Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
FASEB J ; 38(11): e23681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814725

ABSTRACT

Ischemia-reperfusion (IR) injury is primarily characterized by the restoration of blood flow perfusion and oxygen supply to ischemic tissue and organs, but it paradoxically leads to tissue injury aggravation. IR injury is a challenging pathophysiological process that is difficult to avoid clinically and frequently occurs during organ transplantation, surgery, shock resuscitation, and other processes. The major causes of IR injury include increased levels of free radicals, calcium overload, oxidative stress, and excessive inflammatory response. Ghrelin is a newly discovered brain-intestinal peptide with anti-inflammatory and antiapoptotic effects that improve blood supply. The role and mechanism of ghrelin in intestinal ischemia-reperfusion (IIR) injury remain unclear. We hypothesized that ghrelin could attenuate IIR-induced oxidative stress and apoptosis. To investigate this, we established IIR by using a non-invasive arterial clip to clamp the root of the superior mesenteric artery (SMA) in mice. Ghrelin was injected intraperitoneally at a dose of 50 µg/kg 20 min before IIR surgery, and [D-Lys3]-GHRP-6 was injected intraperitoneally at a dose of 12 nmol/kg 20 min before ghrelin injection. We mimicked the IIR process with hypoxia-reoxygenation (HR) in Caco-2 cells, which are similar to intestinal epithelial cells in structure and biochemistry. Our results showed that ghrelin inhibited IIR/HR-induced oxidative stress and apoptosis by activating GHSR-1α. Moreover, it was found that ghrelin activated the GHSR-1α/Sirt1/FOXO1 signaling pathway. We further inhibited Sirt1 and found that Sirt1 was critical for ghrelin-mediated mitigation of IIR/HR injury. Overall, our data suggest that pretreatment with ghrelin reduces oxidative stress and apoptosis to attenuate IIR/HR injury by binding with GHSR-1α to further activate Sirt1.


Subject(s)
Apoptosis , Forkhead Box Protein O1 , Ghrelin , Mice, Inbred C57BL , Oxidative Stress , Receptors, Ghrelin , Reperfusion Injury , Sirtuin 1 , Ghrelin/pharmacology , Ghrelin/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Sirtuin 1/metabolism , Animals , Mice , Receptors, Ghrelin/metabolism , Humans , Male , Forkhead Box Protein O1/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects , Intestines/drug effects , Caco-2 Cells
2.
Biochem Biophys Res Commun ; 727: 150270, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38917617

ABSTRACT

Neuroinflammation has been implicated in cognitive deficits of neurological and neurodegenerative diseases. There is abundant evidence that the application of ghrelin, an orexigenic hormone regulating appetite and energy balance, abrogates neuroinflammation and rescues associated memory impairment. However, the underlying mechanism is uncertain. In this study, we find that both intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) administration of lipopolysaccharide (LPS) impairs spatial memory in mice. LPS treatment causes neuroinflammation and microglial activation in the hippocampus. Ghsr1a deletion suppresses LPS-induced microglial activation and neuroinflammation, and rescued LPS-induced memory impairment. Our findings thus suggest that GHS-R1a signaling may promote microglial immunoactivation and contribute to LPS-induced neuroinflammation. GHS-R1a may be a new therapeutic target for cognitive dysfunction associated with inflammatory conditions.


Subject(s)
Lipopolysaccharides , Memory Disorders , Mice, Inbred C57BL , Microglia , Receptors, Ghrelin , Spatial Memory , Animals , Spatial Memory/drug effects , Receptors, Ghrelin/deficiency , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Memory Disorders/genetics , Memory Disorders/chemically induced , Memory Disorders/metabolism , Mice , Male , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Mice, Knockout , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology
3.
Behav Brain Funct ; 20(1): 18, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965529

ABSTRACT

BACKGROUND: Anxiety disorders are one of the most common mental disorders. Ghrelin is a critical orexigenic brain-gut peptide that regulates food intake and metabolism. Recently, the ghrelin system has attracted more attention for its crucial roles in psychiatric disorders, including depression and anxiety. However, the underlying neural mechanisms involved have not been fully investigated. METHODS: In the present study, the effect and underlying mechanism of ghrelin signaling in the nucleus accumbens (NAc) core on anxiety-like behaviors were examined in normal and acute stress rats, by using immunofluorescence, qRT-PCR, neuropharmacology, molecular manipulation and behavioral tests. RESULTS: We reported that injection of ghrelin into the NAc core caused significant anxiolytic effects. Ghrelin receptor growth hormone secretagogue receptor (GHSR) is highly localized and expressed in the NAc core neurons. Antagonism of GHSR blocked the ghrelin-induced anxiolytic effects. Moreover, molecular knockdown of GHSR induced anxiogenic effects. Furthermore, injection of ghrelin or overexpression of GHSR in the NAc core reduced acute restraint stress-induced anxiogenic effects. CONCLUSIONS: This study demonstrates that ghrelin and its receptor GHSR in the NAc core are actively involved in modulating anxiety induced by acute stress, and raises an opportunity to treat anxiety disorders by targeting ghrelin signaling system.


Subject(s)
Anxiety , Ghrelin , Nucleus Accumbens , Rats, Sprague-Dawley , Receptors, Ghrelin , Signal Transduction , Stress, Psychological , Animals , Ghrelin/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Male , Anxiety/metabolism , Anxiety/psychology , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Rats , Stress, Psychological/metabolism , Stress, Psychological/psychology , Signal Transduction/drug effects , Signal Transduction/physiology , Behavior, Animal/drug effects
4.
Bioorg Med Chem Lett ; 99: 129625, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38253227

ABSTRACT

The ghrelin receptor (GHSR) is known to regulate various physiological processes including appetite, food intake, and growth hormone release. Its expression is mainly observed in the brain, pancreas, stomach, and intestine. However, the functions of the receptor have not been fully elucidated. GHSR imaging with positron emission tomography (PET) is expected to further understanding of the functions and pathologies of the receptor. In this study, we newly designed and synthesized diaminopyrimidine derivatives ([18F]BPP-1 and [18F]BPP-2) and evaluated their utility as novel PET probes targeting GHSR. In in vitro competitive binding assays, the binding affinity of BPP-2 for GHSR (Ki = 274 nM) was comparable to that of the diaminopyimidine lead compound Abb8a (Ki = 109 nM). In a biodistribution study using normal mice, [18F]BPP-2 displayed low uptake in the brain and moderate uptake in the pancreas, but high radioactivity accumulation in bone was observed due to its defluorination in vivo. Taken together, although further improvement of the pharmacokinetics is needed, the diaminopyrimidine scaffold has potential for the development of useful GHSR-targeting PET probes.


Subject(s)
Positron-Emission Tomography , Pyrimidines , Receptors, Ghrelin , Animals , Mice , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Receptors, Ghrelin/metabolism , Tissue Distribution , Fluorine Radioisotopes/chemistry
5.
J Chem Inf Model ; 64(12): 4863-4876, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38836743

ABSTRACT

With recent large-scale applications and validations, the relative binding free energy (RBFE) calculated using alchemical free energy methods has been proven to be an accurate measure to probe the binding of small-molecule drug candidates. On the other hand, given the flexibility of peptides, it is of great interest to find out whether sufficient sampling could be achieved within the typical time scale of such calculation, and a similar level of accuracy could be reached for peptide drugs. However, the systematic evaluation of such calculations on protein-peptide systems has been less reported. Most reported studies of peptides were restricted to a limited number of data points or lacking experimental support. To demonstrate the applicability of the alchemical free energy method for protein-peptide systems in a typical real-world drug discovery project, we report an application of the thermodynamic integration (TI) method to the RBFE calculation of ghrelin receptor and its peptide agonists. Along with the calculation, the synthesis and in vitro EC50 activity of relamorelin and 17 new peptide derivatives were also reported. A cost-effective criterion to determine the data collection time was proposed for peptides in the TI simulation. The average of three TI repeats yielded a mean absolute error of 0.98 kcal/mol and Pearson's correlation coefficient (R) of 0.77 against the experimental free energy derived from the in vitro EC50 activity, showing good repeatability of the proposed method and a slightly better agreement than the results obtained from the arbitrary time frames up to 20 ns. Although it is limited by having one target and a deduced binding pose, we hope that this study can add some insights into alchemical free energy calculation of protein-peptide systems, providing theoretical assistance to the development of peptide drugs.


Subject(s)
Drug Design , Peptides , Receptors, Ghrelin , Thermodynamics , Receptors, Ghrelin/agonists , Receptors, Ghrelin/metabolism , Peptides/chemistry , Peptides/pharmacology , Humans , Protein Binding , Molecular Dynamics Simulation , Protein Conformation
6.
J Pept Sci ; 30(6): e3567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38268104

ABSTRACT

Ghrelin is known to be a gastrointestinal peptide hormone in vertebrates. It has a unique posttransrational modification, octanoylation, at the Ser side chain of the third position. In this study, we identified the genes encoding ghrelin and its receptor from the Schlegel's Japanese gecko Gekko japonicus. The C-terminal residue of gecko ghrelin was His, although the chemical synthesis method for the O-octanoyl peptide with a C-terminal His residue has not yet been well-established. Acyl-ghrelin has been synthesized using a Ser derivative without side chain protecting group in the solid-phase peptide synthesis, although this synthetic strategy has not yet been well-established. Here we show the efficient synthetic method with minimal side reactions, and G. japonicus ghrelin could be obtained in good yield. This would be useful and applicable to the synthesis of ghrelin from other animal species. The gecko ghrelin receptor was expressed in HEK 293 cells, which was fully responsive to the synthetic gecko ghrelin. These results indicate that the ghrelin system similar to mammals also exists in a reptilian gecko, G. japonicus.


Subject(s)
Ghrelin , Lizards , Receptors, Ghrelin , Ghrelin/chemistry , Ghrelin/metabolism , Animals , Lizards/metabolism , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Receptors, Ghrelin/chemistry , Humans , HEK293 Cells , Amino Acid Sequence , Protein Binding
7.
Gen Comp Endocrinol ; 355: 114563, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38830459

ABSTRACT

Investigating the principles of fish fat deposition and conducting related research are current focal points in fish nutrition. This study explores the endocrine regulation of LEAP2 and GHSR1a in zebrafish by constructing mutantmodels andexamining the effects of the endocrine factors LEAP2 and its receptor GHSR1a on zebrafish growth, feeding, and liver fat deposition. Compared to the wild type (WT), the mutation of LEAP2 results in increased feeding and decreased swimming in zebrafish. The impact is more pronounced in adult female zebrafish, characterized by increased weight, length, width, and accumulation of lipid droplets in the liver.Incontrast, deficiency in GHSR1a significantly reduces the growth of male zebrafish and markedly decreases liver fat deposition.These research findings indicate the crucial roles of LEAP2 and GHSR1a in zebrafish feeding, growth, and intracellular fat metabolism. This study, for the first time, investigated the endocrine metabolic regulation functions of LEAP2 and GHSR1a in the model organism zebrafish, providing initial insights into their effects and potential mechanisms on zebrafish fat metabolism.


Subject(s)
Antimicrobial Cationic Peptides , Lipid Metabolism , Receptors, Ghrelin , Zebrafish , Animals , Female , Male , CRISPR-Cas Systems , Mutation , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Antimicrobial Cationic Peptides/metabolism
8.
Mol Brain ; 17(1): 37, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872222

ABSTRACT

The potential role of the ghrelin receptor, also known as the growth hormone secretagogue receptor (GHSR), within the nucleus accumbens (NAcc) in regulating drug addiction and feeding has been documented; however, the pattern of its expression in this site remains elusive. In this study, we characterized the expression patterns of GHSR1a and 1b, two subtypes of GHSRs, within the NAcc of the rat brain by immunohistochemistry. We visually detected GHSR signals, for the first time, at the protein level in the NAcc in which they were mostly expressed in neurons including both medium spiny neurons (MSNs) and non-MSNs. Furthermore, GHSR1a was found expressed as localized near the cellular membrane or some in the cytoplasm, whereas GHSR1b expressed solely throughout the large cytoplasmic area. The existence and subcellular expression pattern of GHSRs in the NAcc identified in this study will contribute to improving our understanding about the role of GHSR-mediated neurosignaling in feeding and drug addiction.


Subject(s)
Nucleus Accumbens , Receptors, Ghrelin , Animals , Receptors, Ghrelin/metabolism , Nucleus Accumbens/metabolism , Male , Rats , Neurons/metabolism , Rats, Sprague-Dawley , Immunohistochemistry
9.
J Endocrinol ; 263(1)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39045853

ABSTRACT

Ghrelin has effects that range from the maturation of the central nervous system to the regulation of energy balance. The production of ghrelin increases significantly during the first weeks of life. Studies have addressed the metabolic effects of liver-expressed antimicrobial peptide 2 (LEAP2) in inhibiting the effects evoked by ghrelin, mainly in glucose homeostasis, insulin resistance, and lipid metabolism. Despite the known roles of ghrelin in the postnatal development, little is known about the long-term metabolic influences of modulation with the endogenous expressed growth hormone secretagogue receptor (GHSR) inverse agonist LEAP2. This study aimed to evaluate the contribution of GHSR signalling during perinatal phases, to neurodevelopment and energy metabolism in young animals, under inverse antagonism by LEAP2[1-14]. For this, two experimental models were used: (i) LEAP2[1-14] injections in female rats during the pregnancy. (ii) Postnatal modulation of GHSR with LEAP2[1-14] or MK677. Perinatal GHSR modulation by LEAP2[1-14] impacts glucose homeostasis in a sex and phase-dependent manner, despite no effects on body weight gain or food intake. Interestingly, liver PEPCK expression was remarkably impacted by LEAP2 injections. The observed results suggests that perinatal LEAP2 exposure can modulate liver metabolism and systemic glucose homeostasis. In addition, these results, although not expressive, may just be the beginning of the metabolic imbalance that will occur in adulthood.


Subject(s)
Liver , Receptors, Ghrelin , Animals , Liver/metabolism , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Female , Rats , Pregnancy , Male , Signal Transduction , Ghrelin/metabolism , Antimicrobial Cationic Peptides/metabolism , Rats, Wistar , Energy Metabolism , Sexual Maturation/physiology , Glucose/metabolism , Blood Proteins
10.
Biomed Pharmacother ; 174: 116595, 2024 May.
Article in English | MEDLINE | ID: mdl-38640709

ABSTRACT

Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis. Other than promoting ALD, ghrelin is known to increase alcohol craving and intake. In this study, we used a ghrelin receptor (GHSR) knockout (KO) rat model to characterize the specific contribution of ghrelin in the development of ALD with emphasis on energy homeostasis. Male Wistar wild type (WT) and GHSR-KO rats were pair-fed the Lieber-DeCarli control or ethanol diet for 6 weeks. At the end of the feeding period, glucose tolerance test was conducted, and tissue samples were collected. We observed reduced alcohol intake by GHSR-KOs compared to a previous study where WT rats were fed ethanol diet ad libitum. Further, when the WTs were pair-fed to GHSR-KOs, the KO rats exhibited resistance to develop ALD through improving insulin secretion/sensitivity to reduce adipose lipolysis and hepatic fatty acid uptake/synthesis and increase fatty acid oxidation. Furthermore, proteomic data revealed that ethanol-fed KO exhibit less alcohol-induced mitochondrial dysfunction and oxidative stress than WT rats. Proteomic data also confirmed that the ethanol-fed KOs are insulin sensitive and are resistant to hepatic steatosis development compared to WT rats. Together, these data confirm that inhibiting ghrelin action prevent alcohol-induced liver and adipose dysfunction independent of reducing alcohol intake.


Subject(s)
Ethanol , Ghrelin , Liver Diseases, Alcoholic , Liver , Rats, Wistar , Receptors, Ghrelin , Animals , Male , Rats , Alcohol Drinking , Fatty Acids/metabolism , Ghrelin/metabolism , Insulin/metabolism , Insulin/blood , Insulin Resistance , Liver/metabolism , Liver/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Oxidative Stress/drug effects , Proteomics/methods , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics
11.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38815068

ABSTRACT

The growth hormone secretagogue receptor (GHSR), primarily known as the receptor for the hunger hormone ghrelin, potently controls food intake, yet the specific Ghsr-expressing cells mediating the orexigenic effects of this receptor remain incompletely characterized. Since Ghsr is expressed in gamma-aminobutyric acid (GABA)-producing neurons, we sought to investigate whether the selective expression of Ghsr in a subset of GABA neurons is sufficient to mediate GHSR's effects on feeding. First, we crossed mice that express a tamoxifen-dependent Cre recombinase in the subset of GABA neurons that express glutamic acid decarboxylase 2 (Gad2) enzyme (Gad2-CreER mice) with reporter mice, and found that ghrelin mainly targets a subset of Gad2-expressing neurons located in the hypothalamic arcuate nucleus (ARH) and that is predominantly segregated from Agouti-related protein (AgRP)-expressing neurons. Analysis of various single-cell RNA-sequencing datasets further corroborated that the primary subset of cells coexpressing Gad2 and Ghsr in the mouse brain are non-AgRP ARH neurons. Next, we crossed Gad2-CreER mice with reactivable GHSR-deficient mice to generate mice expressing Ghsr only in Gad2-expressing neurons (Gad2-GHSR mice). We found that ghrelin treatment induced the expression of the marker of transcriptional activation c-Fos in the ARH of Gad2-GHSR mice, yet failed to induce food intake. In contrast, food deprivation-induced refeeding was higher in Gad2-GHSR mice than in GHSR-deficient mice and similar to wild-type mice, suggesting that ghrelin-independent roles of GHSR in a subset of GABA neurons is sufficient for eliciting full compensatory hyperphagia in mice.


Subject(s)
Arcuate Nucleus of Hypothalamus , Food Deprivation , GABAergic Neurons , Ghrelin , Glutamate Decarboxylase , Hyperphagia , Receptors, Ghrelin , Animals , Male , Mice , GABAergic Neurons/metabolism , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Hyperphagia/metabolism , Ghrelin/metabolism , Ghrelin/pharmacology , Arcuate Nucleus of Hypothalamus/metabolism , Food Deprivation/physiology , Glutamate Decarboxylase/metabolism , Glutamate Decarboxylase/genetics , Mice, Transgenic , Agouti-Related Protein/metabolism , Agouti-Related Protein/genetics , Mice, Inbred C57BL
12.
Neuroscience ; 547: 17-27, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38583506

ABSTRACT

Ghrelin, a hormone secreted by the stomach, binds to the growth hormone secretagogue receptor (GHSR) in various brain regions to produce a number of behavioral effects that include increased feeding motivation. During social defeat stress, ghrelin levels rise in correlation with increased feeding and potentially play a role in attenuating the anxiogenic effects of social defeat. One region implicated in the feeding effects of ghrelin is the ventral tegmental area (VTA), a region implicated in reward seeking behaviors, and linked to social defeat in mice. Here we examined the role of GHSR signaling in the VTA in feeding behavior in mice exposed to social defeat stress. Male C57BL/J6 mice that were socially defeated once daily for 3 weeks ate more, had higher plasma ghrelin level and increased GHSR expression in the VTA compared to non-stressed mice. Socially defeated GHSR KO mice failed to increase their caloric intake in response to this stressor but rescue of GHSR expression in the VTA restored feeding responses. Finally, we pharmacologically blocked VTA GHSR signalling with JMV2959 infused via an indwelling VTA cannula connected to a minipump. Vehicle-treated mice increased their caloric intake during social defeat, but JMV2959-infusions attenuated feeding responses and increased anxiety-like behaviors. The data suggest that GHSR signalling in the VTA is critical for the increases in appetite observed during chronic social defeat stress. Furthermore, these data support the idea that GHSR signaling in the VTA may also have anxiolytic effects, and blocking GHSR in this region may result in an anxiety-like phenotype.


Subject(s)
Feeding Behavior , Ghrelin , Receptors, Ghrelin , Social Defeat , Stress, Psychological , Ventral Tegmental Area , Animals , Male , Mice , Anxiety/metabolism , Feeding Behavior/physiology , Ghrelin/metabolism , Mice, Inbred C57BL , Mice, Knockout , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Signal Transduction/physiology , Stress, Psychological/metabolism , Ventral Tegmental Area/metabolism
13.
Commun Biol ; 7(1): 632, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796563

ABSTRACT

The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions; therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here, we investigate the effects of a long-term (12-month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild-type (WT) Wistar male and female rats. Our main findings are that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increases thermogenesis and brain glucose uptake in male rats and modifies the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. We use RNA-sequencing to show that GHSR-KO rats have upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuates ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating is reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.


Subject(s)
Diet, High-Fat , Obesity , Rats, Wistar , Receptors, Ghrelin , Sex Characteristics , Animals , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Diet, High-Fat/adverse effects , Male , Female , Rats , Obesity/metabolism , Obesity/genetics , Ghrelin/metabolism , Thermogenesis/drug effects , Eating/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects
14.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38937108

ABSTRACT

Ghrelin is a stomach-derived hormone that increases feeding and is elevated in response to chronic psychosocial stressors. The effects of ghrelin on feeding are mediated by the binding of ghrelin to the growth hormone secretagogue receptor (GHSR), a receptor located in hypothalamic and extrahypothalamic regions important for regulating food intake and metabolic rate. The ability of ghrelin to enter the brain, however, seems to be restricted to circumventricular organs like the median eminence and the brainstem area postrema, whereas ghrelin does not readily enter other GHSR-expressing regions like the ventral tegmental area (VTA). Interestingly, social stressors result in increased blood-brain barrier permeability, and this could therefore facilitate the entry of ghrelin into the brain. To investigate this, we exposed mice to social defeat stress for 21 d and then peripherally injected a Cy5-labelled biologically active ghrelin analog. The results demonstrate that chronically stressed mice exhibit higher Cy5-ghrelin fluorescence in several hypothalamic regions in addition to the ARC, including the hippocampus and midbrain. Furthermore, Cy5-ghrelin injections resulted in increased FOS expression in regions associated with the reward system in chronically stressed mice. Further histologic analyses identified a reduction in the branching of hypothalamic astrocytes in the ARC-median eminence junction, suggesting increased blood-brain barrier permeability. These data support the hypothesis that during metabolically challenging conditions like chronic stress, ghrelin may be more able to cross the blood-brain barrier and diffuse throughout the brain to target GHSR-expressing brain regions away from circumventricular organs.


Subject(s)
Blood-Brain Barrier , Brain , Ghrelin , Mice, Inbred C57BL , Social Defeat , Stress, Psychological , Animals , Ghrelin/metabolism , Male , Stress, Psychological/metabolism , Brain/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Ghrelin/metabolism
15.
Nutrients ; 16(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794702

ABSTRACT

Insulin secretion from pancreatic ß cells is a key pillar of glucose homeostasis, which is impaired under obesity and aging. Growth hormone secretagogue receptor (GHSR) is the receptor of nutrient-sensing hormone ghrelin. Previously, we showed that ß-cell GHSR regulated glucose-stimulated insulin secretion (GSIS) in young mice. In the current study, we further investigated the effects of GHSR on insulin secretion in male mice under diet-induced obesity (DIO) and streptozotocin (STZ)-induced ß-cell injury in aging. ß-cell-specific-Ghsr-deficient (Ghsr-ßKO) mice exhibited no glycemic phenotype under DIO but showed significantly improved ex vivo GSIS in aging. We also detected reduced insulin sensitivity and impaired insulin secretion during aging both in vivo and ex vivo. Accordingly, there were age-related alterations in expression of glucose transporter, insulin signaling pathway, and inflammatory genes. To further determine whether GHSR deficiency affected ß-cell susceptibility to acute injury, young, middle-aged, and old Ghsr-ßKO mice were subjected to STZ. We found that middle-aged and old Ghsr-ßKO mice were protected from STZ-induced hyperglycemia and impaired insulin secretion, correlated with increased expression of insulin signaling regulators but decreased pro-inflammatory cytokines in pancreatic islets. Collectively, our findings indicate that ß-cell GHSR has a major impact on insulin secretion in aging but not obesity, and GHSR deficiency protects against STZ-induced ß-cell injury in aging.


Subject(s)
Aging , Insulin-Secreting Cells , Obesity , Receptors, Ghrelin , Animals , Male , Mice , Blood Glucose/metabolism , Diabetes Mellitus, Experimental , Hyperglycemia , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Signal Transduction , Streptozocin/toxicity
16.
Article in English | MEDLINE | ID: mdl-38278286

ABSTRACT

Ghrelin is a gastrointestinal hormone on feeding and metabolism regulation, and acts through its receptor-growth hormone secretagogue receptor (GHSR), which is widely distributed throughout the central nervous system. Recent studies have suggested that ghrelin plays an important role in the regulation of depression, but the underlying mechanisms remain uncertain. Lateral septum (LS) is a critical brain region in modulating depression. Therefore, we investigated the role of ghrelin/GHSR signaling in the LS on the depressive-like behaviors of mice under conditions of chronic stress by using behavioral tests, neuropharmacology, and molecular biology techniques. We found that infusion of ghrelin into the LS produced antidepressant-like responses in mice. Activation of LS GABAergic neurons was involved in the antidepressant effect of ghrelin. Importantly, GHSR was highly expressed and distributed in the LS neurons. Blockade of GHSR in the LS reversed the ghrelin-induced antidepressant-like effects. Molecular knockdown of GHSR in the LS induced depressive-like symptoms in mice. Furthermore, administration of ghrelin into the LS alleviated depressive-like behaviors induced by chronic social defeat stress (CSDS). Consistent with the neuropharmacological results, overexpression of GHSR in the LS reversed CSDS-induced depressive-like behaviors. Our findings clarify a key role for ghrelin/GHSR signaling in the regulation of chronic stress-induced depressive-like behaviors, which could provide new strategies for the treatment of depression.


Subject(s)
Ghrelin , Receptors, Ghrelin , Mice , Animals , Ghrelin/pharmacology , Ghrelin/therapeutic use , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Signal Transduction , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
17.
Peptides ; 177: 171227, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657907

ABSTRACT

Liver-expressed antimicrobial peptide 2 (LEAP2) and ghrelin have reciprocal effects on their common receptor, the growth hormone secretagogue receptor (GHSR). Ghrelin is considered a gastric hormone and LEAP2 a liver-derived hormone and both have been proposed to be involved in the pathophysiology of obesity and type 2 diabetes (T2D). We investigated the mRNA expression of LEAP2, ghrelin and GHSR along the intestinal tract of individuals with and without TD2, and in the liver of men with and without obesity. Mucosal biopsies retrieved with 30-cm intervals throughout the small intestine and from 7 well-defined locations along the large intestine from 12 individuals with T2D and 12 healthy controls together with liver biopsies from 15 men with obesity and 15 lean men were subjected to bulk transcriptomics analysis. Both in individuals with and without T2D, mRNA expression of LEAP2 increased through the small intestine until dropping at the ileocecal valve, with little LEAP2 mRNA expression in the large intestine. Pronounced LEAP2 expression was observed in the liver of men with and without obesity. Robust ghrelin mRNA expression was observed in the duodenum of individuals with and without T2D, gradually decreasing along the small intestine with little expression in the large intestine. Ghrelin mRNA expression was not detected in the liver biopsies, and GHSR mRNA expression was not. In conclusion, we provide unique mRNA expression profiles of LEAP2, ghrelin and GHSR along the human intestinal tract showing no T2D-associated changes, and in the liver showing no differences between men with and without obesity.


Subject(s)
Ghrelin , Liver , Obesity , Receptors, Ghrelin , Humans , Ghrelin/genetics , Ghrelin/metabolism , Male , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Liver/metabolism , Middle Aged , Obesity/metabolism , Obesity/genetics , Obesity/pathology , Adult , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Intestinal Mucosa/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Blood Proteins
18.
Eur J Pharm Sci ; 197: 106768, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38643940

ABSTRACT

The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.


Subject(s)
Cell Proliferation , Mesenchymal Stem Cells , Ovary , Female , Animals , Mice , Cell Proliferation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Ovary/drug effects , Ovary/metabolism , Growth Hormone-Releasing Hormone/metabolism , Fertility/drug effects , Receptors, Neuropeptide/metabolism , Humans , Allosteric Regulation/drug effects , Receptors, Ghrelin/metabolism , Cricetinae , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Dimerization
19.
Braz. j. med. biol. res ; 49(3): e5043, Mar. 2016. graf
Article in English | LILACS | ID: lil-771931

ABSTRACT

Ovarian cancer is one of the most common causes of death from gynecologic tumors and is an important public health issue. Ghrelin is a recently discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR). Several studies have identified the protective effects of ghrelin on the mammalian reproductive system. However, little research has been done on the effects of ghrelin on ovarian cancer cells, and the underlying mechanisms of these effects. We sought to understand the potential involvement of mitogen-activated protein kinases (MAPKs) in ghrelin-mediated inhibition of growth of the ovarian line HO-8910. We applied different concentrations of ghrelin and an inhibitor of the ghrelin receptor (D-Lys3-GHRP-6) to HO-8910 cells and observed the growth rate of cells and changes in phosphorylation of the MAPKs ERK1/2, JNK and p38. We discovered that ghrelin-induced apoptosis of HO-8910 cells was though phosphorylated ERK1/2, and that this phosphorylation (as well as p90rsk phosphorylation) was mediated by the GHSR. The ERK1/2 pathway is known to play an essential part in the ghrelin-mediated apoptosis of HO-8910 cells. Hence, our study suggests that ghrelin inhibits the growth of HO-8910 cells primarily through the GHSR/ERK pathway.


Subject(s)
Humans , Female , Middle Aged , Gene Expression Regulation, Neoplastic/genetics , Ghrelin/pharmacology , MAP Kinase Signaling System/physiology , Ovarian Neoplasms/genetics , Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Oligopeptides/metabolism , Ovarian Neoplasms/metabolism , Phosphorylation/drug effects , Receptors, Ghrelin/antagonists & inhibitors , Receptors, Ghrelin/metabolism , Tumor Cells, Cultured
20.
Rio de Janeiro; s.n; 2013. 93 p. ilus, tab.
Thesis in Portuguese | LILACS | ID: lil-681501

ABSTRACT

A grelina é um ligante endógeno do receptor secretagogo do hormônio do crescimento (GHSR), potente estimulador da liberação do hormônio de crescimento (GH), ingestão alimentar, e adiposidade. Além disso, sua ação hormonal inclui regulação do metabolismo energético cardíaco. Entretanto, a hipernutrição no início da vida leva ao desenvolvimento da obesidade, induz hipertrofia cardíaca, compromete a função cardíaca, e gera insuficiência cardíaca na vida adulta. Avaliar proteínas chaves no processo de sinalização da grelina no remodelamento cardíaco no coração de camundongos obesos após a hipernutrição na lactação. A obesidade foi induzida por redução de ninhada e camundongos adultos (180 dias) foram divididos em: grupo hiperalimentado, GH com obesidade decorrente de hipernutrição na lactação e controle, GC. Cardiomiócitos (cmi) do ventrículo esquerdo foram analisados por microscopia de luz e estereologia, o conteúdo e fosforilação de proteínas cardíacas: receptor de grelina (hormônio do crescimento secretagogo receptor 1a, GHSR-1a), proteína quinase-B (AKT e pAKT), phosphatidil inositol 3-quinase (PI3K), proteína quinase ativada por AMP (AMPK e pAMPK), m-TOR, pmTOR, Bax, Bcl2 e actina foram analizados por western blotting. A expressão gênica do GHSR-1a foi analisada por PCR em tempo real. A respirometria de alta resolução dos cardiomiócitos foi analisada por oxígrafo OROBOROS®. Significância estatística (P< 0,05) determinada por teste t-Student não-pareado. Nossos dados demonstram que a hipernutrição na lactação induz aumento no peso corporal, iniciado aos 10 dias de idade, persistindo até os 180 dias de idade. A glicemia, peso do fígado, e da gordura visceral foram maiores no grupo GH. Além disso, o grupo GH também apresentou aumento no peso do coração e razão peso do coração/CT (comprimento da tíbia), indicando hipertrofia e remodelamento cardíaco, aumento na expressão e conteúdo de GHSR-1a no coração, associado ao maior conteúdo de PI3K e maior conteúdo...


Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), has been suggested to be associated to obesity, insulin secretion, cardiovascular growth and homeostasis. GHS-R has been found in most of the tissues, and among the hormone action it is included the regulation of heart energy metabolism. Therefore, hypernutrition during early life leads to obesity, induces cardiac hypertrophy, compromises myocardial function, inducing heart failure in adulthood. We examined ghrelin signaling process in cardiac remodeling in these obese adult mice. We examined key proteins of cardiomyocyte metabolism in heart left ventricle from overfed (OG) and control (CG) groups from adult mice (180 days) overfed during lactation. Obesity was induced by litter reduction. Therefore, the study was done in adult mice 180 days old (OG, obese group (n=10) and CG, control group (n=10). The cardiomyocytes (cmy) of left ventricle were analyzed by light microscopy and stereology. The content and phosphorylation of cardiac proteins: growth hormone secretagogue receptor 1a (GHSR-1a), protein kinase B (AKT and pAKT), phosphatidil inositol 3 kinase (PI3K), AMP-activated protein kinase (AMPK and pAMPK), mTOR and pmTOR, BAX, Bcl2 and actin was achieved by western blotting. GHSR-1a gene expression was analyzed to RT-PCR. We performed high-resolution respirometry of cardiomyocytes with OROBOROS® Oxygraph-2k. Statistical significance was determined by Student t-test for unpaired. P< 0.05 was considered statistical significant. Body weight, blood glucose, liver weight, and visceral fat weight were higher in OG than CG group. Obese mice had increased heart weight and heart weight/TL (tibia length) indicating cardiac remodeling and hypertrophy, increased GHSR-1a content and expression in the heart, associated to PI3K content, increased AKT content and phosphorylation (P< 0.05), decreased Bcl2 content. In contrast, AMPK and mTOR content and phosphorylation in heart were not...


Subject(s)
Animals , Mice , Ghrelin/blood , Heart Failure , Overnutrition/complications , Animals, Suckling , /metabolism , Obesity/etiology , Obesity/metabolism , AMP-Activated Protein Kinases/metabolism , Receptors, Ghrelin/metabolism , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL