific for the decoding of collagen mRNAs, leading to development of a FRET-based approach, dicodon monitoring of protein synthesis (DiCoMPS), that directly monitors the synthesis of collagen. DiCoMPS aimed at detecting collagen synthesis will be helpful in identifying novel anti-fibrotic compounds in cells derived from patients with fibrosis of any etiology, and, suitably adapted, should be widely applicable in monitoring the synthesis of other proteins in cells.


Subject(s)
Collagen/biosynthesis , Fibroblasts/metabolism , Fluorescence Resonance Energy Transfer , Microscopy, Confocal , RNA, Transfer, Gly/metabolism , RNA, Transfer, Pro/metabolism , Animals , Carbocyanines/metabolism , Cells, Cultured , Fibroblasts/pathology , Fibrosis , Fluorescent Dyes/metabolism , Humans , Kinetics , Mice , Mice, Knockout , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , RNA, Transfer, Gly/genetics , RNA, Transfer, Pro/genetics , Transfection
12.
J Biol Chem ; 287(28): 23427-33, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22605341

ABSTRACT

Mycoplasma genitalium is expected to metabolize RNA using unique pathways because its minimal genome encodes very few ribonucleases. In this work, we report that the only exoribonuclease identified in M. genitalium, RNase R, is able to remove tRNA 3'-trailers and generate mature 3'-ends. Several sequence and structural features of a tRNA precursor determine its precise processing at the 3'-end by RNase R in a purified system. The aminoacyl-acceptor stem plays a major role in stopping RNase R digestion at the mature 3'-end. Disruption of the stem causes partial or complete degradation of the pre-tRNA by RNase R, whereas extension of the stem results in the formation of a product terminating downstream at the new mature 3'-end. In addition, the 3'-terminal CCA sequence and the discriminator residue influence the ability of RNase R to stop at the mature 3'-end. RNase R-mediated generation of the mature 3'-end prefers a sequence of RCCN at the 3' terminus of tRNA. Variations of this sequence may cause RNase R to trim further and remove terminal CA residues from the mature 3'-end. Therefore, M. genitalium RNase R can precisely remove the 3'-trailer of a tRNA precursor by recognizing features in the terminal domains of tRNA, a process requiring multiple RNases in most bacteria.


Subject(s)
Exoribonucleases/metabolism , Mycoplasma genitalium/metabolism , RNA Precursors/metabolism , RNA, Bacterial/metabolism , RNA, Transfer/metabolism , Base Sequence , Exoribonucleases/genetics , Models, Genetic , Mycoplasma genitalium/genetics , RNA Precursors/genetics , RNA Processing, Post-Transcriptional , RNA, Bacterial/genetics , RNA, Transfer/genetics , RNA, Transfer, Gly/genetics , RNA, Transfer, Gly/metabolism , Substrate Specificity
13.
Am J Bot ; 99(11): 1857-65, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23108464

ABSTRACT

PREMISE OF THE STUDY: Molecular studies have shown that multiple origins of polyploid taxa are the rule rather than the exception. To understand the distribution and ecology of polyploid species and the evolutionary significance of polyploidy in general, it is important to delineate these independently derived lineages as accurately as possible. Although gene flow among polyploid lineages and backcrossing to their diploid parents often confound this process, such post origin gene flow is very infrequent in asexual polyploids. In this study, we estimate the number of independent origins of the apomictic allopolyploid fern Astrolepis integerrima, a morphologically heterogeneous species most common in the southwestern United States and Mexico, with outlying populations in the southeastern United States and the Caribbean. METHODS: Plastid DNA sequence and AFLP data were obtained from 33 A. integerrima individuals. Phylogenetic analysis of the sequence data and multidimensional clustering of the AFLP data were used to identify independently derived lineages. KEY RESULTS: Analysis of the two datasets identified 10 genetic groups within the 33 analyzed samples. These groups suggest a minimum of 10 origins of A. integerrima in the northern portion of its range, with both putative parents functioning as maternal donors, both supplying unreduced gametes, and both contributing a significant portion of their genetic diversity to the hybrids. CONCLUSIONS: Our results highlight the extreme cryptic genetic diversity and systematic complexity that can underlie a single polyploid taxon.


Subject(s)
Genes, Plant/genetics , Polyploidy , Pteridaceae/genetics , Amplified Fragment Length Polymorphism Analysis , DNA, Intergenic/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Evolution, Molecular , Geography , Mexico , Molecular Sequence Data , Phylogeny , Pteridaceae/classification , RNA, Transfer, Arg/genetics , RNA, Transfer, Gly/genetics , Sequence Analysis, DNA , United States
14.
Am J Bot ; 99(6): 1118-24, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22542903

ABSTRACT

PREMISE OF THE STUDY: Not all ferns grow in moist, shaded habitats; some lineages thrive in exposed, seasonally dry environments. Notholaenids are a clade of xeric-adapted ferns commonly characterized by the presence of a waxy exudate, called farina, on the undersides of their leaves. Although some other lineages of cheilanthoid ferns also have farinose sporophytes, previous studies suggested that notholaenids are unique in also producing farina on their gametophytes. For this reason, consistent farina expression across life cycle phases has been proposed as a potential synapomorphy for the genus Notholaena. Recent phylogenetic studies have shown two species with nonfarinose sporophytes to be nested within Notholaena, with a third nonfarinose species well supported as sister to all other notholaenids. This finding raises the question: are the gametophytes of these three species farinose like those of their close relatives, or are they glabrous, consistent with their sporophytes? METHODS: We sowed spores of a diversity of cheilanthoid ferns onto culture media to observe and document whether their gametophytes produced farina. To place these species within a phylogenetic context, we extracted genomic DNA, then amplified and sequenced three plastid loci. The aligned data were analyzed using maximum likelihood to generate a phylogenetic tree. KEY RESULTS: Here we show that notholaenids lacking sporophytic farina also lack farina in the gametophytic phase, and notholaenids with sporophytic farina always display gametophytic farina (with a single exception). Outgroup taxa never displayed gametophytic farina, regardless of whether they displayed farina on their sporophytes. CONCLUSIONS: Notholaenids are unique among ferns in consistently expressing farina across both phases of the life cycle.


Subject(s)
Ferns/genetics , Genes, Plant/genetics , Germ Cells, Plant/metabolism , Phylogeny , DNA, Intergenic/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Ferns/classification , Ferns/growth & development , Genetic Variation , Germ Cells, Plant/growth & development , Molecular Sequence Data , Plastids/genetics , Proton-Translocating ATPases/genetics , RNA, Transfer, Arg/genetics , RNA, Transfer, Gly/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Sequence Analysis, DNA , Species Specificity
15.
J Nutr Biochem ; 99: 108866, 2022 01.
Article in English | MEDLINE | ID: mdl-34563666

ABSTRACT

Palmitic acid (PA) induces apoptosis in the human trophoblast cell line HTR8/SVneo. However, the molecular mechanism underlying this effect remains unclear. Although small noncoding RNAs are involved in trophoblast growth and invasion during early pregnancy, the functional roles of tRNA-derived species are currently unknown. Therefore, the purpose of this study was to examine the involvement of tRNA-derived species in PA-induced apoptosis in human trophoblasts. In this study, we investigate the expression and function of tRNA-derived stress-induced RNAs (tiRNAs) in HTR8/SVneo. We determined the expression of tiRNAs in HTR8/SVneo cells in response to PA. Then, we transfected inhibitor of target tiRNA in HTR8/SVneo with or without PA to examine the tRNA-derived species-regulated intracellular signal transduction by detecting calcium homeostasis, mitochondrial membrane potential, and signaling proteins. We found that the expression of tRNAGly-derived tiRNAs decreased in PA-treated human trophoblasts. Moreover, inhibition of tiRNAGlyCCC/GCC enhanced the PA-induced apoptosis along with the induction of DNA fragmentation and mitochondrial depolarization. Inhibition of tiRNAGlyCCC/GCC enhanced the expression of endoplasmic reticulum stress-related proteins and increased Ca2+ levels in the cytoplasm and mitochondria. Moreover, the levels of cytochrome c released from the mitochondria were synergistically affected by tiRNAGlyCCC/GCC inhibitor and PA. Furthermore, artificial regulation of ANG inhibited the expression of tiRNAGlyCCC/GCC and similar effects were observed upon the inhibition of tiRNAGlyCCC/GCC in human trophoblasts. These results suggest that tiRNAGlyCCC/GCC might be the molecule via which PA induces its effects in human trophoblasts.


Subject(s)
Apoptosis/drug effects , Palmitic Acid/adverse effects , RNA, Transfer, Gly/metabolism , Trophoblasts/cytology , Calcium/metabolism , DNA Fragmentation/drug effects , Humans , RNA, Transfer, Gly/genetics , Trophoblasts/drug effects , Trophoblasts/metabolism
16.
Proc Natl Acad Sci U S A ; 105(19): 7058-63, 2008 May 13.
Article in English | MEDLINE | ID: mdl-18448680

ABSTRACT

Genomic islands, large potentially mobile regions of bacterial chromosomes, are a major contributor to bacteria evolution. Here, we investigated the fitness cost and phenotypic differences between the bacterium Pseudomonas aeruginosa PAO1 and a derivative carrying one integrated copy of the clc element, a 103-kb genomic island [and integrative and conjugative element (ICE)] originating in Pseudomonas sp. strain B13 and a close relative of genomic islands found in clinical and environmental isolates of P. aeruginosa. By using a combination of whole genome transcriptome profiling, phenotypic arrays, competition experiments, and biofilm formation studies, only few differences became apparent, such as reduced biofilm growth and fourfold stationary phase repression of genes involved in acetoin metabolism in PAO1 containing the clc element. In contrast, PAO1 carrying the clc element acquired the capacity to grow on 3-chlorobenzoate and 2-aminophenol as sole carbon and energy substrates. No fitness loss >1% was detectable in competition experiments between PAO1 and PAO1 carrying the clc element. The genes from the clc element were not silent in PAO1, and excision was observed, although transfer of clc from PAO1 to other recipient bacteria was reduced by two orders of magnitude. Our results indicate that newly acquired mobile DNA not necessarily invoke an important fitness cost on their host. Absence of immediate detriment to the host may have contributed to the wide distribution of genomic islands like clc in bacterial genomes.


Subject(s)
Genomic Islands/genetics , Host-Pathogen Interactions , Pseudomonas aeruginosa/genetics , Biofilms/drug effects , Gene Expression Regulation, Bacterial/drug effects , Genome, Bacterial/genetics , Host-Pathogen Interactions/drug effects , Mutagenesis, Insertional , Oligonucleotide Array Sequence Analysis , Phenotype , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , RNA, Transfer, Gly/genetics , Rifampin/pharmacology , Substrate Specificity/drug effects , Succinic Acid/pharmacology
17.
Science ; 373(6559): 1161-1166, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516840

ABSTRACT

Heterozygous mutations in six transfer RNA (tRNA) synthetase genes cause Charcot-Marie-Tooth (CMT) peripheral neuropathy. CMT mutant tRNA synthetases inhibit protein synthesis by an unknown mechanism. We found that CMT mutant glycyl-tRNA synthetases bound tRNAGly but failed to release it, resulting in tRNAGly sequestration. This sequestration potentially depleted the cellular tRNAGly pool, leading to insufficient glycyl-tRNAGly supply to the ribosome. Accordingly, we found ribosome stalling at glycine codons and activation of the integrated stress response (ISR) in affected motor neurons. Moreover, transgenic overexpression of tRNAGly rescued protein synthesis, peripheral neuropathy, and ISR activation in Drosophila and mouse CMT disease type 2D (CMT2D) models. Conversely, inactivation of the ribosome rescue factor GTPBP2 exacerbated peripheral neuropathy. Our findings suggest a molecular mechanism for CMT2D, and elevating tRNAGly levels may thus have therapeutic potential.


Subject(s)
Charcot-Marie-Tooth Disease/metabolism , Glycine-tRNA Ligase/metabolism , RNA, Transfer, Gly/metabolism , Animals , Charcot-Marie-Tooth Disease/genetics , Disease Models, Animal , Drosophila melanogaster , Female , Glycine-tRNA Ligase/genetics , Humans , Male , Mice , Mice, Transgenic , Motor Neurons/physiology , RNA, Transfer, Gly/genetics
18.
J Exp Clin Cancer Res ; 40(1): 222, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34225773

ABSTRACT

BACKGROUND: tRNA-derived small noncoding RNAs (sncRNAs) are mainly categorized into tRNA halves (tiRNAs) and fragments (tRFs). Biological functions of tiRNAs in human solid tumor are attracting more and more attention, but researches concerning the mechanisms in tiRNAs-mediated tumorigenesis are rarely. The direct regulatory relationship between tiRNAs and splicing-related proteins remain elusive. METHODS: Papillary thyroid carcinoma (PTC) associated tRNA fragments were screened by tRNA fragments deep sequencing and validated by qRT-PCR and Northern Blot in PTC tissues. The biological function of tRNA fragments were assessed by cell counting kit, transwells and subcutaneous transplantation tumor of nude mice. For mechanistic study, tRNA fragments pull-down, RNA immunoprecipitation, Western Blot, Immunofluorescence, Immunohistochemical staining were performed. RESULTS: Herein, we have identified a 33 nt tiRNA-Gly significantly increases in papillary thyroid cancer (PTC) based on tRFs & tiRNAs sequencing. The ectopic expression of tiRNA-Gly promotes cell proliferation and migration, whereas down-regulation of tiRNA-Gly exhibits reverse effects. Mechanistic investigations reveal tiRNA-Gly directly bind the UHM domain of a splicing-related RNA-binding protein RBM17. The interaction with tiRNA-Gly could translocate RBM17 from cytoplasm into nucleus. In addition, tiRNA-Gly increases RBM17 protein expression via inhibiting its degradation in a ubiquitin/proteasome-dependent way. Moreover, RBM17 level in tiRNA-Gly high-expressing human PTC tissues is upregulated. In vivo mouse model shows that suppression of tiRNA-Gly decreases RBM17 expression. Importantly, tiRNA-Gly can induce exon 16 splicing of MAP4K4 mRNA leading to phosphorylation of downstream signaling pathway, which is RBM17 dependent. CONCLUSIONS: Our study firstly illustrates tiRNA-Gly can directly bind to RBM17 and display oncogenic effect via RBM17-mediated alternative splicing. This fully novel model broadens our understanding of molecular mechanism in which tRNA fragment in tumor cells directly bind RNA binding protein and play a role in alternative splicing.


Subject(s)
RNA Splicing Factors/metabolism , RNA, Transfer, Gly/metabolism , RNA, Transfer/metabolism , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/metabolism , Alternative Splicing , Animals , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Female , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , RNA Splicing Factors/genetics , RNA, Transfer/genetics , RNA, Transfer, Gly/genetics , Signal Transduction , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
19.
Mol Microbiol ; 72(5): 1293-306, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19432799

ABSTRACT

Genomic islands are DNA elements acquired by horizontal gene transfer that are common to a large number of bacterial genomes, which can contribute specific adaptive functions, e.g. virulence, metabolic capacities or antibiotic resistances. Some genomic islands are still self-transferable and display an intricate life-style, reminiscent of both bacteriophages and conjugative plasmids. Here we studied the dynamical process of genomic island excision and intracellular reintegration using the integrative and conjugative element ICEclc from Pseudomonas knackmussii B13 as model. By using self-transfer of ICEclc from strain B13 to Pseudomonas putida and Cupriavidus necator as recipients, we show that ICEclc can target a number of different tRNA(Gly) genes in a bacterial genome, but only those which carry the GCC anticodon. Two conditional traps were designed for ICEclc based on the attR sequence, and we could show that ICEclc will insert with different frequencies in such traps producing brightly fluorescent cells. Starting from clonal primary transconjugants we demonstrate that ICEclc is excising and reintegrating at detectable frequencies, even in the absence of recipient. Recombination site analysis provided evidence to explain the characteristics of a larger number of genomic island insertions observed in a variety of strains, including Bordetella petri, Pseudomonas aeruginosa and Burkholderia.


Subject(s)
DNA Transposable Elements , Genome, Bacterial , Genomic Islands , Mutagenesis, Insertional , Pseudomonas/genetics , Gene Targeting , Gene Transfer, Horizontal , Integrases/genetics , RNA, Bacterial/genetics , RNA, Transfer, Gly/genetics
20.
Science ; 240(4853): 793-6, 1988 May 06.
Article in English | MEDLINE | ID: mdl-2452483

ABSTRACT

Although the genetic code for protein was established in the 1960's, the basis for amino acid identity of transfer RNA (tRNA) has remained unknown. To investigate the identity of a tRNA, the nucleotides at three computer-identified positions in tRNAPhe (phenylalanine tRNA) were replaced with the corresponding nucleotides from tRNAAla (alanine tRNA). The identity of the resulting tRNA, when examined as an amber suppressor in Escherichia coli, was that of tRNAAla.


Subject(s)
Amino Acids/genetics , Escherichia coli/genetics , RNA, Bacterial/genetics , RNA, Transfer/genetics , Alanine/genetics , Base Composition , Base Sequence , Guanosine , Mutation , Phenylalanine/genetics , RNA, Transfer, Ala/genetics , RNA, Transfer, Gly/genetics , RNA, Transfer, Lys/genetics , RNA, Transfer, Phe/genetics , Suppression, Genetic , Uridine
SELECTION OF CITATIONS
SEARCH DETAIL