Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.637
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 41: 255-275, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36737596

ABSTRACT

The evolution of IgE in mammals added an extra layer of immune protection at body surfaces to provide a rapid and local response against antigens from the environment. The IgE immune response employs potent expulsive and inflammatory forces against local antigen provocation, at the risk of damaging host tissues and causing allergic disease. Two well-known IgE receptors, the high-affinity FcεRI and low-affinity CD23, mediate the activities of IgE. Unlike other known antibody receptors, CD23 also regulates IgE expression, maintaining IgE homeostasis. This mechanism evolved by adapting the function of the complement receptor CD21. Recent insights into the dynamic character of IgE structure, its resultant capacity for allosteric modulation, and the potential for ligand-induced dissociation have revealed previously unappreciated mechanisms for regulation of IgE and IgE complexes. We describe recent research, highlighting structural studies of the IgE network of proteins to analyze the uniquely versatile activities of IgE and anti-IgE biologics.


Subject(s)
Biological Products , Receptors, IgE , Humans , Animals , Receptors, IgE/chemistry , Receptors, IgE/metabolism , Immunoglobulin E/metabolism , Receptors, Fc , Mammals/metabolism
2.
Annu Rev Immunol ; 35: 285-311, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28446061

ABSTRACT

IgG antibodies mediate a diversity of immune functions by coupling of antigen specificity through the Fab domain to signal transduction via Fc-Fc receptor interactions. Indeed, balanced IgG signaling through type I and type II Fc receptors is required for the control of proinflammatory, anti-inflammatory, and immunomodulatory processes. In this review, we discuss the mechanisms that govern IgG-Fc receptor interactions, highlighting the diversity of Fc receptor-mediated effector functions that regulate immunity and inflammation as well as determine susceptibility to infection and autoimmunity and responsiveness to antibody-based therapeutics and vaccines.


Subject(s)
Antibodies/therapeutic use , Autoimmune Diseases/immunology , Immunoglobulin G/metabolism , Immunotherapy/methods , Infections/immunology , Receptors, Fc/metabolism , Animals , Autoimmune Diseases/therapy , Disease Susceptibility , Humans , Immunity, Humoral , Infections/therapy , Inflammation , Signal Transduction
3.
Cell ; 184(22): 5593-5607.e18, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34715022

ABSTRACT

Ebolaviruses cause a severe and often fatal illness with the potential for global spread. Monoclonal antibody-based treatments that have become available recently have a narrow therapeutic spectrum and are ineffective against ebolaviruses other than Ebola virus (EBOV), including medically important Bundibugyo (BDBV) and Sudan (SUDV) viruses. Here, we report the development of a therapeutic cocktail comprising two broadly neutralizing human antibodies, rEBOV-515 and rEBOV-442, that recognize non-overlapping sites on the ebolavirus glycoprotein (GP). Antibodies in the cocktail exhibited synergistic neutralizing activity, resisted viral escape, and possessed differing requirements for their Fc-regions for optimal in vivo activities. The cocktail protected non-human primates from ebolavirus disease caused by EBOV, BDBV, or SUDV with high therapeutic effectiveness. High-resolution structures of the cocktail antibodies in complex with GP revealed the molecular determinants for neutralization breadth and potency. This study provides advanced preclinical data to support clinical development of this cocktail for pan-ebolavirus therapy.


Subject(s)
Antibodies, Viral/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites , Cell Line , Cryoelectron Microscopy , Ebolavirus/ultrastructure , Epitopes/immunology , Female , Glycoproteins/chemistry , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Hydrogen-Ion Concentration , Mice, Inbred BALB C , Models, Molecular , Primates , Receptors, Fc/metabolism , Recombinant Proteins/immunology , Viremia/immunology
4.
Cell ; 184(17): 4430-4446.e22, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34416147

ABSTRACT

Alphaviruses cause severe arthritogenic or encephalitic disease. The E1 structural glycoprotein is highly conserved in these viruses and mediates viral fusion with host cells. However, the role of antibody responses to the E1 protein in immunity is poorly understood. We isolated E1-specific human monoclonal antibodies (mAbs) with diverse patterns of recognition for alphaviruses (ranging from Eastern equine encephalitis virus [EEEV]-specific to alphavirus cross-reactive) from survivors of natural EEEV infection. Antibody binding patterns and epitope mapping experiments identified differences in E1 reactivity based on exposure of epitopes on the glycoprotein through pH-dependent mechanisms or presentation on the cell surface prior to virus egress. Therapeutic efficacy in vivo of these mAbs corresponded with potency of virus egress inhibition in vitro and did not require Fc-mediated effector functions for treatment against subcutaneous EEEV challenge. These studies reveal the molecular basis for broad and protective antibody responses to alphavirus E1 proteins.


Subject(s)
Alphavirus/immunology , Antibodies, Viral/immunology , Cross Reactions/immunology , Viral Proteins/immunology , Virus Release/physiology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Cell Line , Chikungunya virus/immunology , Encephalitis Virus, Eastern Equine/immunology , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/virology , Epitope Mapping , Female , Horses , Humans , Hydrogen-Ion Concentration , Joints/pathology , Male , Mice, Inbred C57BL , Models, Biological , Protein Binding , RNA, Viral/metabolism , Receptors, Fc/metabolism , Temperature , Virion/metabolism , Virus Internalization
5.
Nat Immunol ; 24(7): 1161-1172, 2023 07.
Article in English | MEDLINE | ID: mdl-37322179

ABSTRACT

Despite the success of COVID-19 vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have emerged that can cause breakthrough infections. Although protection against severe disease has been largely preserved, the immunological mediators of protection in humans remain undefined. We performed a substudy on the ChAdOx1 nCoV-19 (AZD1222) vaccinees enrolled in a South African clinical trial. At peak immunogenicity, before infection, no differences were observed in immunoglobulin (Ig)G1-binding antibody titers; however, the vaccine induced different Fc-receptor-binding antibodies across groups. Vaccinees who resisted COVID-19 exclusively mounted FcγR3B-binding antibodies. In contrast, enhanced IgA and IgG3, linked to enriched FcγR2B binding, was observed in individuals who experienced breakthrough. Antibodies unable to bind to FcγR3B led to immune complex clearance and resulted in inflammatory cascades. Differential antibody binding to FcγR3B was linked to Fc-glycosylation differences in SARS-CoV-2-specific antibodies. These data potentially point to specific FcγR3B-mediated antibody functional profiles as critical markers of immunity against COVID-19.


Subject(s)
COVID-19 , Vaccines , Humans , ChAdOx1 nCoV-19 , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Receptors, Fc/genetics , Antibodies, Neutralizing , Vaccination
6.
Cell ; 177(6): 1553-1565.e16, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31104841

ABSTRACT

Enterovirus B (EV-B), a major proportion of the genus Enterovirus in the family Picornaviridae, is the causative agent of severe human infectious diseases. Although cellular receptors for coxsackievirus B in EV-B have been identified, receptors mediating virus entry, especially the uncoating process of echovirus and other EV-B remain obscure. Here, we found that human neonatal Fc receptor (FcRn) is the uncoating receptor for major EV-B. FcRn binds to the virus particles in the "canyon" through its FCGRT subunit. By obtaining multiple cryo-electron microscopy structures at different stages of virus entry at atomic or near-atomic resolution, we deciphered the underlying mechanisms of enterovirus attachment and uncoating. These structures revealed that different from the attachment receptor CD55, binding of FcRn to the virions induces efficient release of "pocket factor" under acidic conditions and initiates the conformational changes in viral particle, providing a structural basis for understanding the mechanisms of enterovirus entry.


Subject(s)
Enterovirus B, Human/metabolism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/ultrastructure , Receptors, Fc/metabolism , Receptors, Fc/ultrastructure , Capsid/metabolism , Cryoelectron Microscopy , Enterovirus , Enterovirus B, Human/pathogenicity , Enterovirus Infections/metabolism , Histocompatibility Antigens Class I/physiology , Humans , Models, Molecular , Phylogeny , Receptors, Fc/physiology , Virion , Virus Internalization
7.
Cell ; 178(1): 202-215.e14, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31204102

ABSTRACT

Despite the worldwide success of vaccination, newborns remain vulnerable to infections. While neonatal vaccination has been hampered by maternal antibody-mediated dampening of immune responses, enhanced regulatory and tolerogenic mechanisms, and immune system immaturity, maternal pre-natal immunization aims to boost neonatal immunity via antibody transfer to the fetus. However, emerging data suggest that antibodies are not transferred equally across the placenta. To understand this, we used systems serology to define Fc features associated with antibody transfer. The Fc-profile of neonatal and maternal antibodies differed, skewed toward natural killer (NK) cell-activating antibodies. This selective transfer was linked to digalactosylated Fc-glycans that selectively bind FcRn and FCGR3A, resulting in transfer of antibodies able to efficiently leverage innate immune cells present at birth. Given emerging data that vaccination may direct antibody glycosylation, our study provides insights for the development of next-generation maternal vaccines designed to elicit antibodies that will most effectively aid neonates.


Subject(s)
Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Immunoglobulin G/metabolism , Placenta/metabolism , Polysaccharides/metabolism , Receptors, Fc/immunology , Receptors, Fc/metabolism , Adolescent , Adult , Belgium , Cell Degranulation , Cohort Studies , Female , Glycosylation , Humans , Infant, Newborn , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Male , Pregnancy , Receptors, IgG/metabolism , THP-1 Cells , United States , Vaccination , Young Adult
8.
Cell ; 174(1): 131-142.e13, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29958103

ABSTRACT

Macrophages protect the body from damage and disease by targeting antibody-opsonized cells for phagocytosis. Though antibodies can be raised against antigens with diverse structures, shapes, and sizes, it is unclear why some are more effective at triggering immune responses than others. Here, we define an antigen height threshold that regulates phagocytosis of both engineered and cancer-specific antigens by macrophages. Using a reconstituted model of antibody-opsonized target cells, we find that phagocytosis is dramatically impaired for antigens that position antibodies >10 nm from the target surface. Decreasing antigen height drives segregation of antibody-bound Fc receptors from the inhibitory phosphatase CD45 in an integrin-independent manner, triggering Fc receptor phosphorylation and promoting phagocytosis. Our work shows that close contact between macrophage and target is a requirement for efficient phagocytosis, suggesting that therapeutic antibodies should target short antigens in order to trigger Fc receptor activation through size-dependent physical segregation.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens/chemistry , Macrophages/immunology , Opsonin Proteins/metabolism , Phagocytosis , Animals , Antibodies, Monoclonal/chemistry , Antigens/genetics , Antigens/immunology , Carcinoembryonic Antigen/chemistry , Carcinoembryonic Antigen/genetics , Carcinoembryonic Antigen/immunology , Gene Editing , Integrins/metabolism , Leukocyte Common Antigens/chemistry , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Macrophages/cytology , Mice , Opsonin Proteins/chemistry , Phosphorylation , RAW 264.7 Cells , Receptors, Fc/immunology , Receptors, Fc/metabolism , Unilamellar Liposomes/chemistry
9.
Cell ; 170(4): 637-648.e10, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28757252

ABSTRACT

Non-neutralizing antibodies (nnAbs) to HIV-1 show little measurable activity in prevention or therapy in animal models yet were the only correlate of protection in the RV144 vaccine trial. To investigate the role of nnAbs on HIV-1 infection in vivo, we devised a replication-competent HIV-1 reporter virus that expresses a heterologous HA-tag on the surface of infected cells and virions. Anti-HA antibodies bind to, but do not neutralize, the reporter virus in vitro. However, anti-HA protects against infection in humanized mice and strongly selects for nnAb-resistant viruses in an entirely Fc-dependent manner. Similar results were also obtained with tier 2 HIV-1 viruses using a human anti-gp41 nnAb, 246D. While nnAbs are demonstrably less effective than broadly neutralizing antibodies (bNAbs) against HIV-1 in vitro and in vivo, the data show that nnAbs can protect against and alter the course of HIV-1 infection in vivo. PAPERCLIP.


Subject(s)
HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/physiology , AIDS Vaccines/immunology , Animals , CD4 Antigens/chemistry , CD4 Antigens/metabolism , Disease Models, Animal , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , HIV-1/genetics , Humans , Mice , Mutation , Receptors, Fc/immunology , T-Lymphocytes/virology
10.
Immunity ; 55(2): 355-365.e4, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35090580

ABSTRACT

SARS-CoV-2 mRNA vaccines confer robust protection against COVID-19, but the emergence of variants has generated concerns regarding the protective efficacy of the currently approved vaccines, which lose neutralizing potency against some variants. Emerging data suggest that antibody functions beyond neutralization may contribute to protection from the disease, but little is known about SARS-CoV-2 antibody effector functions. Here, we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOCs). Although the neutralizing responses to VOCs decreased in both groups, the Fc-mediated responses were distinct. In convalescent individuals, although antibodies exhibited robust binding to VOCs, they showed compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies also bound robustly to VOCs but continued to interact with Fc-receptors and mediate antibody effector functions. These data point to a resilience in the mRNA-vaccine-induced humoral immune response that may continue to offer protection from SARS-CoV-2 VOCs independent of neutralization.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/immunology , COVID-19/metabolism , COVID-19/prevention & control , Receptors, Fc/metabolism , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adult , Antibodies, Neutralizing/immunology , Cross Reactions/immunology , Female , Host-Pathogen Interactions , Humans , Male , Middle Aged , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
11.
Immunity ; 54(4): 815-828.e5, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852832

ABSTRACT

Protective Ebola virus (EBOV) antibodies have neutralizing activity and induction of antibody constant domain (Fc)-mediated innate immune effector functions. Efforts to enhance Fc effector functionality often focus on maximizing antibody-dependent cellular cytotoxicity, yet distinct combinations of functions could be critical for antibody-mediated protection. As neutralizing antibodies have been cloned from EBOV disease survivors, we sought to identify survivor Fc effector profiles to help guide Fc optimization strategies. Survivors developed a range of functional antibody responses, and we therefore applied a rapid, high-throughput Fc engineering platform to define the most protective profiles. We generated a library of Fc variants with identical antigen-binding fragments (Fabs) from an EBOV neutralizing antibody. Fc variants with antibody-mediated complement deposition and moderate natural killer (NK) cell activity demonstrated complete protective activity in a stringent in vivo mouse model. Our findings highlight the importance of specific effector functions in antibody-mediated protection, and the experimental platform presents a generalizable resource for identifying correlates of immunity to guide therapeutic antibody design.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Female , HEK293 Cells , Hemorrhagic Fever, Ebola/virology , Humans , Immunoglobulin G/immunology , Mice, Inbred BALB C , Receptors, Fc/immunology
12.
Cell ; 163(4): 988-98, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26544943

ABSTRACT

While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine trials. Each vaccine regimen induced a unique humoral "Fc fingerprint." Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Viral/immunology , Immunoglobulin G/immunology , Animals , Antibodies, Viral/blood , Antibody-Dependent Cell Cytotoxicity , Antigen-Antibody Complex/immunology , Clinical Trials as Topic , Drug Design , HIV Infections/immunology , Humans , Immunoglobulin G/blood , Receptors, Fc/immunology
13.
Cell ; 162(1): 160-9, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26140596

ABSTRACT

Protective vaccines elicit high-affinity, neutralizing antibodies by selection of somatically hypermutated B cell antigen receptors (BCR) on immune complexes (ICs). This implicates Fc-Fc receptor (FcR) interactions in affinity maturation, which, in turn, are determined by IgG subclass and Fc glycan composition within ICs. Trivalent influenza virus vaccination elicited regulation of anti-hemagglutinin (HA) IgG subclass and Fc glycans, with abundance of sialylated Fc glycans (sFc) predicting quality of vaccine response. We show that sFcs drive BCR affinity selection by binding the Type-II FcR CD23, thus upregulating the inhibitory FcγRIIB on activated B cells. This elevates the threshold requirement for BCR signaling, resulting in B cell selection for higher affinity BCR. Immunization with sFc HA ICs elicited protective, high-affinity IgGs against the conserved stalk of the HA. These results reveal a novel, endogenous pathway for affinity maturation that can be exploited for eliciting high-affinity, broadly neutralizing antibodies through immunization with sialylated immune complexes.


Subject(s)
Antibodies, Neutralizing/immunology , Influenza Vaccines/immunology , Receptors, Antigen, B-Cell/immunology , Antigen-Antibody Complex/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunoglobulin Fc Fragments , Immunoglobulin G/immunology , Plasma Cells/immunology , Receptors, Antigen, B-Cell/chemistry , Receptors, Fc/metabolism , Sialic Acids/metabolism
14.
Cell ; 162(3): 493-504, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26189681

ABSTRACT

Dengue is the most common vector-borne viral disease, causing nearly 400 million infections yearly. Currently there are no approved therapies. Antibody epitopes that elicit weak humoral responses may not be accessible by conventional B cell panning methods. To demonstrate an alternative strategy to generating a therapeutic antibody, we employed a non-immunodominant, but functionally relevant, epitope in domain III of the E protein, and engineered by structure-guided methods an antibody directed to it. The resulting antibody, Ab513, exhibits high-affinity binding to, and broadly neutralizes, multiple genotypes within all four serotypes. To assess therapeutic relevance of Ab513, activity against important human clinical features of dengue was investigated. Ab513 mitigates thrombocytopenia in a humanized mouse model, resolves vascular leakage, reduces viremia to nearly undetectable levels, and protects mice in a maternal transfer model of lethal antibody-mediated enhancement. The results demonstrate that Ab513 may reduce the public health burden from dengue.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Dengue Virus/physiology , Dengue/therapy , Immunodominant Epitopes/chemistry , Amino Acid Sequence , Animals , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Disease Models, Animal , Mice , Models, Molecular , Molecular Sequence Data , Phagocytosis , Protein Engineering , Receptors, Fc/immunology , Sequence Alignment
15.
Nat Immunol ; 18(3): 321-333, 2017 03.
Article in English | MEDLINE | ID: mdl-28135254

ABSTRACT

The FcµR receptor for the crystallizable fragment (Fc) of immunoglobulin M (IgM) can function as a cell-surface receptor for secreted IgM on a variety of cell types. We found here that FcµR was also expressed in the trans-Golgi network of developing B cells, where it constrained transport of the IgM-isotype BCR (IgM-BCR) but not of the IgD-isotype BCR (IgD-BCR). In the absence of FcµR, the surface expression of IgM-BCR was increased, which resulted in enhanced tonic BCR signaling. B-cell-specific deficiency in FcµR enhanced the spontaneous differentiation of B-1 cells, which resulted in increased serum concentrations of natural IgM and dysregulated homeostasis of B-2 cells; this caused the spontaneous formation of germinal centers, increased titers of serum autoantibodies and excessive accumulation of B cells. Thus, FcµR serves as a critical regulator of B cell biology by constraining the transport and cell-surface expression of IgM-BCR.


Subject(s)
B-Lymphocytes/physiology , Immunoglobulin M/metabolism , Precursor Cells, B-Lymphoid/physiology , Receptors, Antigen, B-Cell/metabolism , Receptors, Fc/metabolism , Animals , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Female , Gene Expression Regulation , Immunoglobulin M/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, B-Cell/genetics , Signal Transduction , Th1 Cells/immunology , Th2 Cells/immunology
16.
Immunity ; 52(1): 9-11, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31951551

ABSTRACT

Understanding how cytotoxic T cells are regulated is key for enhancing or suppressing their activity in tumor or transplantation settings. A study by Morris et al. (2020) in this issue of Immunity shows that crosslinking of inhibitory Fc receptor FcγRIIb by the suppressive cytokine Fgl2 limits cytotoxic CD8+ T cell responses by inducing T cell apoptosis.


Subject(s)
Receptors, Fc , Receptors, IgG , Apoptosis , CD8-Positive T-Lymphocytes , Signal Transduction
17.
Immunity ; 52(6): 1039-1056.e9, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32392463

ABSTRACT

The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1s and cDC2s, respectively) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen-presenting cells (APCs). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of the Fc receptor CD64 shared with MCs and of IRF8 shared with cDC1s. These inflammatory cDC2s (inf-cDC2s) were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2s matured in response to cell-intrinsic Toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module, and acquired antigens via convalescent serum and Fc receptors. Because hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs.


Subject(s)
Cell Plasticity/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immunity , Macrophages/immunology , Macrophages/metabolism , Respirovirus Infections/etiology , Antigen Presentation , Biomarkers , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Immunophenotyping , Interferon Type I/metabolism , Monocytes/immunology , Monocytes/metabolism , Organ Specificity/immunology , Receptors, Fc/metabolism , Respirovirus Infections/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcription Factors , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/virology
18.
Cell ; 158(5): 989-999, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25131989

ABSTRACT

Latent reservoirs of HIV-1-infected cells are refractory to antiretroviral therapies (ART) and remain the major barrier to curing HIV-1. Because latently infected cells are long-lived, immunologically invisible, and may undergo homeostatic proliferation, a "shock and kill" approach has been proposed to eradicate this reservoir by combining ART with inducers of viral transcription. However, all attempts to alter the HIV-1 reservoir in vivo have failed to date. Using humanized mice, we show that broadly neutralizing antibodies (bNAbs) can interfere with establishment of a silent reservoir by Fc-FcR-mediated mechanisms. In established infection, bNAbs or bNAbs plus single inducers are ineffective in preventing viral rebound. However, bNAbs plus a combination of inducers that act by independent mechanisms synergize to decrease the reservoir as measured by viral rebound. Thus, combinations of inducers and bNAbs constitute a therapeutic strategy that impacts the establishment and maintenance of the HIV-1 reservoir in humanized mice.


Subject(s)
Antibodies, Neutralizing/administration & dosage , HIV Infections/immunology , HIV-1/drug effects , Transcription, Genetic/drug effects , Virus Latency/drug effects , Animals , Anti-HIV Agents/therapeutic use , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/administration & dosage , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Humans , Hydroxamic Acids/administration & dosage , Immunoglobulin Fc Fragments/immunology , Mice , Receptors, Fc/immunology , Vorinostat
19.
Immunity ; 51(4): 750-765.e10, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31492649

ABSTRACT

Immunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection. By integrating whole-blood transcriptomics, flow-cytometric analysis, and plasma cytokine and antibody profiles, we demonstrate that a pre-infection signature of B cell enrichment, upregulation of T helper type 1 (Th1) and Th2 cell-associated pathways, including interferon responses, and p53 activation associated with control of malarial fever and coordinated with Pf-specific immunoglobulin G (IgG) and Fc receptor activation to control parasitemia. Our hypothesis-generating approach identified host molecules that may contribute to differential clinical outcomes during Pf infection. As a proof of concept, we have shown that enhanced p53 expression in monocytes attenuated Plasmodium-induced inflammation and predicted protection from fever.


Subject(s)
B-Lymphocytes/immunology , Blood Proteins/metabolism , Inflammation/metabolism , Malaria, Falciparum/metabolism , Plasmodium falciparum/physiology , Th1 Cells/immunology , Th2 Cells/immunology , Tumor Suppressor Protein p53/metabolism , Adolescent , Adult , Animals , Antibodies, Protozoan/metabolism , Child , Child, Preschool , Disease Resistance , Female , Gene Expression Profiling , Humans , Infant , Interferons/metabolism , Male , Mice , Mice, Inbred C57BL , Prospective Studies , Receptors, Fc/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Young Adult
20.
Nature ; 591(7850): 464-470, 2021 03.
Article in English | MEDLINE | ID: mdl-33536615

ABSTRACT

Most ovarian cancers are infiltrated by prognostically relevant activated T cells1-3, yet exhibit low response rates to immune checkpoint inhibitors4. Memory B cell and plasma cell infiltrates have previously been associated with better outcomes in ovarian cancer5,6, but the nature and functional relevance of these responses are controversial. Here, using 3 independent cohorts that in total comprise 534 patients with high-grade serous ovarian cancer, we show that robust, protective humoral responses are dominated by the production of polyclonal IgA, which binds to polymeric IgA receptors that are universally expressed on ovarian cancer cells. Notably, tumour B-cell-derived IgA redirects myeloid cells against extracellular oncogenic drivers, which causes tumour cell death. In addition, IgA transcytosis through malignant epithelial cells elicits transcriptional changes that antagonize the RAS pathway and sensitize tumour cells to cytolytic killing by T cells, which also contributes to hindering malignant progression. Thus, tumour-antigen-specific and -antigen-independent IgA responses antagonize the growth of ovarian cancer by governing coordinated tumour cell, T cell and B cell responses. These findings provide a platform for identifying targets that are spontaneously recognized by intratumoural B-cell-derived antibodies, and suggest that immunotherapies that augment B cell responses may be more effective than approaches that focus on T cells, particularly for malignancies that are resistant to checkpoint inhibitors.


Subject(s)
Antigens, Neoplasm/immunology , Immunoglobulin A/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , Transcytosis , Antibody Specificity , Antigens, CD/immunology , Cell Line , Disease Progression , Female , Humans , Ovarian Neoplasms/prevention & control , Receptors, Fc/immunology , Signaling Lymphocytic Activation Molecule Family/immunology , Transcytosis/immunology , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL